5 research outputs found

    Computación afectiva y agilidad en entornos virtuales de educación: una revisión sistemática de la literatura

    Get PDF
    En el campo de la ingeniería de software es reconocida la importancia de las emociones en la adquisición, procesamiento de información y en el aprendizaje de las personas; sin embargo, es de particular interés relacionar estos y otros aspectos relevantes de la computación afectiva con el contexto actual de entornos de aprendizaje virtual para mostrar explícitamente su impacto real, y más en particular con la aplicación de prácticas ágiles como herramienta en educación superior. Así, este artículo presenta el desarrollo de una revisión sistemática de la literatura a fin de identificar las experiencias descriptas para la evaluación de emociones de los estudiantes en entornos virtuales de enseñanza. Se consultaron cuatro librerías digitales y se analizaron en profundidad 6 estudios, concluyendo que, si bien la literatura muestra avances a nivel de modelos teóricos e implementaciones de sistemas para el reconocimiento de emociones, su utilización en educación superior es escasa, y directamente nula cuando se introducen prácticas ágiles como una estrategia de enseñanza.Sociedad Argentina de Informática e Investigación Operativ

    Towards Formal Modeling of Affective Agents in a BDI Architecture

    Full text link
    [EN] Affective characteristics are crucial factors that influence human behavior, and often the prevalence of either emotions or reason varies on each individual. We aim to facilitate the development of agents reasoning considering their affective characteristics. We first identify core processes in an affective BDI agent, and we integrate them into an affective agent architecture (GenIA3). These tasks include the extension of the BDI agent reasoning cycle to be compliant with the architecture, and the extension of the agent language (Jason) to support affect-based reasoning, and the adjustment of the equilibrium between the agent s affective and rational sides.This work was supported by the Generalitat Valenciana grant PROMETEOII/2013/019, and the Spanish TIN2014-55206-R project of the Ministerio de Economa y Competitividad.Alfonso Espinosa, B.; Vivancos, E.; Botti, V. (2017). Towards Formal Modeling of Affective Agents in a BDI Architecture. ACM Transactions on Internet Technology. 17(1):5:1-5:23. https://doi.org/10.1145/3001584S5:15:23171Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2014. An open architecture for affective traits in a BDI agent. In Proceedings of the 6th ECTA 2014. Part of the 6th IJCCI 2014. 320--325.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016a. Design of an Affective Intelligent Agent on GenIA. Technical Report. DSIC, UPV, Spain.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016b. Toward a Systematic Development of Affective Intelligent Agents. Technical Report. DSIC, UPV, Spain.Gordon Willard Allport. 1937. Personality: A Psychological Interpretation. Henry Holt, New York.Albert Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84, 2 (1977), 191.Cristina Battaglino, Rossana Damiano, and Leonardo Lesmo. Emotional range in value-sensitive deliberation. In Proceedings of AAMAS’13. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 769--776.Antoine Bechara, Hanna Damasio, and Antonio R Damasio. 2000. Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 3 (2000), 295--307.Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason variant of AgentSpeak (plan failure and some internal actions). In Proceedings of ECAI’10. IOS Press, Amsterdam, The Netherlands, 635--640.Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley.Tibor Bosse, Joost Broekens, João Dias, and Janneke van der Zwaan. 2014. Emotion Modeling. Springer.Scott Brave, Clifford Nass, and Kevin Hutchinson. 2005. Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Human-computer Studies 62, 2 (2005), 161--178.Jerome R. Busemeyer, Eric Dimperio, and Ryan K. Jessup. 2007. Integrating Emotional Processes Into Decision-Making Models. Oxford University Press, 29--44.Colin F Camerer, George Loewenstein, and Matthew Rabin. 2011. Advances in Behavioral Economics. Princeton University Press.Martin A Conway. 1990. Autobiographical Memory: An Introduction. Open University Press.Ronald De Sousa. 1990. The Rationality of Emotion. MIT Press.João Dias, Samuel Mascarenhas, and Ana Paiva. 2014. FAtiMA Modular: Towards an Agent Architecture with a Generic Appraisal Framework. Springer International Publishing, 44--56. DOI:http://dx.doi.org/10.1007/978-3-319-12973-0_3Magy Seif El-Nasr, John Yen, and Thomas R Ioerger. 2000. Flame—fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-agent systems 3, 3 (2000), 219--257.Hans Jürgen Eysenck. 1982. Personality, Genetics, and Behavior: Selected Papers. Praeger, Chapter Development of a Theory, 1--48.Shane Frederick. 2005. Cognitive reflection and decision making. The Journal of Economic Perspectives 19, 4 (2005), 25--42.N. H. Frijda, A. S. R. Manstead, and S. Bem. 2000. Emotions and Beliefs: How Feelings Influence Thoughts. Cambridge University Press.Nico H. Frijda. 2007. The Laws of Emotion. Lawrence Erlbaum Associates, Incorporated.Patrick Gebhard. 2005. ALMA: A layered model of affect. In Proceedings of the 4th AAMAS. ACM, New York, NY, 29--36. DOI:http://dx.doi.org/10.1145/1082473.1082478Lewis R. Goldberg and others. 1990. An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology 59, 6 (1990), 1216--1229.James J. Gross and Ross A. Thompson. 2011. Emotion regulation: Conceptual fundations. In Handbook of Emotion Regulation. Guilford Publications.JonathanY. Ito, DavidV. Pynadath, and StacyC. Marsella. 2010. Modeling self-deception within a decision-theoretic framework. AAMAS 20, 1 (2010), 3--13. DOI:http://dx.doi.org/10.1007/s10458-009-9096-7William G. Kennedy. 2012. Modelling human behaviour in agent-based models. In Agent-based Models of Geographical Systems. Springer, 167--179.Jonathan Klein, Youngme Moon, and Rosalind W. Picard. 2002. This computer responds to user frustration: Theory, design, and results. Interacting with Computers 14, 2 (2002), 119--140.Richard S. Lazarus and Susan Folkman. 1984. Stress, Appraisal, and Coping. Springer.Stacy Marsella and Jonathan Gratch. 2003. Modeling coping behavior in virtual humans: Don’t worry, be happy. In Proceedings of AAMAS’03. ACM, 313--320. DOI:http://dx.doi.org/10.1145/860575.860626Stacy C. Marsella and Jonathan Gratch. 2009. EMA: A process model of appraisal dynamics. Cognitive Systems Research 10, 1 (2009), 70--90.Stacy C. Marsella, Jonathan Gratch, and Paolo Petta. 2010. Computational models of emotion. In A Blueprint for Affective Computing: A Sourcebook and Manual. OUP Oxford, 21--46.Robert R. McCrae and Oliver P. John. 1992. An introduction to the five-factor model and its applications. Journal of Personality 60, 2 (1992), 175--215.Albert Mehrabian. 1996a. Analysis of the big-five personality factors in terms of the PAD temperament model. Australian Journal of Psychology 48, 2 (1996), 86--92. DOI:http://dx.doi.org/10.1080/00049539608259510Albert Mehrabian. 1996b. Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14, 4 (1996), 261--292. DOI:http://dx.doi.org/10.1007/BF02686918Albert Mehrabian and James A. Russell. 1974. An Approach to Environmental Psychology. MIT Press.John-Jules Ch. Meyer. 2006. Reasoning about emotional agents. International Journal of Intelligent Systems 21, 6 (June 2006), 601--619. DOI:http://dx.doi.org/10.1002/int.v21:6Katherine Nelson. 1993. The psychological and social origins of autobiographical memory. Psychological Science 4, 1 (1993), 7--14.Magalie Ochs, David Sadek, and Catherine Pelachaud. 2012. A formal model of emotions for an empathic rational dialog agent. AAMAS 24, 3 (2012), 410--440. DOI:http://dx.doi.org/10.1007/s10458-010-9156-zAndrew Ortony. 2003. On making believable emotional agents believable. In Emotions in Humans and Artifacts, R. P. Trapple, P. Petta, and S. Payer (Eds.). MIT Press, Chapter 6, 189--212.Andrew Ortony, Gerald L. Clore, and Allan Collins. 1988. The Cognitive Structure of Emotions. Cambridge University Press.Rosalind W. Picard and Karen K. Liu. 2007. Relative subjective count and assessment of interruptive technologies applied to mobile monitoring of stress. International Journal of Human-Computer Studies 65, 4 (2007), 361--375.César F. Pimentel and Maria R. Cravo. 2005. Affective revision. In Progress in Artificial Intelligence, Carlos Bento, Amílcar Cardoso, and Gaël Dias (Eds.). LNCS, Vol. 3808. Springer Berlin, 115--126.Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19. Aarhus University.Anand S. Rao. 1996. Agentspeak(L): BDI agents speak out in a logical computable language. In Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Rudy Van Hoe (Ed.). Eindhoven, The Netherlands.Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks, Emiliano Lorini, and J-JC Meyer. 2013. Computational modeling of emotion: Toward improving the inter- and intradisciplinary exchange. IEEE Transactions on Affective Computing 4, 3 (2013), 246--266.Luis-Felipe Rodríguez and Félix Ramos. 2014. Development of computational models of emotions for autonomous agents: A review. Cognitive Computation 6, 3 (2014), 351--375. DOI:http://dx.doi.org/10.1007/s12559-013-9244-xIra J. Roseman. 2001. A Model of Appraisal in the Emotion System: Integrating Theory, Research, and Applications. Oxford University Press, 68--91.James A. Russell. 2003. Core affect and the psychological construction of emotion. Psychological Review 110, 1 (2003), 145--172.Klaus R. Scherer. 2001. Appraisal considered as a process of multilevel sequential checking. Appraisal Processes in Emotion: Theory, Methods, Research 92 (2001), 120.Norbert Schwarz. 2000. Emotion, cognition, and decision making. Cognition 8 Emotion 14, 4 (2000), 433--440.Leila Selimbegović, Isabelle Régner, Pascal Huguet, and Armand Chatard. 2015. On the power of autobiographical memories: From threat and challenge appraisals to actual behaviour. Memory (2015), 1--8.Martin Sewell. 2010. Emotions help solve the prisoner’s dilemma. In Proceedings of the Behavioural Finance Working Group Conference: Fairness, Trust and Emotions in Finance, London. 1--2.Craig A. Smith and Richard S. Lazarus. 1990. Emotion and adaptation. In Handbook of Personality: Theory and Research, Lawrence A. Pervin (Ed.). 609--637.Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2009. A formal model of emotion-based action tendency for intelligent agents. In Proceedings of EPIA’09. Springer-Verlag, Berlin, 174--186. DOI:http://dx.doi.org/10.1007/978-3-642-04686-5_15Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2012. A formal model of emotion triggers: An approach for BDI agents. Synthese 185 (2012), 83--129. DOI:http://dx.doi.org/10.1007/s11229-011-0004-8AW Tucker. 1983. The mathematics of tucker: A sampler. The Two-Year College Mathematics Journal 14, 3 (1983), 228--232.Renata Vieira, Álvaro F. Moreira, Michael Wooldridge, and Rafael H. Bordini. 2007. On the formal semantics of speech-act based communication in an agent-oriented programming language. J. Artif. Intell. Res. (JAIR) 29 (2007), 221--267.G. Weiss. 2013. Multiagent Systems. MIT Press

    ABC-EBDI: A cognitive-affective framework to support the modeling of believable intelligent agents.

    Get PDF
    El Grupo de Investigación de Interfaces Avanzadas (AffectiveLab), es un grupo reconocido por el Gobierno de Aragón (T60-20R) cuya actividad se enmarca en el área de la Interacción Humano-Computadora (IHC). Su actividad investigadora se ha centrado, en los últimos años, en cuatro temas principales: interacción natural, informática afectiva, accesibilidad e interfaces basadas en agentes inteligentes, siendo esta última en la que se enmarca esta tesis doctoral. Más concretamente, la realización de esta tesis doctoral se enmarca dentro de los proyectos de investigación nacionales JUGUEMOS (TIN2015-67149-C3-1R) y PERGAMEX (RTI2018-096986-B-C31). Una de sus líneas de investigación se centra en el desarrollo de arquitecturas cognitivo-afectivas para apoyar el modelado afectivo de los agentes inteligentes. El AffectiveLab tiene una sólida experiencia en el uso de agentes de interfaz incorporados que exhiben expresiones afectivas corporales y faciales (Baldassarri et al., 2008). En los últimos años, se han centrado en el modelado del comportamiento de los agentes inteligentes (Pérez et al., 2017).La definición de agente inteligente es un tema controvertido, pero se puede decir que es una entidad autónoma que recibe información dinámica del entorno a través de sensores y actúa sobre el medio ambiente a través de actuadores, mostrando un comportamiento dirigido a un objetivo (Russell et al., 2003). El modelado de los procesos cognitivos en los agentes inteligentes se basa en diferentes teorías (Moore, 1980; Newell, 1994; Bratman, 1987) que explican, desde diferentes puntos de vista, el funcionamiento de la mente humana. Los agentes inteligentes implementados sobre la base de una teoría cognitiva se conocen como agentes cognitivos. Los más desarrollados son los que se basan en arquitecturas cognitivas, como Soar (Laird et al., 1987), ACT-R (Anderson, 1993) y BDI (Rao and Georgeff, 1995). Comparado con Soar y otras arquitecturas complejas, BDI se destaca por su simplicidad y versatilidad. BDI ofrece varias características que la hacen popular, como su capacidad para explicar el comportamiento del agente en cada momento, haciendo posible una interacción dinámica con el entorno. Debido a la creciente popularidad del marco BDI se ha utilizado para apoyar el modelado de agentes inteligentes (Larsen, 2019; (Cranefield and Dignum, 2019). En los últimos años, también han aparecido propuestas de BDI que integran aspectos afectivos. Los agentes inteligentes construidos en base a la arquitectura BDI que también incorporan capacidades afectivas, se conocen como agentes EBDI (Emotional BDI) y son el foco de esta tesis. El objetivo principal de esta tesis ha sido proponer un marco cognitivo-afectivo basado en el BDI que sustente el modelado cognitivo-afectivo de los agentes inteligentes. La finalidad es ser capaz de reproducir un comportamiento humano creíble en situaciones complejas donde el comportamiento humano es variado y bastante impredecible. El objetivo propuesto se ha logrado con éxito en los términos descritos a continuación:• Se ha elaborado un exhaustivo estado del arte relacionado con los modelos afectivos más utilizados para modelar los aspectos afectivos en los agentes inteligentes.• Se han estudiado las arquitecturas de BDI y las propuestas previas de EBDI. El estudio, que dio lugar a una publicación (Sánchez-López and Cerezo, 2019), permitió detectar las cuestiones abiertas en el área, y la necesidad de considerar todos los aspectos de la afectividad (emociones, estado de ánimo, personalidad) y su influencia en todas las etapas cognitivas. El marco resultante de este trabajo doctoral incluye también el modelado de la conducta y el comportamiento comunicativo, que no habían sido considerados hasta ahora en el modelado de los agentes inteligentes. Estos aspectos colocan al marco resultante entre EBDI los más avanzados de la literatura. • Se ha diseñado e implementado un marco basado en el BDI para soportar el modelado cognitivo, afectivo y conductual de los agentes inteligentes, denominado ABC-EBDI (Sanchez et al., 2020) (Sánchez et al., 2019). Se trata de la primera aplicación de un modelo psicológico muy conocido, el modelo ABC de Ellis, a la simulación de agentes inteligentes humanos realistas. Esta aplicación implica:o La ampliación del concepto de creencias. En el marco se consideran tres tipos de creencias: creencias básicas, creencias de contexto y comportamientos operantes. Las creencias básicas representan la información general que el agente tiene sobre sí mismo y el entorno. Las conductas operantes permiten modelar la conducta reactiva del agente a través de las conductas aprendidas. Las creencias de contexto, que se representan en forma de cogniciones frías y calientes, se procesan para clasificarlas en creencias irracionales y racionales siguiendo las ideas de Ellis. Es la consideración de creencias irracionales/racionales porque abre la puerta a la simulación de reacciones humanas realistas.o La posibilidad de gestionar de forma unificada las consecuencias de los acontecimientos en términos de consecuencias afectivas y de comportamiento (conducta). Las creencias de contexto racionales conducen a emociones funcionales y a una conducta adaptativa, mientras que las creencias de contexto irracionales conducen a emociones disfuncionales y a una conducta maladaptativa. Este carácter funcional/disfuncional de las emociones no se había utilizado nunca antes en el contexto del BDI. Además, el modelado conductual se ha ampliado con el modelado de estilos comunicativos, basado en el modelo Satir, tampoco aplicado previamente al modelado de agentes inteligentes. El modelo de Satir considera gestos corporales, expresiones faciales, voz, entonación y estructuras lingüísticas.• Se ha elegido un caso de uso, "I wish a had better news" para la aplicación del marco propuesto y se han realizado dos tipos de evaluaciones, por parte de expertos y de usuarios. La evaluación ha confirmado el gran potencial del marco propuesto para reproducir un comportamiento humano realista y creíble en situaciones complejas.<br /

    Modélisation du profil émotionnel de l'utilisateur dans les interactions parlées Humain-Machine

    Get PDF
    Les travaux de recherche de la thèse portent sur l'étude et la formalisation des interactions émotionnelles Humain-Machine. Au delà d une détection d'informations paralinguistiques (émotions, disfluences,...) ponctuelles, il s'agit de fournir au système un profil interactionnel et émotionnel de l'utilisateur dynamique, enrichi pendant l interaction. Ce profil permet d adapter les stratégies de réponses de la machine au locuteur, et il peut également servir pour mieux gérer des relations à long terme. Le profil est fondé sur une représentation multi-niveau du traitement des indices émotionnels et interactionnels extraits à partir de l'audio via les outils de détection des émotions du LIMSI. Ainsi, des indices bas niveau (variations de la F0, d'énergie, etc.), fournissent des informations sur le type d'émotion exprimée, la force de l'émotion, le degré de loquacité, etc. Ces éléments à moyen niveau sont exploités dans le système afin de déterminer, au fil des interactions, le profil émotionnel et interactionnel de l'utilisateur. Ce profil est composé de six dimensions : optimisme, extraversion, stabilité émotionnelle, confiance en soi, affinité et domination (basé sur le modèle de personnalité OCEAN et les théories de l interpersonal circumplex). Le comportement social du système est adapté en fonction de ce profil, de l'état de la tâche en cours, et du comportement courant du robot. Les règles de création et de mise à jour du profil émotionnel et interactionnel, ainsi que de sélection automatique du comportement du robot, ont été implémentées en logique floue à l'aide du moteur de décision développé par un partenaire du projet ROMEO. L implémentation du système a été réalisée sur le robot NAO. Afin d étudier les différents éléments de la boucle d interaction émotionnelle entre l utilisateur et le système, nous avons participé à la conception de plusieurs systèmes : système en Magicien d Oz pré-scripté, système semi-automatisé, et système d interaction émotionnelle autonome. Ces systèmes ont permis de recueillir des données en contrôlant plusieurs paramètres d élicitation des émotions au sein d une interaction ; nous présentons les résultats de ces expérimentations, et des protocoles d évaluation de l Interaction Humain-Robot via l utilisation de systèmes à différents degrés d autonomie.Analysing and formalising the emotional aspect of the Human-Machine Interaction is the key to a successful relation. Beyond and isolated paralinguistic detection (emotion, disfluences ), our aim consists in providing the system with a dynamic emotional and interactional profile of the user, which can evolve throughout the interaction. This profile allows for an adaptation of the machine s response strategy, and can deal with long term relationships. A multi-level processing of the emotional and interactional cues extracted from speech (LIMSI emotion detection tools) leads to the constitution of the profile. Low level cues ( F0, energy, etc.), are then interpreted in terms of expressed emotion, strength, or talkativeness of the speaker. These mid-level cues are processed in the system so as to determine, over the interaction sessions, the emotional and interactional profile of the user. The profile is made up of six dimensions: optimism, extroversion, emotional stability, self-confidence, affinity and dominance (based on the OCEAN personality model and the interpersonal circumplex theories). The information derived from this profile could allow for a measurement of the engagement of the speaker. The social behaviour of the system is adapted according to the profile, and the current task state and robot behaviour. Fuzzy logic rules drive the constitution of the profile and the automatic selection of the robotic behaviour. These determinist rules are implemented on a decision engine designed by a partner in the project ROMEO. We implemented the system on the humanoid robot NAO. The overriding issue dealt with in this thesis is the viable interpretation of the paralinguistic cues extracted from speech into a relevant emotional representation of the user. We deem it noteworthy to point out that multimodal cues could reinforce the profile s robustness. So as to analyse the different parts of the emotional interaction loop between the user and the system, we collaborated in the design of several systems with different autonomy degrees: a pre-scripted Wizard-of-Oz system, a semi-automated system, and a fully autonomous system. Using these systems allowed us to collect emotional data in robotic interaction contexts, by controlling several emotion elicitation parameters. This thesis presents the results of these data collections, and offers an evaluation protocol for Human-Robot Interaction through systems with various degrees of autonomy.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    corecore