910 research outputs found

    Dynamic Service Rate Control for a Single Server Queue with Markov Modulated Arrivals

    Full text link
    We consider the problem of service rate control of a single server queueing system with a finite-state Markov-modulated Poisson arrival process. We show that the optimal service rate is non-decreasing in the number of customers in the system; higher congestion rates warrant higher service rates. On the contrary, however, we show that the optimal service rate is not necessarily monotone in the current arrival rate. If the modulating process satisfies a stochastic monotonicity property the monotonicity is recovered. We examine several heuristics and show where heuristics are reasonable substitutes for the optimal control. None of the heuristics perform well in all the regimes. Secondly, we discuss when the Markov-modulated Poisson process with service rate control can act as a heuristic itself to approximate the control of a system with a periodic non-homogeneous Poisson arrival process. Not only is the current model of interest in the control of Internet or mobile networks with bursty traffic, but it is also useful in providing a tractable alternative for the control of service centers with non-stationary arrival rates.Comment: 32 Pages, 7 Figure

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of lim⁡x→∞x−2log⁡(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    Strong approximations for time-varying infinite-server queues with non-renewal arrival and service processes

    Get PDF
    In real stochastic systems, the arrival and service processes may not be renewal processes. For example, in many telecommunication systems such as internet traffic where data traffic is bursty, the sequence of inter-arrival times and service times are often correlated and dependent. One way to model this non-renewal behavior is to use Markovian Arrival Processes (MAPs) and Markovian Service Processes (MSPs). MAPs and MSPs allow for inter-arrival and service times to be dependent, while providing the analytical tractability of simple Markov processes. To this end, we prove fluid and diffusion limits for MAP(t)/MSPt/ queues by constructing a new Poisson process representation for the queueing dynamics and leveraging strong approximations for Poisson processes. As a result, the fluid and diffusion limit theorems illuminate how the dependence structure of the arrival or service processes can affect the sample path behavior of the queueing process. Finally, our Poisson representation for MAPs and MSPs is useful for simulation purposes and may be of independent interest.111sciescopu

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Separation of timescales in a two-layered network

    Full text link
    We investigate a computer network consisting of two layers occurring in, for example, application servers. The first layer incorporates the arrival of jobs at a network of multi-server nodes, which we model as a many-server Jackson network. At the second layer, active servers at these nodes act now as customers who are served by a common CPU. Our main result shows a separation of time scales in heavy traffic: the main source of randomness occurs at the (aggregate) CPU layer; the interactions between different types of nodes at the other layer is shown to converge to a fixed point at a faster time scale; this also yields a state-space collapse property. Apart from these fundamental insights, we also obtain an explicit approximation for the joint law of the number of jobs in the system, which is provably accurate for heavily loaded systems and performs numerically well for moderately loaded systems. The obtained results for the model under consideration can be applied to thread-pool dimensioning in application servers, while the technique seems applicable to other layered systems too.Comment: 8 pages, 2 figures, 1 table, ITC 24 (2012

    Performance analysis of time-dependent queueing systems: survey and classification

    Full text link
    Many queueing systems are subject to time-dependent changes in system parameters, such as the arrival rate or number of servers. Examples include time-dependent call volumes and agents at inbound call centers, time-varying air traffic at airports, time-dependent truck arrival rates at seaports, and cyclic message volumes in computer systems.There are several approaches for the performance analysis of queueing systems with deterministic parameter changes over time. In this survey, we develop a classification scheme that groups these approaches according to their underlying key ideas into (i) numerical and analytical solutions,(ii)approaches based on models with piecewise constant parameters, and (iii) approaches based on mod-ified system characteristics. Additionally, we identify links between the different approaches and provide a survey of applications that are categorized into service, road and air traffic, and IT systems
    • 

    corecore