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estimates, local indicators and refinement strategies
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Abstract This paper introduces a new goal-oriented adap-
tive technique based on a simple and effective post-process
of the finite element approximations. The goal-oriented char-
acter of the estimate is achieved by analyzing both the direct
problem and an auxiliary problem, denoted as adjoint or dual
problem, which is related to the quantity of interest. Thus,
the error estimation technique proposed in this paper would
fall into the category of recovery-type explicit residual
a posteriori error estimates. The procedure is valid for gen-
eral linear quantities of interest and it is also extended to
non-linear ones. The numerical examples demonstrate the
efficiency of the proposed approach and discuss: (1) differ-
ent error representations, (2) assessment of the dispersion
error, and (3) different remeshing criteria.
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1 Introduction

One of the major problems in acoustic simulations, and in
particular in problems governed by the Helmholtz equation,
is that the Galerkin method requires too fine meshes. This is
computationally unaffordable and undermines the practical
utility of the method. Often the rule of the thumb, which pre-
scribes the minimal discretization per wavelength, is used.
However, it is widely known that this rule is not sufficient to
obtain reliable results for large wave numbers due to disper-
sion and pollution errors [1-5]. Furthermore, non-uniform
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meshes are required to resolve singularities or large gradients
in the solution. This suggests using adaptivity to control the
accuracy and obtain optimal meshes refining at the right loca-
tions.

The basic scheme of the adaptive procedure is: first, esti-
mate the discretization error; second, develop the strategy
associated with the h-adaptive refinement, which determines
the elements to be refined; and finally, generate a new mesh.
Obviously, the most important ingredient in any adaptive pro-
cedure is a reliable error estimation procedure.

Goal-oriented adaptivity is related with controlling the
error in a given quantity of interest, and optimal refinement
techniques should only refine the areas affecting this quan-
tity. Moreover, the error assessment techniques for quantities
of interest should provide both an approximation to the total
error in the quantity of interest and also the local contribu-
tions of each element to the total error. These local quantities
are used to design the adaptive procedure.

While some progress has been done in assessing the global
accuracy of finite element approximations for the Helmholtz
equation [6—10], there exist very few literature concerning
a posteriori goal-oriented error estimation in this context
[11-14]. For instance, [12] provides a strategy to compute
asymptotic bounds for linear and non-linear quantities of
interest based on the equilibrated residual method. Another
example is [13] which proposes a goal-oriented adaptive
technique for modeling the external human auditory system
by the boundary element method.

The assessment of the quality of the finite element approx-
imations of the Helmholtz equation is an important issue in
acoustic computations. Recall that the transient wave equa-
tion reduces to the steady-state Helmholtz equation under the
assumption of a time harmonic behavior of the solution. The
solution of the transient wave equation is eventually recov-
ered composing the solutions of the Helmholtz equation for



different frequencies w. Thus, practical acoustic simulations
require to solve the Helmholtz equation for a wide range of
frequencies. In this context, the numerical solution of the
Helmbholtz equation requires a proper use of error control
and adaptivity. This allows efficiently computing accurate
solutions and saving computational resources in a process
that has to be repeated a large number of times, for different
frequencies.

The present work is concerned with obtaining accurate
solutions of the Helmholtz equation for a given frequency w.
A major challenge in the field of error estimation, not
addressed in here and still an open problem, is obtaining
a goal-oriented error estimation strategy valid not only for
specific values of the frequency but also for a range of fre-
quencies. Note that finding the resonant frequencies of the
problem or the study of dynamic instability phenomena is
also beyond the scope of this paper.

The remainder of the paper is structured as follows: Sect. 2
introduces the description of the problem to be solved. Sec-
tion 3 presents a general framework for assessing the error in
general linear and non-linear quantities of interest. Different
representations for the linear contribution to the output are
introduced in Sect. 4. Section 5 is devoted to obtain error esti-
mates for general outputs using the different error represen-
tations given in Sect. 4. The adaptive strategy is introduced
in Sect. 6, where local indicators and several strategies of
refinement are defined. Finally, in Sect. 7 the proposed proce-
dure for goal-oriented adaptivity is tested in some numerical
examples. The relation between the different error repre-
sentations and the dispersion error of the direct and adjoint
problems is also discussed.

2 Problem statement

The propagation of acoustic waves is governed by the wave
equation describing the evolution of the acoustic pressure p
as a function of the position x and time ¢. The harmonic
assumption states that for a given angular frequency o,
pX,t)=u (x)e!“!, where the new unknown u (x) is the com-
plex amplitude of the acoustic pressure. For an interior spatial
domain €2, u(x) is the solution of the Helmholtz equation

—Au—«*u=f inQ, 1)

taking the acoustic wave number k = w/c where c is the
speed of sound. In order to recover the solution of the tran-
sient wave problem, the Helmholtz equation has to be solved
repeatedly for a range of wave numbers « representing the
spectrum of the waves appearing in the problem. Equation (1)
is complemented with the following boundary conditions

u=up onlp, (2a)

Vu-n=g only, (2b)
Vu-n=mu+ B onlkg, (2¢)

where I'p, ['y and I'g are a disjoint partition of the boundary
where Dirichlet, Neumann and Robin boundary conditions
are applied respectively. The outward unit normal is denoted
by n and up, f, g, m and B are the prescribed data, which
are assumed to be sufficiently smooth.

The boundary value problem defined by Egs. (1) and (2)
is readily expressed in its weak form introducing the solu-
tion and test spaces % = {u € %I(Q),um, = up} and
Vo= {v e HANQ), vlr, = 0}. Here .21 (Q) is the standard
Sobolev space of complex-valued square integrable functions
with square integrable first derivatives. The weak form of the
problem then reads: find u € % such that

a(u,v) =£(v) YveV?,

where the sesquilinear form a(-, -) and antilinear functional
£(-) are defined as

au, v) :=/ Vu~Vt7dQ—/ ;c2uﬁd9—/ muvdr,
Q Q I'r

3)
£(v) :=/ff)d§2+/ gvdl' + [ Budr,
Q Ty

I'r
and the symbol - denotes the complex conjugate.

The finite element approximation of u is found by first
discretizing the domain €2 into triangular or quadrilateral ele-
ments Q, k = 1, ..., ne|, ngl being the number of elements
in the mesh. This mesh has an associated characteristic mesh
size H and induces the discrete functional spaces %y C %
and ¥y C 7. The finite element approximation uy € %y
is then such that

a(ug,v) =L(v) Yv e ¥y.

3 Error assessment for general (nonlinear) quantities
of interest

A posteriori error estimation techniques aim at assessing the
error committed in the approximation of u, ¢ := u — ug,
where e € ¥ is the solution of the primal residual problem

a(e,v) = L) —a(uy,v) = R (v) Yvev?, 4)

RP () standing for the weak residual associated to the finite
element approximation u g .

When applied to classical problems (in which a(:, -) is
coercive) a first step in a posteriori assessment is estimat-
ing the error measured in the energy norm, that is obtaining
a good approximation of e and computing a(e, e). How-
ever, in acoustic problems, since the Helmholtz equation
is not elliptic, the form ||v||> = a(v, v) does not define a



squared norm. There is no natural energy norm to measure
the error.

Additionally, assessing the error measured in some
functional norm is not sufficient for many applications. In
practice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-pro-
cess. These magnitudes are referred to as quantities of interest
or functional outputs. Goal-oriented error assessment strate-
gies aim at estimating the error committed in these quantities
and possibly providing bounds for it.

The quantities of interest considered here are nonlinear
functional outputs of the solution, J(u), and the aim is to
assess the error committed when approximating these quan-
tities using the finite element approximation. Specifically,
the goal is to assess and control the quantity

J@w) — J(up).

For the purposes of this paper, it is convenient to make the
linear, quadratic and higher order term contributions of J (1)
more explicit. To this end, J(«) is expanded introducing the
Giteaux first and second derivatives of J(-) at u f, namely

Jug +v) = Jup) + 7w + 20,0+ # @), (5

where 7 (v) = [DyJ1(up)- (v),22(v1, v2) = [D2J)up)-
(v1, v2), see [12,15], and the functional % contains the
higher order terms.

Remark 1 As particular complex-valued functions, the forms
7 AN (Q) > Cand 2 @ #(Q) x H'(Q) - C
are homogeneous of degree one and two respectively, in the
sense that for any scalar value o € R, Zﬁ(av) = aﬂﬁ(v)
and 2(av, av) = «22(v, v). For convenience, £7(-) and
2(-, ) are referred to as the linear and bilinear contributions
of J(-) respectively, by analogy with the real-valued case.
Note however that £7(-) being an homogeneous functional
of degree one does not imply that it is a linear functional (it
can be either linear, antilinear or a combination of both).

Henceforth, making an abuse of language which is
unlikely to yield to confusion, the term linear is both used to
denote a linear functional or mapping between two complex-
valued spaces, like (7), and also to refer to the first Gateaux
derivative of the quantity of interest which is named after
linear contribution or linear term.

In this respect, the usual statement of having a linear quan-
tity of interest refers to 2 = # = 0 in (5), where 9y is
not necessarily a linear map (it may be partially antilinear).

Using this decomposition and taking into account that
u = upy + e, the error in the quantity of interest may be
rewritten as

J(u) = Jup) = Juy +e) — Juy)
=1%(e) + 2(e.e) + ¥ (e). (6)

Thus, it is clear that in order to estimate the error in the quan-
tity of interest, it is sufficient to estimate the linear, quadratic
and higher-order terms separately, 29 (e), (e, e) and ¥ (e)
respectively.

Requiring 2 and # to be .£>-continuous, which in this
particular case is equivalent to |2(v,v)| < ci|v I and
|# ()| < ca||v]]® where || - || denotes the .#%-norm, shows
that the quadratic and higher-order contributions to the error,
D(e, e) and # (e), converge as O (H*) and 0 (H®) respec-
tively, whereas the linear term £¢ (e) converges quadrati-
cally—recall that the finite element method for a regular
problem converges linearly in the .#’>-norm. Thus, for suffi-
ciently small H the linear term provides a good inside to the
error in the output since the other terms are negligible.

The following sections are devoted to describe the error
assessment techniques to estimate J(e) (linear and higher
order contributions) and to provide local error estimators able
to effectively drive the adaptive procedures.

4 Error representation of a linearized output
and adjoint problem

This section presents alternative representations for the linear
contribution to the error in the output ¢ o (e). These alternative
representations do not directly yield computable expressions
for the estimates of the output because they depend on the
exact errors on the primal and adjoint problems. However,
estimates may be easily recovered using existing techniques
providing approximations for the errors, as described in the
following section.

The quantities of interest considered here are such that
their linear part is expressed as

Eﬁ(v):/fﬁvdﬂ—i—/ gﬁudr+/ gZvdr, (1)
Q I'n I'r

where f o, gﬁ and /Sﬁ are given functions characterizing the
linearized quantity of interest. Note that £ (v) has the same
structure as £(v), see Eq. (4), excepting the conjugate in its
argument. Thus, Zﬁ() is a linear functional whereas £(-) is
an anti-linear functional.

Most existing techniques to estimate the error in a quan-
tity of interest introduce an alternative representation for
2% (e). In practice, different error representations are used to
properly estimate ¢ (¢). These error representations require
introducing an auxiliary problem, denoted as adjoint or dual
problem which reads: find ¢ € ¥ such that

a,¥) =%@w) Yve?, ®)



which is equivalent to determine the adjoint solution
verifying the Helmholtz equation

—AY — k%Y =F7 inQ, ©)

complemented with the boundary conditions

Y =0 onIp, (10a)
V¢ -n=3g% onTy, (10b)
V¢ -n=my+B7 onTk. (10c)

Remark 2 Itis worth noting that for a general nonlinear quan-
tity of interest J (u), its first Gateaux derivative, expressed via
the functional £ ﬁ(-), is not necessarily of the form of (7). The
proposed strategy is valid for general functionals £ 7(.). How-
ever if the linearized output Eﬁ(-) is not in the form of (7),
the adjoint solution v is no longer the solution of the strong
Helmbholtz problem given by Egs. (9) and (10), and the phys-
ical meaning of the adjoint solution may not be a clear cut. In
some cases a simple workaround may be used to work with
functionals of the preferred form (7), as will be seen in the
numerical examples.

In order to assess the error in the quantity of interest the
adjoint solution ¥ is approximated numerically by ¥y € ¥y
such that

a(, ¥) = L%w) Vv e Y,

introducing the adjoint error ¢ := ¢ — 1y solution of the
adjoint residual problem

a(v, &) = %) —a, ¥y) = RPw) Yve ¥y, (1)

where RP () is the weak adjointresidual associated with ¢y .
The adjoint problem is introduced such that the following
error representation holds:

t%(e) = ale, ) = ale, &)

where the Galerkin orthogonality of the adjoint approxima-
tion ¥y is used in the last equality. In turn, this error repre-
sentation allows assessing the error in terms of the residuals
of the direct and adjoint problems, namely

¢%(e) = a(e, &) = R" (¢) = RP(e). (12)

These representations are obtained substituting v = ¢ in (4)
and v = e in (11) respectively.

5 Recovery type error estimates for linear
and nonlinear outputs

A posteriori assessment of quantities of interest relies on
obtaining a good approximation of J (u) — J (u g7 ). This trans-
lates in finding a new enhanced solution u*, based on the

information at hand, that is u g, and such that u* approx-
imates the actual solution ¥ much better than uy. Thus, a
computable error estimate is readily obtained

ex~e*=u*—uy
yielding also the corresponding estimate for the quantity of
interest

Jw) —J(uy) ~ Eﬁ(e*) + 2(e*, ") + W (e¥). (13)

This approximation of the error in the quantity of interest is
obtained from Eq. (6) substituting the actual error e by its
approximation e*.

Thus, the key issue in any error estimation technique is to
produce a properly enhanced solution u* (or in some cases
obtaining an enhanced approximation of the gradient of the
solution ¢* ~ Vu suffices). The strategies producing the
enhanced solution u™* (or ¢g* respectively) are classified into
two categories: recovery type estimators and implicit resid-
ual type estimators. Recovery techniques, based on the ideas
of Zienkiewicz and Zhu [16-18], are often preferred by prac-
titioners because they are robust and simple to use. On the
other hand, a posteriori implicit residual-type estimators have
a sounder mathematical basis and produce estimates that are
upper or lower bounds of the error [19-23]. At first glance
on could think that, once the enhanced solutions ™ or ¢g* are
obtained either using recovery or residual-type error estima-
tors, estimates for the error in the quantity of interest may be
directly obtained using Eq. (13). However, as mentioned in
Sect. 4, this representation does not provide sound results.
This is because inserting the enhanced error e* (or its gra-
dient ¢*) in the functionals 29, 2(-,-) and # () may not
yield accurate results even when the enhanced approxima-
tion u™* provides a reasonable approximation of u in terms of
energy. In practice, since the most-contributing term to the
error in the quantity of interest is the linear term, alternative
representations are used for this term, as the ones described
in Sect. 4, whereas no additional effort is done in the higher-
order terms.

The linear term £9 (e) may be assessed by any of the
following strategies:

1. Compute the primal enhanced solution u#* to obtain e* =
u* — upy and evaluate €7 (e*). This option is readily dis-
carded as announced previously.

2. Compute the primal enhanced solution u* to obtain ¢* and
evaluate RP (e*).

3. Compute the adjoint enhanced solution ¥ * to obtain £* =
Y¥* — ¥y and evaluate R” (%).

4. Compute both the primal and enhanced errors ¢* and ¢*
and evaluate a(e*, £*).

In this work, the strategies presented in [24,25] are used
to recover the enhanced solutions ™ and ¥* from uy and



Yy respectively. A simple and inexpensive post-processing
technique is used to recover the approximations u™ and y* of
u and ¥ in a finer reference mesh of associated characteristic
mesh size h « H. Thus, u™ € %, and ¥* € ¥}, where %,
and 7}, are the discrete functional spaces associated to the
finer reference mesh, %y C %, C % and ¥y C ¥, C V.

As mentioned before, for sufficiently refined meshes, the
error in the quantity of interest is controlled by the lin-
ear term, since the quadratic and higher-order contributions
converge faster to zero, see Sect. 3. For this, the proposed
approach is to make use of the available estimate e* to obtain
a simple and inexpensive estimate of the non-linear contribu-
tions. Namely, the quadratic and higher-order contributions
to the error in the output, 2(e, ¢) and # (e) respectively, are
assessed using the reconstruction of the primal error e* used
to assess the linear part of the error, namely

(e, e) ~ 2(e*, e*) and ¥ (e) ~ W (e*).

6 Local indicators and adaptivity criteria

Adaptive mesh refinement is nowadays an essential tool
to obtain high-fidelity simulations at the lesser cost. The
main ingredients of the proposed adaptive procedure are: the
h-refinement, that is, the new meshes are obtained by sub-
dividing the elements of the mesh; optimal indicators, the
refinement is organized with the aim of achieving equal error
in each element of the new mesh; iterative process, the target
in each refinement step is to reduce the global error until the
calculated error drops below the tolerance specified by the
user.

Additionally, assessing the error measured in some
functional norm is not sufficient for many applications. In
practice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-pro-
cess. These magnitudes are referred to as quantities of interest
or functional outputs. Goal-oriented error assessment strate-
gies aim at estimating the error committed in these quantities
and possibly providing bounds for it.

This requires obtaining local error indicators allowing to
decide the elements to be marked for refinement—those with
larger contribution to the total error. In order to determine the
contribution of every element to the total error, spatial error
distributions of the estimates are derived decomposing the
global estimates into a sum of local contributions in each
element of the mesh induced by % .

The estimates for the error in the quantity of interest are
of the form

JWw) — J(up) ~ £9(e*) + 2(e*, e*) + W (e*),

where the linear term ¢¢ (e*) is replaced by either a(e*, £*),
RP (e*) or RP (e*), depending on the selected representation

of the linear term. Since the linear term is the driving term of
the error in the quantity of interest, in this work, the adaptive
procedure is chosen to be driven by £ 7 (e*). Thatis, the global
estimate for the linear term £¢ (e*) is decomposed into a sum
of local contributions in each element. These local quantities
are used to design the adaptive procedure.

6.1 Local indicators

The natural restriction to every element €2 of the integral
forms a(-, -), £(-) and 60(-) yield the elementary contribu-
tions denoted by ax (-, -), £x(-) and Zf() such that

a(u,v) = D ar(u,v), L) =D L&),
k=1 k=1

Nl
HOEDWAC!
k=1
Similarly, the primal and adjoint residuals are decomposed
as
nej Nel
R"() =D Rf ). R°@) =) RP®),

k=1 k=1

where RY () := € () — ax(up, ) and RP(-) == €7 () —
ak (-, Yu).

Hence, the error representations for the linear contribution
of the error in the quantity of interest given in Eq. (12) are
associated to the elementary error distributions

Ne] Ne| Ne] Nel

9@ =>t@=> ae.e)=D R () =D RP (.
k=1 k=1 k=1 k=1

It is worth mentioning that, while the global error quanti-
ties are equal in all the representations, the local quantities
Ef(e), ai(e, €), R,f (¢) and RkD (e) represent different ele-
mentary contributions to the error and, besides, they are not
necessarily positive nor even real numbers.

From the four possible representations of the linear con-
tribution of the error £7 (e), in this work only the two expres-
sions involving the primal and adjoint residuals are used, thus
yielding the global estimates

n° = RP (") and 7°:= RP(eY), (14)
and its associated local error indicators n,ﬁ = R,‘: (¢*) and
ng = R,?(e*), such that

Ne| Ng|

n®=> ni and n°=> nf. (15)
k=1 k=1

Remark 3 The local elemental contributions 7; and n{ are
the natural decomposition of the estimates n° and n° to the
elements. However, the computation of the local contribu-
tions n; and n{ requires the computation of local integral



forms. This can be done either by storing the elemental con-
tributions to the system matrices and vectors or by recomput-
ing these contributions in an elementary loop. A cheaper and
more natural to implement alternative is to decompose the
estimates n* and n° into nodal contributions. This is because
it uses the finite element nature of the estimates n* and n°.
In practice, the estimates ¢* and &¢* are computed in a finer
reference mesh associated with the space 7, namely ¢* =
Z e* th jand &* = Z *¢>h j» where ¢y, ; are the shape
functlons associated w1th the nodes of the reference mesh,
xp, ;. Thus, a natural decomposition of the estimates ® and
n° into nodal contributions on the reference mesh holds

P .
=D R @G = 20,
J J
and

=2 R @Gn ) = Dy, ;-
J Jj=1

Note that ng, » and ng, 5y are readily computed multiplying
the ] -th components of the finite element vectors associated
to &* and RY () and ¢* and RP (") respectively.

Then, the local elemental contributions associated to the
element €24 of the coarse mesh are computed from a weighted
average of the local nodal contributions nihvj and 75, . asso-
ciated to the nodes xj, ; belonging to €. To be specific

Ne| Ne|
& __ &€ . nE . ~E
=D, =20 2 ity = 2 i (16)
J k=1xp, ;€ k=1
and
Ng| Ne|
e __ e _ € —_ ~e
=D, =20 2L Onit, =2 0 (D)
J k=1xp, ;€ k=1

where oy, ; is the inverse of the number of elements in the
coarse mesh to which a particular node xj,, ; belongs. For a
detailed description, see [26].

A simple adaptive strategy is employed, using the local
indicators produced during the calculation of the estimate
for the output, to drive the non-linear output to a prescribed
precision. That is, the algorithm ends if

Ne|
Duf+ 20t e+ W (€ < A,
k=1

where 77k® stands for any of the following local contributions
N Mi» My, OF Ay, Agol is a user-prescribed desired final accu-
racy, and at each level of refinement, the elements marked
for refinement are those with larger values of the local linear
contribution nlfa.

6.2 Remeshing criterion

In acoustic problems, the local contributions are not nec-
essarily positive and in fact, in contrast to what occurs in
thermal or elasticity problems, they can be complex num-
bers. To select the elements with larger local contributions,
the modulus of the values n,fE is considered, and the elements
selected to be refined are the ones verifying

Znel |nk

®
[ng | =
k Ne]

(18)
Note that this marking algorithm aims at obtaining elements
with equal local error contribution. However, this is not
equivalent to obtaining a uniform spatial error distribution,
since the elements with larger area are penalized. In order to
obtain a uniform spatial error distribution, the local contribu-
tions are weighted by the element area yielding the following
marking criterion: the elements to be subdivided are the ones
verifying

In®| Z"°‘
A AQ

19)

where Ay is the area of the element 2; and Ag is the area of
the whole domain €2. Note that expressions (18) and (19) are
equivalent in uniform meshes where all the elements have
the same area since in this case Ay = Aq/ne is constant.

7 Numerical examples

The performance of the estimates and error indicators
described above is illustrated in three numerical examples.
The quantities of interest are expressed as linear and qua-
dratic functionals of the solution u. In particular, three dif-
ferent engineering outputs are considered. The first output is
the integral of the solution over a subdomain Qlca

Jl(u):/ ud<, (20)
QO

that is, the data entering in (7) are gﬁ = ﬁﬁ = 0and f‘{j =1
in 7 and f ¢ = 0 elsewhere. Since the output depends lin-
early on u, Eiﬁ(v) = Ji(v) and 21(v,v) = #1(v) = 0 in
(5). Note that eventually Q% canbe Q to compute an average
of the solution over the whole domain.

The second output is the average of the squared modulus
of the solution over a boundary strip % c Iy UTg

Jo(u) = i/ wit dT, 1)
ro

ll"ﬁ

where .o is the length of the boundary strip. Since this
output depends quadratically on u, #5(v) = 0 and the linear



and quadratic contributions are

zf(v)zi/ﬁ(uﬂwrﬁﬁv)dr and 25(v,v) = H(v).
r

ll"(ﬁ

Indeed, appealing to (5)

1 .
h(upy +v) = ﬁ/ﬁ(“H +v)(uy +v)dl
re Jr

1

= / (ugug +ugv+vuyg + vv) dI
lrﬁ ro

. ﬁ(ul-]ﬁ-i—ﬁ[-]v)dr-i—.]z(v).
r

=JDun) + L
Iy
It is worth noting that the linear functional Zéﬁ (-) is not
expressed in the form of (7). Although this functional may be
used as r.h.s. for the adjoint problem (8), noting that Ziﬁ (v)
is a real number coinciding with

o ! _
€5 (v) =20Re | — ugvdrl ),
lrﬁ ro

allows defining the adjoint problem with respect to the aux-
iliary linear functional fr e ugvdl' /I which corresponds
to f/f =0,87 = up/lpe on '’ N Ty and zero elsewhere
and gﬁ =up/lpe on I'? N Ty and zero elsewhere.

The third output is the normalized squared .#>-norm of
the solution over a region Qf

1
/ uu dS2
AQﬁ QO

where Aq o stands for the area of the subdomain QY. Again,
since the output is quadratic, #3(v) = 0 and

J3(u) =

(22)

1
Ejﬁ(v) = —/ﬁ(uyt') +ugv)dQ and 23(v,v) = J3(v).
Q

Ago

The derivation is analogous to the one provided for J(-)
except for the integrals being placed over a subdomain of €2
instead of a part of its boundary. As in the second output,
the adjoint problem is defined with respect to the modified
functional ng upvdS2/Age, for which the data entering
in (7) are gﬁ = ,Bﬁ = 0 and fﬁ =iup/Aqe in Q7 and
f ¢ = ( elsewhere.

Remark 4 The second and third outputs J>(«) and J3(u) are
real quantities since they only involve the squared modulus
of the solution. In particular, all the involved functionals,
are real functions of a single complex variable, that is, for
instance ng : C — R. As mentioned above, in this case,
the adjoint problem is defined with respect to an auxiliary

non-real linear functional output. The original linear func-
tional (and all the required estimates and local indicators) is
recovered from this auxiliary functional taking the real part
and multiplying by a factor two.

When reporting the numerical results, 17‘;01 = R? (8;01),
_ pP _ pD _ pD
ngxp =R (Sz;xp)’ n;ol =R (e;ol) and ngxp =R (e:xp

denote the estimates of the linear contribution to the error
in the quantity of interest n := 7 (¢) obtained by using the
post-processing strategy described in [24,25]. The subindic-
es exp and pol indicate the kind of approximation used in the
least squares fitting: either polynomial both for the real and
imaginary part of the solution or a complex-exponential fit-
ting (polynomial fitting for the logarithm of the modulus and
for the angle). In order to see how well the estimators per-
form, the value of the true error J(u) — J(ug) or Eﬁ(e) are
required, but the analytical solutions of the considered prob-
lems are not available. An accurate value for the true error
is obtained by making use of a sufficiently accurate approxi-
mation uj, of u in a finer reference mesh, that is, the estimates
are compared with the reference values J (1) — J(ug) and
Ny = Eﬁ(eh) respectively.

Note that the reference value 1, can also be recovered
from a faithful representation of the adjoint problem v, since
mn = €%(ep) = RY(Y) = RP (ep). In the examples, the
approximations #* and v * used to recover the estimates of the
errors e* = u*—uy and ¢* = Yy*—ry andits corresponding
estimates for the output ¢ = RP (¢*) and n° = R” (&%), are
also computed using the same reference mesh. Noting that
nn = RP(e) = R (g,) reveals that the quality of the esti-
mates depends on the quality of the approximations e* ~ ¢y,
and £* & gj,. The accuracy of these approximations is closely
related to the so-called pollution or dispersion error. Since
the approximations u* and * are constructed using a con-
strained least-squares technique, the estimates for the error
e* and &* vanish at the nodes of the coarse mesh, yielding
crude approximations if the solutions present large dispersion
errors. In the examples, the influence of the dispersion error
in the estimates for the quantity of interest is analyzed using
the estimates for the dispersion error introduced in [24,25].
These estimates are denoted by E¢ and E* for the primal and
adjoint problems respectively. A detailed description of the
computation of these estimates is given in [25].

7.1 Square with obstacle

The first example is the scattering of a plane wave by a rigid
obstacle introduced in [12]. The incident wave travels in the
negative y-direction inside a square domain which contains
arigid body, see Fig. 1.

The solution of the problem is composed of a prescribed
incident wave plus a scattered wave, u = u, + u;, where
u, and u; are the so-called reflected and incident waves
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Fig. 1 Example 1: Description of the geometry and boundary condi-
tions for the plane wave scattering by a rigid body

respectively. The incident wave is of the form u; =
eix(cosaxtsinay) \where  is the wave number and o = 7 /2
is the incident wave direction. To reproduce the scattering
nature of the problem, no essential boundary conditions are
imposed and it is assumed that there are no sources in the
domain, f = 0 in Eq. (1), and that the rigid obstacle is per-
fectly reflecting. Thisis, Vu-n = O or, in terms of the incident
wave, Vi, -n = —Vu; - non I'y. On the exterior boundary,
Robin absorbing boundary conditions are applied. Thus, the
reflected wave u, is the solution of the Helmholtz equation
(1) for f =0 and I'p = @ and where the data entering in (2)
areg =—Vu; -n,m = —ikand g =0.

To demonstrate the dependence of the results on the wave
number, two values of the wave number are considered:

k=m and kx = 3m. Both the reflected and total waves
obtained for this problem in a mesh of 9582 nodes are shown
in Fig. 2.

For this problem, two different quantities are considered:
the average of the reflected solution over the whole domain,
thatis Jy (u,) for Q% = Q, whichisa linear quantity of inter-
est, and the average of the squared modulus of the reflected
solution over the boundary strip I" 4 depicted in Fig. 1, that
is, J2(u, ), which depends quadratically on u,.

The behavior of the estimates for the linear quantity of
interest Jy (u,) is first analyzed for a uniform mesh refine-
ment in a series of unstructured triangular meshes for the
value ¥ = 7. Three triangular meshes are considered, start-
ing from an initial mesh of 636 nodes and obtaining the sub-
sequent meshes by refining each triangle into four new ones,
see Fig. 3.

The finite element approximation of the adjoint solution
computed at the final mesh of the refinement procedure of
9582 nodes is shown in Fig. 4.

Table 1 shows the estimates obtained for the error in the
quantity of interest J; (u,). Since the quantity of interest is

linear, in this case, the estimates coincide with those for
the linear term. Thus, the estimates given by the different
error representations (14) are compared with the reference
value 7. For each coarse mesh, the reference value is
obtained by computing and approximation u; of u in a finer
mesh (each element of the coarse mesh is subdivided into 16
new ones which corresponds to h = H/4). Also the table
shows the estimates for the dispersion error for the primal
and adjoint problem E¢ and E*® respectively.

As can be seen, the estimates for the error in the quan-
tity of interest underestimate the reference value both for the
polynomial and exponential fitting. However, as reported in
[25] the exponential fitting provides better results, although
in this example the improvement is not that substantial when
compared to the reference value. The estimates for the dis-
persion error are also shown in the table. Looking at the
dispersion errors provided by the exponential fitting, the dis-
persion for the primal problem ranges from a 28% for the first
mesh to a 5% for the final mesh and for the adjoint problem
are below 0.3% in all the meshes. Although the dispersion
is larger in the primal problem, for both problems the ratio
Khmax < 1, in fact in average, khaye = 0.08, 0.04 and 0.02.
This explains that, although the dispersion error is signifi-
cantly smaller in the adjoint problem, the difference between
quality of the representations 1® with respect to n° are only
slightly better. Indeed, since all the meshes properly satisfy
the rule of thumb, the dispersion error is negligible in front of
the errors appearing from the singular nature of the solution.
The main source of error for this problem is not the disper-
sion error, and thus, even though the dispersion is smaller
in the adjoint problem, the estimate £* does not provide a
much better approximation of &, than e* is of ej,. In fact, it is
worth noting that most of the estimated dispersion errors are
negative, yielding to finite element solutions with associated
numerical wave number larger wave number than «, differ-
ing from the predicted behavior given by a-priori estimates.
This phenomena only appears when dispersion is not relevant
for the problem at hand. When dispersion errors are impor-
tant, the finite element method behaves as predicted by the
a-priori estimates providing approximations with associated
numerical wave number smaller than «.

Figure 5 shows the local elementary contributions to the
error in the quantity of interest for the initial mesh of 636
nodes. Both the local contributions of the reference values nj
and nj and its estimates (obtained using the polynomial and
the exponential fitting) computed using the representations
given in Remark 3, Egs. (16) and (17), are shown. Note that
even though the global error quantities 7;, and nj, are equal,
they represent different elementary contributions to the error.
The spatial distribution of the estimates is in good agreement
with the reference ones: they properly detect the elements
with larger contributions to the error even though the obtained
elemental contributions underestimate its reference value.



Fig. 2 Example 1: Real part
(top), imaginary part (middle
top) and modulus of the
scattered solution u, (middle
bottom), that is, Re(u,), Sm(u,)
and |u, |, and modulus of the
total solution |u| (bottom) for

k = 1 (left) and k = 37 (right),
computed using the Galerkin
method and a mesh of 9582
nodes

The local contributions obtained using the natural restriction
of the global estimates to the elements given in Eq. (15) are
also shown in Fig. 6 for n;, ’7501 and 7¢g,,,. Again, although
the global values coincide with those computed distribut-
ing the nodal contributions over the elements, the obtained
local distributions is not the same. As can be seen, the use
of the easier and cheaper to compute local contributions
described in Remark 3 provides fairly good approximations
to the natural restriction of the global quantities to the ele-
ments, yielding a nearly equivalent distribution of elements
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to be refined in the adaptive procedure. In this example, the
natural decomposition yields higher values of the modulus
of the elementary contributions || since the local distribu-
tion presents larger positive and negative contributions 7y in
neighboring elements. The averaging involved in the nodal-
to-element representation, smoothes out these larger val-
ues yielding a more uniform distribution. Henceforth in this
example, all the local contributions shown in the numerical
examples are computed using the nodal-to-element represen-
tation instead of the natural representation.
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Fig. 3 Example 1: Initial mesh of 636 nodes and subdivision of each
triangle into four new ones for the uniform mesh refinement

Figure 7 shows the elements with larger values of the esti-
mates weighted by its area, Ir),(c’BI /Ag. In particular, the ele-
ments marked for refinement if 1, 5, 10 and 25% of the total
elements are refined are shown respectively. Although the
estimates underestimate the reference value for the error, they
provide good information to guide the adaptive procedures.

The convergence of the estimates is shown in Fig. 8. Two
refinement strategies are implemented: first, the meshes are
uniformly refined whereby each triangle is subdivided into
four sub-triangles at each step and second, the meshes are
adaptively refined using the criterion given in Eq. (19). The
singular nature of the solution yields an order of convergence

for the uniform mesh refinement of &(H*/3) for the quan-
tity of interest, which is equivalent to &' (npp 2/ 3) where nyp
denotes the number of nodes of the mesh, instead of the stan-
dard convergence rate of &(H*) obtained for regular solu-
tions. As expected, the use of an adaptive refinement strategy
leads to a faster reduction of the error in the quantity of inter-
est than if a uniform refinement is used. Again it can be seen
that, in this example, all the estimates provide similar results
providing an underestimation of the reference values. For
comparison, the adaptive algorithm guided by the reference
errors 7, and n; are also run. Comparing the convergence
curves obtained for these two local indicators and the ones
produced by the estimates, it can be seen that the estimates
perform optimally since they lead to even slightly better con-
vergence ratios than the reference errors.

The series of adapted meshes produced by the local indi-
cator associated to 1g,, = R? (g&p) subdividing at each
remeshing step the elements satisfying the criterion given
by Eq. (19) are shown in Fig. 9. The adaptive procedure is
started from the initial mesh shown in Fig. 3 and produces six
new adapted meshes. The meshes obtained using the other
local error indicators are virtually identical and are therefore
not shown. Since the quantity of interest is the non-weighted
average of the solution over the whole domain, the meshes are
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Fig. 4 Example 1: Real part (left), imaginary part (middle) and modulus (right) of the adjoint solution associated to the first quantity of interest
Ji(u,) for k = m computed using the Galerkin method and a mesh of 9582 nodes

Table 1 Example 1: Estimates

2445
kKhmax = 0.09

9582
Khmax = 0.05

for the error in the linear Number of nodes
quantity of interest 636
_ g6
J|(u,)—ll (ur) khmax = 0.18
Nh 5.06e—4 + 7.90e—4i
Tpol 278e—4 + 5.41e—4i
The table shows the ref Nexp 3.49e—4 + 5.68e—4i
e table shows the reference .
value for the error in the n;ol 2.32e—4 +4.44e—4i
quantity of interest 7, along Nexp 2.72e—4 4 5.31e—4i
with its different estimates. EZ, —3.17e—2
Also, the estimated dispersion E';o _933e—3
error associated to the primal exp ’
and adjoint problems are given, pol —1.34e+0
namely E7,, and E¢,, Eg, —8.95e—1

2.04e—4 + 3.09e—4i
1.03e—4 + 1.79e—4i
1.12e—4 + 1.85e—4i
9.76e—5 + 1.68e—4i
1.02e—4 + 1.77e—4i
—3.25¢e-3

1.84e—3

—4.08e—1
—3.15e—1

8.14e—5 + 1.22e—4i
3.93e—5 + 6.23e—5i
4.00e—5 + 6.22e—5i
3.82e—5 + 6.02e—5i
3.92e—5 + 6.21e—5i
7.93e—4

—3.43e—4
—1.26e—1
—1.50e—1
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Fig. 5 Example 1: Local maps of the error in the linear quantity of (left), ng,) (middle) and ¢y, (right) are shown. The three distributions

interest J (u,). The three distributions on the /eft are obtained using the on the right correspond to 7¢, that is, r]; (left), n;ol (middle) and ngxp
representation 7°, that is, form left to right, in the first three figures nj, (right) are shown

Fig. 6 Example 1: Local maps x10-5
of the error in the linear quantity
of interest Jj (u,) computed
using the restrictions of the
integrals over the elements (15).
The distributions are obtained
using the integral representation
n®, thatis, nj, (left), r)f,ol (middle)
and nf“p (right) are shown
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Fig. 7 Example 1: Elements marked for refinement if 1% (red), 5% the local maps of the error in the linear quantity of interest Jj (u,) given
(red+blue), 10% (red+blue+green) and 25% (red+blue+green+yel- in Fig. 5, namely from left to right: nj, nfml, Nexps s ";ol and gy,
low) of the total elements are refined. The elements are selected using

refined in the areas where the primal solution presents larger 010~
errors, that is, at the neighborhood of the obstacle where the —o—n,,-unif
singularities occur. » —6—m,-adap
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The performance of the estimates is also studied for the h
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finite element approximation of the adjoint solution com- S ng“-a ifp
. . Vo N
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adjoint problem (8) is given by the auxiliary linear func- 5-10
tional frg upvdl'/le. Thus, the adjoint solution varies
for each finite element approximation uy and the adjoint . . <
solution shown in Fig. 10 only corresponds to the adjoint 10 3.10° 10
problem associated to the finite element approximation u g number of nodes
computed using the mesh of 9582 nodes. Fig. 8 Example 1: Performance of the estimators for the error in the
In order to illustrate the influence of the different terms  quantity of interest J («,) with a uniform and an adaptive refinement
contributing to the error in the quantity of interest, the linear ~strategies. The estimates are compared with the reference values
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Fig. 9 Example 1: Sequence of adapted meshes obtained using the local

9226 and 13852 nodes respectively, for the quantity of interest Jj (u,)
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Fig. 10 Example 1: Adjoint solution associated to the second quantity
of interest J>(u,) computed using the Galerkin method and a mesh of
9582 nodes. The three figures on the left correspond to the real part
(left), imaginary part (middle) and modulus (right) of the solution for

and quadratic contributions to the error along with the “full”
error are shown separately for the parameter k = 7 (Table 2).
As predicted by the theory, the total error is guided by the
linear contribution, whereas the quadratic contribution is neg-
ligible since it converges faster to zero. As occurs with the
first quantity of interest Jj(u,), the rate of convergence of
these two terms are not the expected since the solution is sin-
gular: the finite element approximation has a convergence
rate of &(H?/?) and therefore the linear and quadratic con-
tributions to the output converge as &(H 4/3) and 6(H?3)
respectively, as can be appreciated in the obtained results.
The same behavior is observed when the reference values
are substituted by its estimates.

Neglecting the higher order terms yields the following
approximation of the reference value of the quantity of
interest

Ja(up) = Ja(un) + €5 (en) + 2a(en, en)
€4 (en)

~ 0% ug) + €% en) =% (uy) 14 212
2( H) 2(h) 2( H) fzﬁ(uy)

Thus, the relative error p, = Eﬁ(e;,)/lﬁ (upg) provides a
good inside of the error in the quantity of interest. Table 3
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error indicators provided by the estimate )]gxp with 857, 1579, 3229, 5870,

‘ TIPS E O [k

ino. h o0 ioa
k = and the three figures on the right correspond to the real part (lef?),
imaginary part (middle) and modulus (right) of the solution for k = 3.

The adjoint problem is defined with respect to the auxiliary functional
fra l;HUdF/IrO

Table 2 Example 1: Influence of the linear and quadratic terms to the
total error in the nonlinear quantity of interest J>(u,) fork =

Ngp €2 (en) 2D, (en, en) Jr(up) — I (up)
636 1.6572e—3 3.5279e—5 1.6925e—3
2445 6.8740e—4 5.7170e—6 6.9311e—4
9582 2.7799e—4 9.1190e—7 2.7891e—4

shows the values of the reference relative error and its
corresponding estimates pgy, 1= ng,p/ef (up) and pgyp =
Nexp/ 220 (u ) along with the estimates for the relative disper-
sion error pf:l . E;ol/x and ppE;l =
and for k = 3.

The results are very similar to those obtained for the first
quantity of interest. The two representations for the linear part
of the quantity of interest 7, , and ng,, corresponding to the
relative values pgxp and pgxp are shown. The errors are larger
for k = 37 but the estimates behave similarly: the represen-
tation using the recovered adjoint error £* is slightly better
than the representation using the recovered primal error e*
both underestimating the reference error. Also, since the
values of khay remains below 0.25 for all the meshes,

E;ol/x both fork = =



Table 3 Example 1: Estimates for the error in the linear term lzd (ep)
relative to £€ (uy) and relative dispersion error for the primal and
adjoint problem for a uniformly refined set of meshes

Nop Ph Pip Pop Php PE,
K=
636 00411 00210 00189 —0.0247 —0.2849
2445 00170  0.0084  0.0080 —0.0089 —0.1003
9582  0.0069  0.0034  0.0033 —0.0039 —0.0479
kK =3m
636 0.1647 00584  0.0436 —0.0077 —0.0368
2445 00840  0.0387  0.0364 —0.0028 —0.0090
0582 00350 00167 00164 —0.0012 —0.0041

the dispersion error is very small when compared to the
errors due to the singular behavior of the solution. Note that
increasing « yields smaller negative dispersion errors since
for larger ks the numerical wave number underestimates the
true value yielding positive dispersion errors.

The convergence of the estimates for a uniform and an
adaptive procedure using the criterion given in Eq. (19) are
shown in Fig. 11 starting with the finite element mesh shown
in Fig. 3. As in the results for the first quantity of inter-
est, the adaptive refinement leads to a faster reduction of
the error and it can be seen that the local indicators associ-
ated to the estimates behave properly since the convergence
curves of the estimates are in very good agreement with the
reference ones. Only the estimates for the exponential fit-
ting are shown since the polynomial fitting provide similar

but slightly worst results. Comparing the results for the two
different wave numbers reveals that for k = 37 there is a
short range where the solution is in its pre-asymptotic stage
[7,27]. Note that the curves associated to the uniform refine-
ments initially converge with a slightly smaller rate than the
asymptotic one (1/2 instead of 2/3).

Figures 12 and 13 show the meshes produced by the adap-
tive procedure associated to the estimate 7¢,,,. The adaptive
procedure refines the neighborhood of the obstacle but also
refines around the boundary strip where the solution is eval-
uated to compute the quantity of interest. Additionally, for
k = 3m, the procedure also refines the zones where the
solution has a larger oscillatory behavior faraway from the
obstacle.

7.2 Expansion chamber

The second example is a two-dimensional model of an expan-
sion chamber with a perforated outlet pipe as shown in
Fig. 14. The source term entering in Eq. (1) is f = 0,
and the Neumann and Robin boundary conditions entering
in Egs. (2b) and (2c) are of the form g = —ipkcv, and
Vu - n = iku, respectively, where in this case the material
parameters are ¢ = 340 m/s standing for the speed of sound
of the medium and p = 1.225kg/m? standing for the mass
density. An acoustic excitation is imposed at the inlet of the
chamber, associated to a velocity v, = 0.1 m/s, whereas the
chamber is assumed to be perfectly reflecting at the outlet,
that is, Robin boundary conditions are applied to the outlet

Fig. 11 Example 1: 91049 i
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Fig. 12 Example 1: Sequence of adapted meshes with 834, 1384, 2619, 4781, 7709 and 13212 nodes, respectively. The adaptive process is driven
by representation r]éxp, corresponding to the linear contribution Zf (-)fork =m
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Fig. 13 Example 1: Sequence of adapted meshes with 846, 1486, 2649, 4277, 6457 and 9718 nodes. The adaptive process is driven by representation

Nexp- corresponding to the linear contribution €9 () fork = 3n

of the chamber. The rest of the boundary is assumed to be
perfectly reflecting corresponding to v, = Om/s. In the com-
putations, a wave number of k = 27 f/c ~ 12.936, corre-
sponding to a frequency of 700 Hz, has been considered.

The quantity of interest is the normalized .#2-norm of the
squared modulus of the solution over a region surrounding
the outlet of the pipe, see the subdomain Q7 shown in Fig. 14,
namely J3(u). Figures 15 and 16 show the Galerkin approxi-
mations of the primal and adjoint problems for a mesh of 1859
nodes respectively. Recall that the adjoint problem is defined
using the auxiliary linear functional [, upvdQ/Age.
Along with the finite element approximations, the reference
solutions obtained by refining each element into 64 new ones
and the reference errors are shown. The dispersion error for
this mesh is one of the main sources of errors both for the
primal and adjoint problem, as can be appreciated by the
globally oscillating behavior of the errors.

Table 4 shows the estimates obtained for the quantity of
interest J3(u) using three uniformly refined meshes, start-
ing from the mesh shown in Fig. 17. As can be seen the
estimates computed using the two proposed representations
and the exponential fitting are in very good agreement with
the reference values, where the reference mesh is obtained
from the finite element mesh subdividing each element into
16 new ones. Also, the errors for the quantity of interest
are shown, highlighting the linear term contribution. As can
be seen, the linear term provides a very good inside to the
total error since the quadratic term converges rapidly to zero.
Since the dispersion error is an important source of error for
this problem, the dispersion error is closely associated to the
behavior of the representations 7° and n¢. For the two first
meshes, the dispersion error is smaller for the adjoint prob-
lem which causes the representation n° to be more accurate
than n¢. Conversely, for the third mesh, the dispersion error is
smaller for the primal problem and the representation which
uses the enhanced primal error e*, ¢, provide more accurate
results. Thus, the dispersion error can be used to select the
error representation from which to obtain the approximation
for the output.

These results can also be appreciated in Fig. 18 where
the estimates for the quantity of interest are depicted along
with the finite element approximation and the reference value
J3(up). Although the estimates underestimate the true error
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Fig. 14 Example 2: Description of the geometry and boundary condi-
tions for the expansion chamber
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Fig. 15 Example 2: Galerkin finite element approximation of the pri-
mal problem for a mesh of 1859 nodes (fop). The middle figures are the
Galerkin approximation for a mesh obtained dividing each element into
64 new ones. The reference error with respect to this mesh is shown in
the bottom
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Fig. 16 Example 2: Galerkin finite element approximation of the
adjoint problem for a mesh of 1859 nodes (top). The middle figures
are the Galerkin approximation for a mesh obtained dividing each ele-
ment into 64 new ones. The reference error with respect to this mesh is
shown in the bottom

Fig. 17 Example 2: Initial mesh for the uniform and adaptive proce-
dures of 494 nodes



Table 4 Example 2: Estimates for the non-linear quantity of inter-
est J3(u) and for the its error, including the linear contribution to the
quantity of interest and the dispersion errors for the primal and adjoint
problems. The meshes are obtained by refining each element into 16
new ones

Number of nodes
494 1859 7193

J(up) 2.2067e+3  2.2588e+3  2.2763e+3
J(ug) 1.8796e+3  2.1128e+3  2.2067e+3
Juy) +n° + 2(e*, e*)  2.1548e+3  2.1967e+3  2.2611le+3
Jup) +n° + 2(e*,e*)  2.1082e+3  2.196le+3  2.2622e+3
T(up) — J(ug) 32701e+2  1.4603e+2  6.9648e+1
Nt + 2(e*, e*) 2.7511e+2  8.3916e+1  5.4420e+1
n° + 2(e*, e*) 2.2854e+2  8.3293e+1  5.5533e+1
n® 2.7276e+2  8.3709%+1  5.4406e+1
n¢ 2.2619e+2  8.3087e+1 5.5518e+1
E* 2.4556e—1 6.8103e—2 1.5967e—2
E€ 2.6351e—1 6.8293e—2 1.5780e—2
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Fig. 18 Example 2: Behavior for the estimates for the quantity of inter-
est J3(u) with respect to a uniform mesh refinement

J3(u), they provide a much better approximation to the quan-
tity of interest than J3(u g ) with very few effort.

The behavior of the estimate n° and its suitability for guid-
ing an adaptive refinement algorithm is illustrated by apply-
ing different adaptive procedures. Starting from the mesh
given in Fig. 17 the following six strategies are implemented
to refine the elements at each step.

e Strategy 1: the elements to be refined are the ones verifying
criterion (18).

e Strategy 2: the elements to be refined are the ones verifying
criterion (19).

e Strategy 3: at each step, 10% of the elements are refined,
those with larger contributions |ng]|.
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Fig. 19 Example 2: Convergence of the error in the quantity of inter-
est for the different adaptive strategies using the local error indicators
associated to n®

e Strategy 4: at each step, 10% of the elements are refined,
those with larger contributions |ng|/Ax.

e Strategy 5: the smallest number of elements such that
the sum of the contributions || toward the global error
> Inf| from these elements exceeds 25% of its value
are refined.

e Strategy 6: all elements on which the local error estimate
|n;| exceeds 50% of the largest local error estimate are
refined at each step.

The results are shown in Fig. 19.

Strategy four produces the best results, with those obtained
using strategies three and five running a close second and
third. The indicators based on strategies one and two pro-
duce noticeably poorer accuracy since they over refine the
meshes at each step. Note that in the initial steps the behav-
ior is similar to a uniform refinement. Penalizing the elements
with smaller area provides an improvement of the accuracy as
can be seen comparing strategies one and two and strategies
three and four. Note also that strategies three and four yield
to similar accuracies, but at the initial steps, strategy three
yield poorer results since it produces nearly uniformly refined
meshes. Thus, analogous strategies to five and six could be
develop taking into account for the area of the elements. From
the graph it is clear that using a criterion that controls the
ratio of elements to be refined (preventing the possibility of
auniform refinement) produces optimal adapted meshes, that
is, meshes with the least number of elements for a prescribed
given accuracy. Increasing the percentages in strategies three,
four and six or decreasing it in the sixth, increases the number
of elements to be refined producing not so optimal meshes.
Hence a compromise between number of adaptive steps and



Fig. 20 Example 2: Intermediate meshes of the adaptive procedures
for the six different strategies: third step of strategy 1 (top-left)
with 3047 nodes and n° =79.11, third step of strategy 2 (top-right) with
3976 nodes and n* =92.71, fifth step of strategy 3 (middle-left) with
2892 nodes and n® =56.77, second step of strategy 4 (middle-right)
with 810 nodes with n® =66.62, third step of strategy 5 (bottom-left)
with 2050 nodes and 7® = 63.86 and fifth step of strategy 6 (bottom-
right) with 1005 nodes and n° =52.56

accuracy is required. Finally, strategy six does not provide
very good results in problems where the error is substantially
larger in some parts of the domain. As can be seen in the fig-
ure, the ratio of convergence of this strategy is better than
the ratio of a uniform refinement, but provides poorer results
than other strategies. Note also that very few elements are
refined in each iteration.

The intermediate meshes with precision closer to the one
obtained in the second iteration of the uniform refinement
procedure are shown in Fig. 20 for the six strategies. The
second iteration of the uniform refinement provides a mesh
of 7193 nodes and achieves a precision of n* = 54.41.

It can be observed that the meshes produced using strate-
gies one and two tend to exhibit a more uniform refinement
compared with those obtained using strategy four, which
accounts for the poorer accuracy of the resulting approxima-
tion. Also, from the intermediate meshes, it can be observed
that, as mentioned before, although strategies four, three and
five achieve similar results for the final mesh, at the interme-
diate steps, joining the control of the elements to be refined
along with penalizing the elements with smaller area, namely,
strategy four, provides the best results. This is clearly appre-
ciated in the intermediate meshes, where the mesh produced
by strategy four is clearly more adapted to the features of
the solution that all the other strategies. Adding the area fac-
tor to strategies five and six would produce similar results,
although in the case of strategy 6 also a control on the min-
imal elements to be refined would be also advisable. It is
also worth mentioning, that strategies one and two can be
adapted to control the elements to be refined by introduc-
ing a constant factor into criterions (18) and (19) as follows:
Ingl = C 3502, Ingl/ner and [ngl/Ax > C 3202 Ingl/Aq.
A value of C = 1 corresponds to strategies one and two
respectively. Note that, however, increasing the value of C
does not ensure that the set of elements to be refined is a
non-empty set (for instance if a uniform mesh with uniform
distribution of the error is obtained).
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Fig. 21 Example 2: Final mesh obtained using the adaptive procedure
described in strategy four with 10200 nodes

Fig. 22 Example 2: Local maps of the error in the linear term contri-
bution to the quantity of interest J3(u) using the representation n°

The final mesh of 10200 nodes obtained using strategy
four is shown in Fig. 21. Strategies three and four produce
meshes with similar accuracy but with a more diffuse or
uniform refinement. The predicted quantity of interest for
this final mesh is J(u) ~ 2319.1 associated to the errors
n® = 0.051528 and 2(e*, e*) = 0.0000375. Again, the
quadratic contribution to the error is negligible in front of
the linear contribution.

Finally, Fig. 22 shows the local elementary contributions
of n° to the error in the quantity of interest for the initial
mesh and Fig. 23 shows the elements marked to be refined
for each of the proposed adaptive strategies, reaffirming the
behavior observed in the convergence curves and the inter-
mediate meshes.

7.3 Car cavity

This example studies the noise transmission inside a two-
dimensional section of the cabin of a car which is excited by
vibrations of the front panel and damped by Robin boundary
conditions. This example is frequently used as a benchmark
problem in error assessment for interior acoustic problems
[9,28,29]. The geometry of the cabin is shown in Fig. 24.
The size of the domain is characterized by the maximum hor-
izontal and vertical lengths, Ly = 2.7m and Ly, = 1.1 m,
respectively. The source term entering in Eq. (1) is f = 0,
and the Neumann and Robin boundary conditions entering
in Egs. (2b) and (2c) are of the form g = —ipckv, and
mu = —ipck Apu, where in this case the material parame-
ters are ¢ = 340m/s and p = 1.225kg/m3. The vibrating
front panel is excited with a unit normal velocity v, = 1 m/s
whereas the roof is considered to be an absorbent panel with
associated admittance A, = 1/2000m (Pa s)~!. The nor-
mal boundary velocity is set to be zero at the other sides,
v, = Om/s. Finally, a wave number of ¥ &~ 9.7, equivalent



Fig. 23 Example 2: Elements to be refined in the first step highlighted
for the six different strategies (from fop-left to bottom-right): strategy
1 with 303 elements, strategy 2 with 316 elements, strategy 3 with 87

absorbant panel

vibrating
panel

rﬁ

Fig. 24 Example 3: Description of the two-dimensional section of the
cabin of a car and its associated boundary conditions
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Fig. 25 Example 3: Initial mesh for the adaptive procedure with 568
nodes

to a frequency of 525 Hz, has been considered in the compu-
tations.

The output of interest is the average of the squared mod-
ulus of the solution over the boundary strip I'? shown in
Fig. 24, namely J>(u). The initial mesh used for this exam-
ple is shown in Fig. 25. Figures 26 and 27 show the Galerkin
approximations of the primal and adjoint problems for the
initial mesh along with the finite element approximations
computed in a reference mesh obtained by refining each ele-
ment into 256 new ones. The figures also show the approx-
imation of the true errors obtained by subtracting the two
finite element approximations. The dispersion errors associ-
ated to the primal and adjoint problems are E = 0.075 and
E¢ = 0.130, respectively. Thus, the adjoint problem presents
smaller dispersion errors and it is expected that in this mesh,
the estimate 7° provides better approximations to the error
in the quantity of interest than n°.

The mesh is adaptively refined using the refinement
algorithm named after strategy 2 in the previous example.
In this case, an adaptive strategy producing a more uniform
refinement is preferred due to the large dispersion errors
present in the solutions. The adaptive procedure is guided
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elements, strategy 4 with 87 elements, strategy 5 with 183 elements and
strategy 6 with 14 elements
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Fig. 26 Example 3: Galerkin finite element approximation of the pri-
mal problem for the initial mesh of 568 nodes (fop). The middle figures
are the Galerkin approximation for a mesh obtained dividing each ele-
ment into 256 new ones. The reference error with respect to this mesh
is shown in the bottom
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Fig. 27 Example 3: Galerkin finite element approximation of the
adjoint problem for a mesh of 568 nodes (top). The middle figures are
the Galerkin approximation for a mesh obtained dividing each element
into 64 new ones. The reference error with respect to this mesh is shown
in the bottom

by the indicators provided by n*. However, in each step, the
estimate 7 is also computed to compare the results.

The initial mesh of 568 elements provides the approx-
imation of the quantity of interest J(up) 27093.7
while the error estimation procedures described in this work



Fig. 28 Example 3: Behavior
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provide the estimates for the error in the quantity of interest
n° = 32461.3, n° =31966.4 and 2(e*, ¢*) = 5.6.

Thus, the estimates for the quantity of interest in the first
mesh are J>(u) ~ 59560.6 and 59065.8 for the two dif-
ferent representations, respectively. The reference value for
the quantity of interest J>(u;) = 65821.7 confirming that,
since the dispersion error is smaller in the adjoint problem,
the estimate provided by 7° is better than the one provided
by n¢, although since the underestimation is quite large in
both cases, both estimates produce similar accuracy of the
estimates. It can also be seen that even for the initial mesh,
the contribution of the quadratic term to the quantity of inter-
est is negligible in front of the linear contribution. After
remeshing, the final mesh provides the approximation for
the quantity of interest J(ug) =67076.3 and the estimates
Ja(u) ~ 69089.6 and 69098.1 provided by n° and n° respec-
tively. Note that in this case, since the estimates for the disper-
sion errors are £ =0.00358 and E¢ = 0.00487, the second
estimates is expected to be more reliable.

The convergence of the estimates is shown in Fig. 28. As
can be seen, both representations for the quantity of inter-
est provide similar results improving the accuracy of the
finite element approximation with very little computational
effort (they only involve an inexpensive post-processing of
the finite element solutions).

Figure 29 shows an intermediate and the final adaptively
refined meshes. As can be seen, the adaptive procedure
refines the corners where the solution presents larger singu-
larities and also the front part of the mesh which is the region
most affecting the quantity of interest. This is confirmed by
the fact that the mesh beside the seat is only refined in the
reentrant corners where the solution is singular.

The same example is considered in [9,30] where mesh
adaptivity aiming at reducing global measures of the error
are considered. Although the examples shown therein refer
to lower wave numbers, a close comparison with the results
obtained with the goal-oriented strategy presented in this
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Fig. 29 Example 3: Intermediate and final meshes obtained using the
adaptive process associated to strategy 4. Iteration fourth (leff) with
3235 nodes and final with 23380 nodes

work reveals that our technique properly resolves the sin-
gularities of the primal problem (refining the regions of the
domain where the primal error is larger) while refining, at
the same time, the areas relevant for the quantity of interest.

8 Conclusions

A simple and effective strategy for guiding goal-oriented
adaptive procedures has been presented, based on the post-
processing techniques introduced in [24,25]. Two different
representations of the error in the quantities of interest have
been studied which provide similar results. It has been shown
that the accuracy of these representations, which involve the
post-processing of either the primal or adjoint finite element
approximations, is related to the dispersion error of the cor-
responding problems. The adaptive procedure is valid both
linear and non-linear quantities of interest, but in both cases
the local indicators driving the adaptivity are obtained from
linearized approximations of the output. In all the analyzed
examples the linear part of the quantity of interest is the lead-
ing term, since the higher order contributions converge faster
to zero.

References

1. Thlenburg F, Babuska I (1995) Dispersion analysis and error esti-
mation of Galerkin fininite element methods for the Helmohltz
equation. Int J Numer Methods Eng 38:3745-3774



10.

11.

12.

13.

14.

15.

Thlenburg F, Babuska I (1995) Finite element solution of the Helm-
holtz equation with high wave number. Part 1: the hp-version of
the FEM. Comput Math Appl 38:9-37

Ihlenburg F (1998) Finite element analysis of acoustic scatter-
ing. In: Applied mathematical sciences, vol 132. Springer-Verlarg,
New York

Deraemaeker A, Babuska I, Bouillard P (1999) Dispersion and pol-
lution of the FEM solution for the Helmholtz equation in one, two
and three dimensions. Int J Numer Methods Eng 46(4):471-499
Babuska I, Sauter SA (2000) Is the pollution effect of the FEM
avoidable for the Helmholtz equation considering high wavenum-
ber? SIAM Rev 42(3):451-484

Stewart JR, Hughes TJR (1996) Explicit residual-based a posteri-
ori error estimation for finite element discretizations of the Helm-
holtz equation. Computation of the constant and new measures of
error estimator quality. Comput Methods Appl Mech Eng 131
(3-4):335-363

Babuska I, Ihlenburg F, Strouboulis T, Gangaraj SK (1997) A
posterori error estimation for finite element solutions of Helmholtz’
equation Part I: The quality of locar indicators and estimators. Int
J Numer Methods Eng 40:3443-3462

Bouillard P (1999) Admissible fields and error estimation for
acoustic fea with low wave numbers. Comput Struct 73(1-5):
227-237

Bouillard P, Ihlenburg F (1999) Error estimation and adaptivity
for the finite element method in acoustics: 2d and 3d applications.
Comput Methods Appl Mech. Eng 176(1):147-163

Irimie S, Bouillard P (2001) A residual a posteriori error estimator
for the finite element solution of the Helmholtz equation. Comput
Methods Appl Mech Eng 190(31):4027—4042

Peraire J, Patera AT (1999) Asymptotic a posteriori finite element
bounds for the outputs of noncoercive problems: the Helmholtz
and burgers equations. Comput Methods Appl Mech Eng 171(1):
77-86

Sarrate J, Peraire J, Patera AT (1999) A posteriori finite element
error bounds for non-linear outputs of the Helmholtz equation. Int
J Numer Methods Eng 31(1):17-36

Walsh T, Demkowicz T (2003) hp Boundary element modeling of
the external human auditory system: goal oriented adaptivity with
multiple load vectors. Comput Methods Appl Mech Eng 192(1-2):
125-146

Strouboulis T, Babuska I, Hidajat R (2006) The generalized finite
element method for Helmholtz equation theory, computation, and
open problems. Comput Methods Appl Mech Eng 195:4711-4731
Maday Y, Patera AT, Peraire J (1999) A general formulation for a
posteriori bounds for output functionals of partial differential equa-
tions: application to the eigenvalue problem. C R Acad Sci Paris
Anal Numér 328(1):823-828

19

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Zienkiewicz O, ZhuJ (1987) A simple error estimator and adaptive
procedure for practical engineering analysis. Int ] Numer Methods
Eng 24:337-357

Zienkiewicz O, Zhu J (1992) The superconvergent patch recovery
(SPR) and adaptive finite element refinement. Comput Methods
Appl Mech Eng 101:207-224

Diez P, Rodenas JJ, Zienkiewicz OC (2007) Equilibrated patch
recovery error estimates: simple and accurate upper bounds of the
error. Int J Numer Methods Eng 69(10):2075-2098

Ainsworth M, Oden JT (2000) A posteriori error estimation in
finite element analysis. Wiley, Chichester

Ladeveze P, Leguillon D (1983) Error estimate procedure in the
finite element method and applications. SIAM J Numer Anal
20(3):485-509

Diez P, Parés N, Huerta A (2003) Recovering lower bounds of the
error by postprocessing implicit residual a posteriori error esti-
mates. Int J Numer Methods Eng 56(10):1465-1488

Parés N, Diez P, Huerta A (2006) Subdomain-based flux-free a
posteriori error estimators. Comput Methods Appl Mech Eng
195(4-6):297-323

Parés N, Santos H, Diez P (2009) Guaranteed energy error bounds
for the Poisson equation using a flux-free approach: solving
the local problems in subdomains. Int J Numer Methods Eng
79(10):1203-1244

Steffens LM, Diez P (2009) A simple strategy to assess the error
in the numerical wave number of the finite element solution of
the Helmholtz equation. Comput Methods Appl Mech Eng 198:
1389-1400

Steffens LM, Parés N, Diez P (2010) Estimation of the dispersion
error in the numerical wave number of standard and stabilized finite
element approximations of the Helmholtz equation. Int J Numer
Methods Eng. doi:10.1002/nme.3104

Diez P, Calderén G (2007) Remeshing criteria and proper error
representations for goal oriented h-adaptivity. Comput Methods
Appl Mech Eng 196(4-6):719-733

Babuska I, Ihlenburg F, Strouboulis T, Gangaraj K (1997) A
posterori error estimation for finite element solutions of Helmholtz’
Part II: estimation of the pollution error. Int ] Numer Methods Eng
40:3883-3900

Suleau S, Deraemaeker A, Bouillard P (2000) Dispersion and pol-
lution of meshless solutions for the Helmholtz equation. Comput
Methods Appl Mech Eng 190:639-657

Harari I, Magoules F (2004) Numerical investigations of stabi-
lized finite element computations for acoustics. Wave Motion 39:
339-349

Bausys R, Hager P, Wiberg NE (2001) Postprocessing techniques
and h-adaptive finite element-eigenproblem analysis. Comput
Struct 79:2039-2052





