5,292 research outputs found

    A hybrid MLFMM-UTD method for the solution of very large 2-D electromagnetic problems

    Get PDF
    The multilevel fast multipole method (MLFMM) is combined with the uniform theory of diffraction (UTD) to model two-dimensional (2-D) scattering problems including very large scatterers. The discretization of the very large scatterers is avoided by using ray-based methods. Reflections are accounted for by image source theory, while for diffraction a new MLFMM translation matrix is introduced. The translation matrix elements are derived based on a technique that generalizes the use of UTD for arbitrary source configurations and that efficiently describes the field over extended regions of space. O(n) scaling of the computational time and memory requirements is achieved for relevant structures, such as large antenna arrays in the presence of a wedge. The theory is validated by means of several illustrative numerical examples and is shown to remain accurate for non-line-of-sight (NLoS) scattering problems

    An efficient 2-D MLFMM-UTD hybrid method to model non-line-of-sight propagation

    Get PDF
    We present a hybrid method that combines the Multilevel Fast Multipole Method (MLFMM) with the Uniform Theory of Diffraction (UTD) to model two-dimensional (2-D) scattering problems. The method is especially suited to model scattering in the presence of very large scatterers that obstruct the line-of-sight propagation between different devices with a more intricate geometry, such as antennas. The discretization of the large scatterers is avoided by using ray-based methods. An O(n) scaling is achieved for the computational time and required memory, n being the number of unknowns needed to discretize the antennas. The method is validated by a numerical example

    Mastering Heterogeneous Behavioural Models

    Full text link
    Heterogeneity is one important feature of complex systems, leading to the complexity of their construction and analysis. Moving the heterogeneity at model level helps in mastering the difficulty of composing heterogeneous models which constitute a large system. We propose a method made of an algebra and structure morphisms to deal with the interaction of behavioural models, provided that they are compatible. We prove that heterogeneous models can interact in a safe way, and therefore complex heterogeneous systems can be built and analysed incrementally. The Uppaal tool is targeted for experimentations.Comment: 16 pages, a short version to appear in MEDI'201

    Testing double auction as a component within a generic market model architecture

    Get PDF
    Since the first multi-agents based market simulations in the nineties, many different artificial stock market models have been developped. There are mainly used to reproduce and understand real markets statistical properties such as fat tails, volatility clustering and positive auto-correlation of absolute returns. Though they share common goals, these market models are most of the time different one from another: some are based on equations, others on complex microstructures, some are synchronous, others are asynchronous. It is hence hard to understand which characteristic of the market model used is at the origin of observed statistical properties. To investigate this question, we propose a generic model of artificial markets architecture which allows to freely compose modules coming from existing market models. To illustrate this formalism, we implement these components to propose a model of an asynchronous double auction based on an order-book and show that many stylized facts of real stock markets are reproduced with our model.multi-agent; orderbook; double auction; simulation; financial markets; stylized facts

    An assessment of DREAM, appendix E

    Get PDF
    The design realization, evaluation and modelling (DREAM) system is evaluated. A short history of the DREAM research project is given as well as the significant characteristics of DREAM as a development environment. The design notation which is the basis for the DREAM system is reviewed, and the development tools envisioned as part of DREAM are discussed. Insights into development environments and their production are presented and used to make suggestions for future work in the area of development environments

    Components Interoperability through Mediating Connector Patterns

    Full text link
    A key objective for ubiquitous environments is to enable system interoperability between system's components that are highly heterogeneous. In particular, the challenge is to embed in the system architecture the necessary support to cope with behavioral diversity in order to allow components to coordinate and communicate. The continuously evolving environment further asks for an automated and on-the-fly approach. In this paper we present the design building blocks for the dynamic and on-the-fly interoperability between heterogeneous components. Specifically, we describe an Architectural Pattern called Mediating Connector, that is the key enabler for communication. In addition, we present a set of Basic Mediator Patterns, that describe the basic mismatches which can occur when components try to interact, and their corresponding solutions.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Neutrino Signatures in Primordial Non-Gaussianities

    Full text link
    We study the cosmological collider phenomenology of neutrinos in an effective field theory. The mass spectrum of neutrinos and their characteristic oscillatory signatures in the squeezed limit bispectrum are computed. Both dS-covariant and slow-roll corrections are considered, so is the scenario of electroweak symmetry breaking during inflation. Interestingly, we show that the slow-roll background of the inflaton provides a chemical potential for the neutrino production. The chemical potential greatly amplifies the oscillatory signal and makes the signal observably large for heavy neutrinos without the need of fine tuning.Comment: 31 pages, JHEP accepted versio

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)
    corecore