5,956 research outputs found

    Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru.

    Get PDF
    During the last 50 years, the geographic range of the mosquito Aedes aegypti has increased dramatically, in parallel with a sharp increase in the disease burden from the viruses it transmits, including Zika, chikungunya, and dengue. There is a growing consensus that vector control is essential to prevent Aedes-borne diseases, even as effective vaccines become available. What remains unclear is how effective vector control is across broad operational scales because the data and the analytical tools necessary to isolate the effect of vector-oriented interventions have not been available. We developed a statistical framework to model Ae. aegypti abundance over space and time and applied it to explore the impact of citywide vector control conducted by the Ministry of Health (MoH) in Iquitos, Peru, over a 12-year period. Citywide interventions involved multiple rounds of intradomicile insecticide space spray over large portions of urban Iquitos (up to 40% of all residences) in response to dengue outbreaks. Our model captured significant levels of spatial, temporal, and spatio-temporal variation in Ae. aegypti abundance within and between years and across the city. We estimated the shape of the relationship between the coverage of neighborhood-level vector control and reductions in female Ae. aegypti abundance; i.e., the dose-response curve. The dose-response curve, with its associated uncertainties, can be used to gauge the necessary spraying effort required to achieve a desired effect and is a critical tool currently absent from vector control programs. We found that with complete neighborhood coverage MoH intra-domicile space spray would decrease Ae. aegypti abundance on average by 67% in the treated neighborhood. Our framework can be directly translated to other interventions in other locations with geolocated mosquito abundance data. Results from our analysis can be used to inform future vector-control applications in Ae. aegypti endemic areas globally

    Spatial and temporal dynamics of malaria transmission in rural western Kenya

    Get PDF
    ABSTRACT: BACKGROUND: Understanding the impact of reducing Plasmodium falciparum malaria transmission requires estimates of the relationship between health outcomes and exposure to infectious mosquitoes. However, measures of exposure such as mosquito density and entomological inoculation rate (EIR) are generally aggregated over large areas and time periods, biasing the outcome-exposure relationship. There are few studies examining the extent and drivers of local variation in malaria exposure in endemic areas. METHODS: We describe the spatio-temporal dynamics of malaria transmission intensity measured by mosquito density and EIR in the KEMRI/CDC health and demographic surveillance system using entomological data collected during 2002-2004. Geostatistical zero inflated binomial and negative binomial models were applied to obtain location specific (house) estimates of sporozoite rates and mosquito densities respectively. Model-based predictions were multiplied to estimate the spatial pattern of annual entomological inoculation rate, a measure of the number of infective bites a person receive per unit of time. The models included environmental and climatic predictors extracted from satellite data, harmonic seasonal trends and parameters describing space-time correlation. RESULTS: Anopheles gambiae s.l was the main vector species accounting for 86% (n=2309) of the total collected mosquitoes with the remainder being Anopheles funestus. Sixty eight percent (757/1110) of the surveyed houses had no mosquitoes. Distance to water bodies, vegetation and day temperature were significantly associated with mosquito density. Overall annual point estimates of EIR were 6.7, 9.3 and 9.6 infectious bites per annum for 2002, 2003 and 2004 respectively. Monthly mosquito density and EIR varied over the study period peaking in May during the wet season. The predicted and observed densities and EIR showed a strong seasonal and spatial pattern over the study area. CONCLUSIONS: Spatio-temporal maps of malaria transmission intensity obtained in this study are not only useful in understanding variability in malaria epidemiology over small areas but also provides a high resolution exposure surface that can be used to analyse the impact of malaria exposure on mortalit

    Causal Inference in Disease Spread across a Heterogeneous Social System

    Full text link
    Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering the underlying diffusion mechanisms, which is challenging due to invisible causality between events and their time-evolving intensity. We infer causal relationships between infections and quantify the reflexivity of a meta-population, the level of feedback on event occurrences by its internal dynamics (likelihood of a regional outbreak triggered by previous cases). These are enabled by our new proposed model, the Latent Influence Point Process (LIPP) which models disease spread by incorporating macro-level internal dynamics of meta-populations based on human mobility. We analyse 15-year dengue cases in Queensland, Australia. From our causal inference, outbreaks are more likely driven by statewide global diffusion over time, leading to complex behavior of disease spread. In terms of reflexivity, precursory growth and symmetric decline in populous regions is attributed to slow but persistent feedback on preceding outbreaks via inter-group dynamics, while abrupt growth but sharp decline in peripheral areas is led by rapid but inconstant feedback via intra-group dynamics. Our proposed model reveals probabilistic causal relationships between discrete events based on intra- and inter-group dynamics and also covers direct and indirect diffusion processes (contact-based and vector-borne disease transmissions).Comment: arXiv admin note: substantial text overlap with arXiv:1711.0635
    • …
    corecore