696 research outputs found

    Conjectures about certain parabolic Kazhdan--Lusztig polynomials

    Full text link
    Irreducibility results for parabolic induction of representations of the general linear group over a local non-archimedean field can be formulated in terms of Kazhdan--Lusztig polynomials of type AA. Spurred by these results and some computer calculations, we conjecture that certain alternating sums of Kazhdan--Lusztig polynomials known as parabolic Kazhdan--Lusztig polynomials satisfy properties analogous to those of the ordinary ones.Comment: final versio

    Path representation of maximal parabolic Kazhdan-Lusztig polynomials

    Full text link
    We provide simple rules for the computation of Kazhdan--Lusztig polynomials in the maximal parabolic case. They are obtained by filling regions delimited by paths with "Dyck strips" obeying certain rules. We compare our results with those of Lascoux and Sch\"utzenberger.Comment: v3: fixed proof of lemma

    The Robinson-Schensted Correspondence and A2A_2-web Bases

    Get PDF
    We study natural bases for two constructions of the irreducible representation of the symmetric group corresponding to [n,n,n][n,n,n]: the {\em reduced web} basis associated to Kuperberg's combinatorial description of the spider category; and the {\em left cell basis} for the left cell construction of Kazhdan and Lusztig. In the case of [n,n][n,n], the spider category is the Temperley-Lieb category; reduced webs correspond to planar matchings, which are equivalent to left cell bases. This paper compares the images of these bases under classical maps: the {\em Robinson-Schensted algorithm} between permutations and Young tableaux and {\em Khovanov-Kuperberg's bijection} between Young tableaux and reduced webs. One main result uses Vogan's generalized τ\tau-invariant to uncover a close structural relationship between the web basis and the left cell basis. Intuitively, generalized τ\tau-invariants refine the data of the inversion set of a permutation. We define generalized τ\tau-invariants intrinsically for Kazhdan-Lusztig left cell basis elements and for webs. We then show that the generalized τ\tau-invariant is preserved by these classical maps. Thus, our result allows one to interpret Khovanov-Kuperberg's bijection as an analogue of the Robinson-Schensted correspondence. Despite all of this, our second main result proves that the reduced web and left cell bases are inequivalent; that is, these bijections are not S3nS_{3n}-equivariant maps.Comment: 34 pages, 23 figures, minor corrections and revisions in version

    Mask formulas for cograssmannian Kazhdan-Lusztig polynomials

    Full text link
    We give two contructions of sets of masks on cograssmannian permutations that can be used in Deodhar's formula for Kazhdan-Lusztig basis elements of the Iwahori-Hecke algebra. The constructions are respectively based on a formula of Lascoux-Schutzenberger and its geometric interpretation by Zelevinsky. The first construction relies on a basis of the Hecke algebra constructed from principal lower order ideals in Bruhat order and a translation of this basis into sets of masks. The second construction relies on an interpretation of masks as cells of the Bott-Samelson resolution. These constructions give distinct answers to a question of Deodhar.Comment: 43 page

    The anti-spherical category

    Full text link
    We study a diagrammatic categorification (the "anti-spherical category") of the anti-spherical module for any Coxeter group. We deduce that Deodhar's (sign) parabolic Kazhdan-Lusztig polynomials have non-negative coefficients, and that a monotonicity conjecture of Brenti's holds. The main technical observation is a localisation procedure for the anti-spherical category, from which we construct a "light leaves" basis of morphisms. Our techniques may be used to calculate many new elements of the pp-canonical basis in the anti-spherical module.Comment: Best viewed in colo
    corecore