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Abstract This paper introduces a new goal-oriented adap-
tive technique based on a simple and effective post-process
of the finite element approximations. The goal-oriented char-
acter of the estimate is achieved by analyzing both the direct
problem and an auxiliary problem, denoted as adjoint or dual
problem, which is related to the quantity of interest. Thus,
the error estimation technique proposed in this paper would
fall into the category of recovery-type explicit residual
a posteriori error estimates. The procedure is valid for gen-
eral linear quantities of interest and it is also extended to
non-linear ones. The numerical examples demonstrate the
efficiency of the proposed approach and discuss: (1) differ-
ent error representations, (2) assessment of the dispersion
error, and (3) different remeshing criteria.
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1 Introduction

One of the major problems in acoustic simulations, and in
particular in problems governed by the Helmholtz equation,
is that the Galerkin method requires too fine meshes. This is
computationally unaffordable and undermines the practical
utility of the method. Often the rule of the thumb, which pre-
scribes the minimal discretization per wavelength, is used.
However, it is widely known that this rule is not sufficient to
obtain reliable results for large wave numbers due to disper-
sion and pollution errors [1–5]. Furthermore, non-uniform

L. M. Steffens (B) · N. Parés · P. Díez
Laboratori de Càlcul Numèric,
Departament de Matemàtica Aplicada III,
Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: lindaura.steffens@upc.edu

meshes are required to resolve singularities or large gradients
in the solution. This suggests using adaptivity to control the
accuracy and obtain optimal meshes refining at the right loca-
tions.

The basic scheme of the adaptive procedure is: first, esti-
mate the discretization error; second, develop the strategy
associated with the h-adaptive refinement, which determines
the elements to be refined; and finally, generate a new mesh.
Obviously, the most important ingredient in any adaptive pro-
cedure is a reliable error estimation procedure.

Goal-oriented adaptivity is related with controlling the
error in a given quantity of interest, and optimal refinement
techniques should only refine the areas affecting this quan-
tity. Moreover, the error assessment techniques for quantities
of interest should provide both an approximation to the total
error in the quantity of interest and also the local contribu-
tions of each element to the total error. These local quantities
are used to design the adaptive procedure.

While some progress has been done in assessing the global
accuracy of finite element approximations for the Helmholtz
equation [6–10], there exist very few literature concerning
a posteriori goal-oriented error estimation in this context
[11–14]. For instance, [12] provides a strategy to compute
asymptotic bounds for linear and non-linear quantities of
interest based on the equilibrated residual method. Another
example is [13] which proposes a goal-oriented adaptive
technique for modeling the external human auditory system
by the boundary element method.

The assessment of the quality of the finite element approx-
imations of the Helmholtz equation is an important issue in
acoustic computations. Recall that the transient wave equa-
tion reduces to the steady-state Helmholtz equation under the
assumption of a time harmonic behavior of the solution. The
solution of the transient wave equation is eventually recov-
ered composing the solutions of the Helmholtz equation for
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different frequencies ω. Thus, practical acoustic simulations
require to solve the Helmholtz equation for a wide range of
frequencies. In this context, the numerical solution of the
Helmholtz equation requires a proper use of error control
and adaptivity. This allows efficiently computing accurate
solutions and saving computational resources in a process
that has to be repeated a large number of times, for different
frequencies.

The present work is concerned with obtaining accurate
solutions of the Helmholtz equation for a given frequency ω.
A major challenge in the field of error estimation, not
addressed in here and still an open problem, is obtaining
a goal-oriented error estimation strategy valid not only for
specific values of the frequency but also for a range of fre-
quencies. Note that finding the resonant frequencies of the
problem or the study of dynamic instability phenomena is
also beyond the scope of this paper.

The remainder of the paper is structured as follows: Sect. 2
introduces the description of the problem to be solved. Sec-
tion 3 presents a general framework for assessing the error in
general linear and non-linear quantities of interest. Different
representations for the linear contribution to the output are
introduced in Sect. 4. Section 5 is devoted to obtain error esti-
mates for general outputs using the different error represen-
tations given in Sect. 4. The adaptive strategy is introduced
in Sect. 6, where local indicators and several strategies of
refinement are defined. Finally, in Sect. 7 the proposed proce-
dure for goal-oriented adaptivity is tested in some numerical
examples. The relation between the different error repre-
sentations and the dispersion error of the direct and adjoint
problems is also discussed.

2 Problem statement

The propagation of acoustic waves is governed by the wave
equation describing the evolution of the acoustic pressure p
as a function of the position x and time t . The harmonic
assumption states that for a given angular frequency ω,
p(x, t) = u(x)eiωt , where the new unknown u(x) is the com-
plex amplitude of the acoustic pressure. For an interior spatial
domain �, u(x) is the solution of the Helmholtz equation

−�u − κ2u = f in �, (1)

taking the acoustic wave number κ = ω/c where c is the
speed of sound. In order to recover the solution of the tran-
sient wave problem, the Helmholtz equation has to be solved
repeatedly for a range of wave numbers κ representing the
spectrum of the waves appearing in the problem. Equation (1)
is complemented with the following boundary conditions

u = u D on �D, (2a)

∇u · n = g on �N , (2b)

∇u · n = mu + β on �R, (2c)

where �D , �N and �R are a disjoint partition of the boundary
where Dirichlet, Neumann and Robin boundary conditions
are applied respectively. The outward unit normal is denoted
by n and u D , f, g,m and β are the prescribed data, which
are assumed to be sufficiently smooth.

The boundary value problem defined by Eqs. (1) and (2)
is readily expressed in its weak form introducing the solu-
tion and test spaces U := {u ∈ H 1(�), u|�D = u D} and
V := {v ∈ H 1(�), v|�D = 0}. Here H 1(�) is the standard
Sobolev space of complex-valued square integrable functions
with square integrable first derivatives. The weak form of the
problem then reads: find u ∈ U such that

a(u, v) = �(v) ∀v ∈ V ,

where the sesquilinear form a(·, ·) and antilinear functional
�(·) are defined as

a(u, v) :=
∫
�

∇u · ∇v̄ d�−
∫
�

κ2uv̄ d�−
∫
�R

muv̄ d�,

(3)
�(v) :=

∫
�

f v̄ d�+
∫
�N

gv̄ d� +
∫
�R

βv̄ d�,

and the symbol ·̄ denotes the complex conjugate.
The finite element approximation of u is found by first

discretizing the domain� into triangular or quadrilateral ele-
ments �k , k = 1, . . . , nel, nel being the number of elements
in the mesh. This mesh has an associated characteristic mesh
size H and induces the discrete functional spaces UH ⊂ U
and VH ⊂ V . The finite element approximation u H ∈ UH

is then such that

a(u H , v) = �(v) ∀v ∈ VH .

3 Error assessment for general (nonlinear) quantities
of interest

A posteriori error estimation techniques aim at assessing the
error committed in the approximation of u, e := u − u H ,
where e ∈ V is the solution of the primal residual problem

a(e, v) = �(v)− a(u H , v) =: R P (v) ∀v ∈ V , (4)

R P (·) standing for the weak residual associated to the finite
element approximation u H .

When applied to classical problems (in which a(·, ·) is
coercive) a first step in a posteriori assessment is estimat-
ing the error measured in the energy norm, that is obtaining
a good approximation of e and computing a(e, e). How-
ever, in acoustic problems, since the Helmholtz equation
is not elliptic, the form ||v||2 = a(v, v) does not define a
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squared norm. There is no natural energy norm to measure
the error.

Additionally, assessing the error measured in some
functional norm is not sufficient for many applications. In
practice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-pro-
cess. These magnitudes are referred to as quantities of interest
or functional outputs. Goal-oriented error assessment strate-
gies aim at estimating the error committed in these quantities
and possibly providing bounds for it.

The quantities of interest considered here are nonlinear
functional outputs of the solution, J (u), and the aim is to
assess the error committed when approximating these quan-
tities using the finite element approximation. Specifically,
the goal is to assess and control the quantity

J (u)− J (u H ).

For the purposes of this paper, it is convenient to make the
linear, quadratic and higher order term contributions of J (u)
more explicit. To this end, J (u) is expanded introducing the
Gäteaux first and second derivatives of J (·) at uH , namely

J (u H + v) = J (u H )+ �O (v)+ Q(v, v)+ W (v), (5)

where �O (v) = [Dv J ](u H )·(v), 2Q(v1, v2) = [D2
v J ](u H )·

(v1, v2), see [12,15], and the functional W contains the
higher order terms.

Remark 1 As particular complex-valued functions, the forms
�O : H 1(�) → C and Q : H 1(�) × H 1(�) → C

are homogeneous of degree one and two respectively, in the
sense that for any scalar value α ∈ R, �O (αv) = α�O (v)

and Q(αv, αv) = α2Q(v, v). For convenience, �O (·) and
Q(·, ·) are referred to as the linear and bilinear contributions
of J (·) respectively, by analogy with the real-valued case.
Note however that �O (·) being an homogeneous functional
of degree one does not imply that it is a linear functional (it
can be either linear, antilinear or a combination of both).

Henceforth, making an abuse of language which is
unlikely to yield to confusion, the term linear is both used to
denote a linear functional or mapping between two complex-
valued spaces, like (7), and also to refer to the first Gâteaux
derivative of the quantity of interest which is named after
linear contribution or linear term.

In this respect, the usual statement of having a linear quan-
tity of interest refers to Q = W = 0 in (5), where �O (·) is
not necessarily a linear map (it may be partially antilinear).

Using this decomposition and taking into account that
u = u H + e, the error in the quantity of interest may be
rewritten as

J (u)− J (u H ) = J (u H + e)− J (u H )

= �O (e)+ Q(e, e)+ W (e). (6)

Thus, it is clear that in order to estimate the error in the quan-
tity of interest, it is sufficient to estimate the linear, quadratic
and higher-order terms separately, �O (e), Q(e, e) and W (e)
respectively.

Requiring Q and W to be L 2-continuous, which in this
particular case is equivalent to |Q(v, v)| ≤ c1‖v‖2 and
|W (v)| ≤ c2‖v‖3 where ‖ · ‖ denotes the L 2-norm, shows
that the quadratic and higher-order contributions to the error,
Q(e, e) and W (e), converge as O(H 4) and O(H6) respec-
tively, whereas the linear term �O (e) converges quadrati-
cally—recall that the finite element method for a regular
problem converges linearly in the L 2-norm. Thus, for suffi-
ciently small H the linear term provides a good inside to the
error in the output since the other terms are negligible.

The following sections are devoted to describe the error
assessment techniques to estimate J (e) (linear and higher
order contributions) and to provide local error estimators able
to effectively drive the adaptive procedures.

4 Error representation of a linearized output
and adjoint problem

This section presents alternative representations for the linear
contribution to the error in the output �O (e). These alternative
representations do not directly yield computable expressions
for the estimates of the output because they depend on the
exact errors on the primal and adjoint problems. However,
estimates may be easily recovered using existing techniques
providing approximations for the errors, as described in the
following section.

The quantities of interest considered here are such that
their linear part is expressed as

�O (v) =
∫
�

f Ov d�+
∫
�N

gOv d� +
∫
�R

βOv d�, (7)

where f O , gO and βO are given functions characterizing the
linearized quantity of interest. Note that �O (v) has the same
structure as �(v), see Eq. (4), excepting the conjugate in its
argument. Thus, �O (·) is a linear functional whereas �(·) is
an anti-linear functional.

Most existing techniques to estimate the error in a quan-
tity of interest introduce an alternative representation for
�O (e). In practice, different error representations are used to
properly estimate �O (e). These error representations require
introducing an auxiliary problem, denoted as adjoint or dual
problem which reads: find ψ ∈ V such that

a(v, ψ) = �O (v) ∀v ∈ V , (8)
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which is equivalent to determine the adjoint solution ψ

verifying the Helmholtz equation

−�ψ − κ2ψ = f̄ O in �, (9)

complemented with the boundary conditions

ψ = 0 on �D, (10a)

∇ψ · n = ḡO on �N , (10b)

∇ψ · n = m̄ψ + β̄O on �R . (10c)

Remark 2 It is worth noting that for a general nonlinear quan-
tity of interest J (u), its first Gâteaux derivative, expressed via
the functional �O (·), is not necessarily of the form of (7). The
proposed strategy is valid for general functionals �O (·). How-
ever if the linearized output �O (·) is not in the form of (7),
the adjoint solution ψ is no longer the solution of the strong
Helmholtz problem given by Eqs. (9) and (10), and the phys-
ical meaning of the adjoint solution may not be a clear cut. In
some cases a simple workaround may be used to work with
functionals of the preferred form (7), as will be seen in the
numerical examples.

In order to assess the error in the quantity of interest the
adjoint solutionψ is approximated numerically byψH ∈ VH

such that

a(v, ψH ) = �O (v) ∀v ∈ VH ,

introducing the adjoint error ε := ψ − ψH solution of the
adjoint residual problem

a(v, ε) = �O (v)− a(v, ψH ) =: RD(v) ∀v ∈ VH , (11)

where RD(·) is the weak adjoint residual associated withψH .
The adjoint problem is introduced such that the following

error representation holds:

�O (e) = a(e, ψ) = a(e, ε)

where the Galerkin orthogonality of the adjoint approxima-
tion ψH is used in the last equality. In turn, this error repre-
sentation allows assessing the error in terms of the residuals
of the direct and adjoint problems, namely

�O (e) = a(e, ε) = R P (ε) = RD(e). (12)

These representations are obtained substituting v = ε in (4)
and v = e in (11) respectively.

5 Recovery type error estimates for linear
and nonlinear outputs

A posteriori assessment of quantities of interest relies on
obtaining a good approximation of J (u)− J (uH ). This trans-
lates in finding a new enhanced solution u∗, based on the

information at hand, that is u H , and such that u∗ approx-
imates the actual solution u much better than uH . Thus, a
computable error estimate is readily obtained

e ≈ e∗ = u∗ − u H

yielding also the corresponding estimate for the quantity of
interest

J (u)− J (u H ) ≈ �O (e∗)+ Q(e∗, e∗)+ W (e∗). (13)

This approximation of the error in the quantity of interest is
obtained from Eq. (6) substituting the actual error e by its
approximation e∗.

Thus, the key issue in any error estimation technique is to
produce a properly enhanced solution u∗ (or in some cases
obtaining an enhanced approximation of the gradient of the
solution q∗ ≈ ∇u suffices). The strategies producing the
enhanced solution u∗ (or q∗ respectively) are classified into
two categories: recovery type estimators and implicit resid-
ual type estimators. Recovery techniques, based on the ideas
of Zienkiewicz and Zhu [16–18], are often preferred by prac-
titioners because they are robust and simple to use. On the
other hand, a posteriori implicit residual-type estimators have
a sounder mathematical basis and produce estimates that are
upper or lower bounds of the error [19–23]. At first glance
on could think that, once the enhanced solutions u∗ or q∗ are
obtained either using recovery or residual-type error estima-
tors, estimates for the error in the quantity of interest may be
directly obtained using Eq. (13). However, as mentioned in
Sect. 4, this representation does not provide sound results.
This is because inserting the enhanced error e∗ (or its gra-
dient q∗) in the functionals �O (·),Q(·, ·) and W (·) may not
yield accurate results even when the enhanced approxima-
tion u∗ provides a reasonable approximation of u in terms of
energy. In practice, since the most-contributing term to the
error in the quantity of interest is the linear term, alternative
representations are used for this term, as the ones described
in Sect. 4, whereas no additional effort is done in the higher-
order terms.

The linear term �O (e) may be assessed by any of the
following strategies:

1. Compute the primal enhanced solution u∗ to obtain e∗ =
u∗ − u H and evaluate �O (e∗). This option is readily dis-
carded as announced previously.

2. Compute the primal enhanced solution u∗ to obtain e∗ and
evaluate RD(e∗).

3. Compute the adjoint enhanced solutionψ∗ to obtain ε∗ =
ψ∗ − ψH and evaluate R P (ε∗).

4. Compute both the primal and enhanced errors e∗ and ε∗
and evaluate a(e∗, ε∗).

In this work, the strategies presented in [24,25] are used
to recover the enhanced solutions u∗ and ψ∗ from u H and
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ψH respectively. A simple and inexpensive post-processing
technique is used to recover the approximations u∗ andψ∗ of
u andψ in a finer reference mesh of associated characteristic
mesh size h � H . Thus, u∗ ∈ Uh and ψ∗ ∈ Vh , where Uh

and Vh are the discrete functional spaces associated to the
finer reference mesh, UH ⊂ Uh ⊂ U and VH ⊂ Vh ⊂ V .

As mentioned before, for sufficiently refined meshes, the
error in the quantity of interest is controlled by the lin-
ear term, since the quadratic and higher-order contributions
converge faster to zero, see Sect. 3. For this, the proposed
approach is to make use of the available estimate e∗ to obtain
a simple and inexpensive estimate of the non-linear contribu-
tions. Namely, the quadratic and higher-order contributions
to the error in the output, Q(e, e) and W (e) respectively, are
assessed using the reconstruction of the primal error e∗ used
to assess the linear part of the error, namely

Q(e, e) ≈ Q(e∗, e∗) and W (e) ≈ W (e∗).

6 Local indicators and adaptivity criteria

Adaptive mesh refinement is nowadays an essential tool
to obtain high-fidelity simulations at the lesser cost. The
main ingredients of the proposed adaptive procedure are: the
h-refinement, that is, the new meshes are obtained by sub-
dividing the elements of the mesh; optimal indicators, the
refinement is organized with the aim of achieving equal error
in each element of the new mesh; iterative process, the target
in each refinement step is to reduce the global error until the
calculated error drops below the tolerance specified by the
user.

Additionally, assessing the error measured in some
functional norm is not sufficient for many applications. In
practice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-pro-
cess. These magnitudes are referred to as quantities of interest
or functional outputs. Goal-oriented error assessment strate-
gies aim at estimating the error committed in these quantities
and possibly providing bounds for it.

This requires obtaining local error indicators allowing to
decide the elements to be marked for refinement—those with
larger contribution to the total error. In order to determine the
contribution of every element to the total error, spatial error
distributions of the estimates are derived decomposing the
global estimates into a sum of local contributions in each
element of the mesh induced by UH .

The estimates for the error in the quantity of interest are
of the form

J (u)− J (uH ) ≈ �O (e∗)+ Q(e∗, e∗)+ W (e∗),

where the linear term �O (e∗) is replaced by either a(e∗, ε∗),
R P (ε∗) or RD(e∗), depending on the selected representation

of the linear term. Since the linear term is the driving term of
the error in the quantity of interest, in this work, the adaptive
procedure is chosen to be driven by �O (e∗). That is, the global
estimate for the linear term �O (e∗) is decomposed into a sum
of local contributions in each element. These local quantities
are used to design the adaptive procedure.

6.1 Local indicators

The natural restriction to every element �k of the integral
forms a(·, ·), �(·) and �O (·) yield the elementary contribu-
tions denoted by ak(·, ·), �k(·) and �Ok (·) such that

a(u, v) =
nel∑

k=1

ak(u, v), �(v) =
nel∑

k=1

�k(v),

�O (v) =
nel∑

k=1

�Ok (v).

Similarly, the primal and adjoint residuals are decomposed
as

R P (v) =
nel∑

k=1

R P
k (v), RD(v) =

nel∑
k=1

RD
k (v),

where R P
k (·) := �k(·) − ak(u H , ·) and RD

k (·) := �Ok (·) −
ak(·, ψH ).

Hence, the error representations for the linear contribution
of the error in the quantity of interest given in Eq. (12) are
associated to the elementary error distributions

�O (e) =
nel∑

k=1

�Ok (e) =
nel∑

k=1

ak(e, ε) =
nel∑

k=1

R P
k (ε) =

nel∑
k=1

RD
k (e).

It is worth mentioning that, while the global error quanti-
ties are equal in all the representations, the local quantities
�Ok (e), ak(e, ε), R P

k (ε) and RD
k (e) represent different ele-

mentary contributions to the error and, besides, they are not
necessarily positive nor even real numbers.

From the four possible representations of the linear con-
tribution of the error �O (e), in this work only the two expres-
sions involving the primal and adjoint residuals are used, thus
yielding the global estimates

ηε := R P (ε∗) and ηe := RD(e∗), (14)

and its associated local error indicators ηεk := R P
k (ε

∗) and
ηe

k := RD
k (e

∗), such that

ηε =
nel∑

k=1

ηεk and ηe =
nel∑

k=1

ηe
k . (15)

Remark 3 The local elemental contributions ηεk and ηe
k are

the natural decomposition of the estimates ηε and ηe to the
elements. However, the computation of the local contribu-
tions ηεk and ηe

k requires the computation of local integral
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forms. This can be done either by storing the elemental con-
tributions to the system matrices and vectors or by recomput-
ing these contributions in an elementary loop. A cheaper and
more natural to implement alternative is to decompose the
estimates ηε and ηe into nodal contributions. This is because
it uses the finite element nature of the estimates ηε and ηe.
In practice, the estimates e∗ and ε∗ are computed in a finer
reference mesh associated with the space Vh , namely e∗ =∑

j e∗
jφh, j and ε∗ = ∑

j ε
∗
jφh, j , where φh, j are the shape

functions associated with the nodes of the reference mesh,
xh, j . Thus, a natural decomposition of the estimates ηε and
ηe into nodal contributions on the reference mesh holds

ηε =
∑

j

ε∗j R P (φh, j ) =:
∑

j

ηεxh, j

and

ηe =
∑

j

e∗
j RD(φh, j ) =:

∑
j=1

ηe
xh, j
.

Note that ηεxh, j
and ηe

xh, j
are readily computed multiplying

the j-th components of the finite element vectors associated
to ε∗ and R P (·) and e∗ and RD(·) respectively.

Then, the local elemental contributions associated to the
element�k of the coarse mesh are computed from a weighted
average of the local nodal contributions ηεxh, j

and ηe
xh, j

asso-
ciated to the nodes xh, j belonging to �k . To be specific

ηε =
∑

j

ηεxh, j
=

nel∑
k=1

∑
xh, j ∈�k

σh, jη
ε
xh, j

=:
nel∑

k=1

η̂εk, (16)

and

ηe =
∑

j

ηe
xh, j

=
nel∑

k=1

∑
xh, j ∈�k

σh, jη
e
xh, j

=:
nel∑

k=1

η̂e
k, (17)

where σh, j is the inverse of the number of elements in the
coarse mesh to which a particular node xh, j belongs. For a
detailed description, see [26].

A simple adaptive strategy is employed, using the local
indicators produced during the calculation of the estimate
for the output, to drive the non-linear output to a prescribed
precision. That is, the algorithm ends if

nel∑
k=1

η
�
k + Q(e∗, e∗)+ W (e∗) < �tol,

where η�
k stands for any of the following local contributions

ηεk , ηe
k , η̂εk or η̂e

k , �tol is a user-prescribed desired final accu-
racy, and at each level of refinement, the elements marked
for refinement are those with larger values of the local linear
contribution η�

k .

6.2 Remeshing criterion

In acoustic problems, the local contributions are not nec-
essarily positive and in fact, in contrast to what occurs in
thermal or elasticity problems, they can be complex num-
bers. To select the elements with larger local contributions,
the modulus of the values η�

k is considered, and the elements
selected to be refined are the ones verifying

|η�
k | ≥

∑nel
k=1|η�

k |
nel

. (18)

Note that this marking algorithm aims at obtaining elements
with equal local error contribution. However, this is not
equivalent to obtaining a uniform spatial error distribution,
since the elements with larger area are penalized. In order to
obtain a uniform spatial error distribution, the local contribu-
tions are weighted by the element area yielding the following
marking criterion: the elements to be subdivided are the ones
verifying

|η�
k |

Ak
≥

∑nel
k=1|η�

k |
A�

, (19)

where Ak is the area of the element�k and A� is the area of
the whole domain�. Note that expressions (18) and (19) are
equivalent in uniform meshes where all the elements have
the same area since in this case Ak = A�/nel is constant.

7 Numerical examples

The performance of the estimates and error indicators
described above is illustrated in three numerical examples.
The quantities of interest are expressed as linear and qua-
dratic functionals of the solution u. In particular, three dif-
ferent engineering outputs are considered. The first output is
the integral of the solution over a subdomain �O ⊂ �

J1(u) =
∫
�O

u d�, (20)

that is, the data entering in (7) are gO = βO = 0 and f O = 1
in�O and f O = 0 elsewhere. Since the output depends lin-
early on u, �O1 (v) = J1(v) and Q1(v, v) = W1(v) = 0 in
(5). Note that eventually�O can be� to compute an average
of the solution over the whole domain.

The second output is the average of the squared modulus
of the solution over a boundary strip �O ⊂ �N ∪ �R

J2(u) = 1

l�O

∫
�O

uū d�, (21)

where l�O is the length of the boundary strip. Since this
output depends quadratically on u, W2(v) = 0 and the linear
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and quadratic contributions are

�O2 (v)=
1

l�O

∫
�O
(u H v̄ + ū Hv) d� and Q2(v, v) = J2(v).

Indeed, appealing to (5)

J2(u H + v) = 1

l�O

∫
�O
(u H + v)(u H + v) d�

= 1

l�O

∫
�O

(u H ū H + u Hv + vū H + vv) d�

= J2(u H )+ 1

l�O

∫
�O
(u H v̄ + ūHv) d� + J2(v).

It is worth noting that the linear functional �O2 (·) is not
expressed in the form of (7). Although this functional may be
used as r.h.s. for the adjoint problem (8), noting that �O2 (v)
is a real number coinciding with

�O2 (v) = 2�e

(
1

l�O

∫
�O

ū Hv d�

)
,

allows defining the adjoint problem with respect to the aux-
iliary linear functional

∫
�O ū Hv d�/ l�O which corresponds

to f O = 0, βO = ū H/ l�O on �O ∩ �R and zero elsewhere
and gO = ū H/ l�O on �O ∩ �N and zero elsewhere.

The third output is the normalized squared L 2-norm of
the solution over a region �O

J3(u) = 1

A�O

∫
�O

uū d� (22)

where A�O stands for the area of the subdomain�O . Again,
since the output is quadratic, W3(v) = 0 and

�O3 (v) = 1

A�O

∫
�O
(u H v̄ + ū Hv) d� and Q3(v, v) = J3(v).

The derivation is analogous to the one provided for J2(·)
except for the integrals being placed over a subdomain of �
instead of a part of its boundary. As in the second output,
the adjoint problem is defined with respect to the modified
functional

∫
�O ū Hv d�/A�O , for which the data entering

in (7) are gO = βO = 0 and f O = ū H/A�O in �O and
f O = 0 elsewhere.

Remark 4 The second and third outputs J2(u) and J3(u) are
real quantities since they only involve the squared modulus
of the solution. In particular, all the involved functionals,
are real functions of a single complex variable, that is, for
instance �O2 : C → R. As mentioned above, in this case,
the adjoint problem is defined with respect to an auxiliary

non-real linear functional output. The original linear func-
tional (and all the required estimates and local indicators) is
recovered from this auxiliary functional taking the real part
and multiplying by a factor two.

When reporting the numerical results, ηεpol = R P (ε∗pol),

ηεexp = R P (ε∗exp), η
e
pol = RD(e∗

pol) and ηe
exp = RD(e∗

exp)

denote the estimates of the linear contribution to the error
in the quantity of interest η := �O (e) obtained by using the
post-processing strategy described in [24,25]. The subindic-
es exp and pol indicate the kind of approximation used in the
least squares fitting: either polynomial both for the real and
imaginary part of the solution or a complex-exponential fit-
ting (polynomial fitting for the logarithm of the modulus and
for the angle). In order to see how well the estimators per-
form, the value of the true error J (u)− J (u H ) or �O (e) are
required, but the analytical solutions of the considered prob-
lems are not available. An accurate value for the true error
is obtained by making use of a sufficiently accurate approxi-
mation uh of u in a finer reference mesh, that is, the estimates
are compared with the reference values J (uh)− J (u H ) and
ηh := �O (eh) respectively.

Note that the reference value ηh can also be recovered
from a faithful representation of the adjoint problemψh since
ηh = �O (eh) = R P (ψh) = R P (εh). In the examples, the
approximations u∗ andψ∗ used to recover the estimates of the
errors e∗ = u∗−u H and ε∗ = ψ∗−ψH and its corresponding
estimates for the output ηe = RD(e∗) and ηε = R P (ε∗), are
also computed using the same reference mesh. Noting that
ηh = RD(eh) = R P (εh) reveals that the quality of the esti-
mates depends on the quality of the approximations e∗ ≈ eh

and ε∗ ≈ εh . The accuracy of these approximations is closely
related to the so-called pollution or dispersion error. Since
the approximations u∗ and ψ∗ are constructed using a con-
strained least-squares technique, the estimates for the error
e∗ and ε∗ vanish at the nodes of the coarse mesh, yielding
crude approximations if the solutions present large dispersion
errors. In the examples, the influence of the dispersion error
in the estimates for the quantity of interest is analyzed using
the estimates for the dispersion error introduced in [24,25].
These estimates are denoted by Ee and Eε for the primal and
adjoint problems respectively. A detailed description of the
computation of these estimates is given in [25].

7.1 Square with obstacle

The first example is the scattering of a plane wave by a rigid
obstacle introduced in [12]. The incident wave travels in the
negative y-direction inside a square domain which contains
a rigid body, see Fig. 1.

The solution of the problem is composed of a prescribed
incident wave plus a scattered wave, u = ur + ui , where
ur and ui are the so-called reflected and incident waves
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