11,941 research outputs found

    A general framework for the rigorous computation of invariant densities and the coarse-fine strategy

    Full text link
    In this paper we present a general, axiomatical framework for the rigorous approximation of invariant densities and other important statistical features of dynamics. We approximate the system trough a finite element reduction, by composing the associated transfer operator with a suitable finite dimensional projection (a discretization scheme) as in the well-known Ulam method. We introduce a general framework based on a list of properties (of the system and of the projection) that need to be verified so that we can take advantage of a so-called ``coarse-fine'' strategy. This strategy is a novel method in which we exploit information coming from a coarser approximation of the system to get useful information on a finer approximation, speeding up the computation. This coarse-fine strategy allows a precise estimation of invariant densities and also allows to estimate rigorously the speed of mixing of the system by the speed of mixing of a coarse approximation of it, which can easily be estimated by the computer. The estimates obtained here are rigourous, i.e., they come with exact error bounds that are guaranteed to hold and take into account both the discretiazation and the approximations induced by finite-precision arithmetic. We apply this framework to several discretization schemes and examples of invariant density computation from previous works, obtaining a remarkable reduction in computation time. We have implemented the numerical methods described here in the Julia programming language, and released our implementation publicly as a Julia package

    Goal-oriented h-adaptivity for the Helmholtz equation: error estimates, local indicators and refinement strategies

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-010-0557-2This paper introduces a new goal-oriented adaptive technique based on a simple and effective post-process of the finite element approximations. The goal-oriented character of the estimate is achieved by analyzing both the direct problem and an auxiliary problem, denoted as adjoint or dual problem, which is related to the quantity of interest. Thus, the error estimation technique proposed in this paper would fall into the category of recovery-type explicit residual a posteriori error estimates. The procedure is valid for general linear quantities of interest and it is also extended to non-linear ones. The numerical examples demonstrate the efficiency of the proposed approach and discuss: (1) different error representations, (2) assessment of the dispersion error, and (3) different remeshing criteria.Peer ReviewedPostprint (author's final draft

    Sparse approximation of multilinear problems with applications to kernel-based methods in UQ

    Full text link
    We provide a framework for the sparse approximation of multilinear problems and show that several problems in uncertainty quantification fit within this framework. In these problems, the value of a multilinear map has to be approximated using approximations of different accuracy and computational work of the arguments of this map. We propose and analyze a generalized version of Smolyak's algorithm, which provides sparse approximation formulas with convergence rates that mitigate the curse of dimension that appears in multilinear approximation problems with a large number of arguments. We apply the general framework to response surface approximation and optimization under uncertainty for parametric partial differential equations using kernel-based approximation. The theoretical results are supplemented by numerical experiments

    Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations

    Get PDF
    We derive a posteriori error estimates for the hybridizable discontinuous Galerkin (HDG) methods, including both the primal and mixed formulations, for the approximation of a linear second-order elliptic problem on conforming simplicial meshes in two and three dimensions. We obtain fully computable, constant free, a posteriori error bounds on the broken energy seminorm and the HDG energy (semi)norm of the error. The estimators are also shown to provide local lower bounds for the HDG energy (semi)norm of the error up to a constant and a higher-order data oscillation term. For the primal HDG methods and mixed HDG methods with an appropriate choice of stabilization parameter, the estimators are also shown to provide a lower bound for the broken energy seminorm of the error up to a constant and a higher-order data oscillation term. Numerical examples are given illustrating the theoretical results
    • …
    corecore