7,931 research outputs found

    Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation

    Full text link
    We propose a novel approach to jointly perform 3D shape retrieval and pose estimation from monocular images.In order to make the method robust to real-world image variations, e.g. complex textures and backgrounds, we learn an embedding space from 3D data that only includes the relevant information, namely the shape and pose. Our approach explicitly disentangles a shape vector and a pose vector, which alleviates both pose bias for 3D shape retrieval and categorical bias for pose estimation. We then train a CNN to map the images to this embedding space, and then retrieve the closest 3D shape from the database and estimate the 6D pose of the object. Our method achieves 10.3 median error for pose estimation and 0.592 top-1-accuracy for category agnostic 3D object retrieval on the Pascal3D+ dataset, outperforming the previous state-of-the-art methods on both tasks

    DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image

    Full text link
    3D reconstruction from a single image is a key problem in multiple applications ranging from robotic manipulation to augmented reality. Prior methods have tackled this problem through generative models which predict 3D reconstructions as voxels or point clouds. However, these methods can be computationally expensive and miss fine details. We introduce a new differentiable layer for 3D data deformation and use it in DeformNet to learn a model for 3D reconstruction-through-deformation. DeformNet takes an image input, searches the nearest shape template from a database, and deforms the template to match the query image. We evaluate our approach on the ShapeNet dataset and show that - (a) the Free-Form Deformation layer is a powerful new building block for Deep Learning models that manipulate 3D data (b) DeformNet uses this FFD layer combined with shape retrieval for smooth and detail-preserving 3D reconstruction of qualitatively plausible point clouds with respect to a single query image (c) compared to other state-of-the-art 3D reconstruction methods, DeformNet quantitatively matches or outperforms their benchmarks by significant margins. For more information, visit: https://deformnet-site.github.io/DeformNet-website/ .Comment: 11 pages, 9 figures, NIP

    3D ShapeNets: A Deep Representation for Volumetric Shapes

    Full text link
    3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representations automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet -- a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.Comment: to be appeared in CVPR 201
    • …
    corecore