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Abstract

In real stochastic systems, the arrival and service processes may not be renewal
processes. For example, in many telecommunication systems such as internet traffic
where data traffic is bursty, the sequence of inter-arrival times and service times are
often correlated and dependent. One way to model this non-renewal behavior is to
use Markovian Arrival Processes (MAP’s) and Markovian Service Processes (MSP’s).
MAP’s and MSP’s allow for inter-arrival and service times to be dependent, while
providing the analytical tractability of simple Markov processes. To this end, we prove
fluid and diffusion limits for MAPt/MSPt/∞ queues by constructing a new Poisson
process representation for the queueing dynamics and leveraging strong approximations
for Poisson processes. As a result, the fluid and diffusion limit theorems illuminate how
the dependence structure of the arrival or service processes can affect the sample path
behavior of the queueing process. Finally, our Poisson representation for MAP’s and
MSP’s is useful for simulation purposes and may be of independent interest.
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1 Introduction

Counting processes are important stochastic processes that have importance in many appli-
cations and areas of study such as biology, finance, telecommunications, and queueing theory.
In the queueing literature, counting processes are used to model the arrival process of the
queue and count the number of jobs or customers that arrive to the system during a specific
time interval. Perhaps the most important of these counting processes is the Poisson process,
which is the canonical arrival process. There are various extensions of the Poisson process
such as the compound Poisson process, renewal processes, Markov modulated Poisson pro-
cesses, and semi-Markov processes just to name a few. These processes are generalizations
of the Poisson process and serve to capture real world phenomena seen in arrival traffic.

Although the Poisson process is a good process to model customer arrivals who are
independent, the Poisson process is known to not be a great stochastic arrival process to
model the arrivals of internet data traffic in telecommunication networks. Despite the Palm-
Khintine theorem, which asserts that the superposition of a large number of renewal processes
will converge to a Poisson process, it is well known in the teletraffic literature that the arrival
traffic is not Poisson. In fact, it is also well known that the arrival traffic is also not renewal.
See for example, Kang et al. [15], Yang and Tsang [40], Ren and Ramamurthy [36] where
ATM statistical multiplexers superimpose many different kinds of traffic sources and the
resulting arrival process is no longer renewal. Moreover, in applications like ridesharing or
bikesharing, arrivals might not be renewal and are often bursty and dependent on events such
as concerts or shows that are transpiring in a particular city. For more work in the context
of queueing theory or fitting arrival processes see for instance, Horváth et al. [14], Shroff
and Schwartz [38], Heindl and Telek [13], Andersen and Nielsen [1], Gerhardt and Nelson
[8], Vatamidou et al. [39], Mészáros and Telek [23].

This is not the first work to study queues where the primitive random variables have
dependence. Much of the current literature is in the area of queues with dependence is
where the arrival and service processes are assumed to be positively dependent, see for
example Hadidi [9]. In [9], the author assumes that the arrival and service processes in a
single server queue follow a bivariate negative exponential distribution. Using the bivariate
gamma distribution, they derive an integral equation for the waiting time in terms of the
parameters of the bivariate gamma distribution. In a follow-up paper, Hadidi [10] derives
closed form expressions for the moments greater than two of the waiting time when the
arrival and service processes are dependent. However, the current literature only considers
the single server setting and does not explore the multi-server or infinite server setting.

Recently, the literature on queues with dependence has expanded to the infinite server
setting. For example, the work of Pang and Whitt [26, 27, 28] explores the impact of
dependence on the nonstationary infinite server queue, especially when the successive service
times are correlated. This type of dependence is often observed in recalls or inquiries about
consumer products since customers are calling about the same issues and questions. The
authors provide an approximate analysis of the mean and variance of the queue length as a
function of the dependence between service times or between arrival times. They show that
the correlation significantly impacts the variance but not the mean behavior. Thus, their
work is exploring dependence between arrivals or between services rather than that between
arrivals and services. O’Cinneide and Purdue [25] and D’Auria [5] also address dependence
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in an infinite server setting. The authors introduce a (semi-)Markov environment process
that affects arrival and service processes and obtain factorial moments of the number of
customers in steady state. Unlike our approach that focuses on the transient behavior (on a
compact interval), they obtain performance measures in steady state.

In this paper, we propose a new approach for analyzing queues where the arrival process
has dependence. The first step is to model the arrival process with a Markovian Arrival
Process (MAP). MAP’s unlike phase type distributions, allow one to consider non-renewal
processes for the arrival process. This is because a phase type distribution is restarted
independently of its past history. MAP’s generalize this feature and allow for dependence
on the past history of the Markov chain. In a MAP, unlike phase type distributions, the
next interarrival time is dependent on the exit state of the Markov chain and this feature
allows one to introduce a notion of memory into the process. The ultimate goal is for us to
describe the sample path behavior of queues that have a MAP as its arrival process. One
main obstacle that we have is that there exists no obvious way to model a MAP using Poisson
processes. Since a MAP is constructed from the absorbing times of Markov chains, one major
contribution of this work is to develop a novel way of modeling the MAP dynamics using unit
rate Poisson processes. Given that we have a Poisson representation for the MAP, we can
combine it with Markovian Service Processes (MSP’s) for the service process to construct
MAPt/MSPt/∞ queueing models. Once we have a Poisson representation for the queue
length process, we derive fluid and diffusion limits taking advantage of the theory of strong
approximations.

1.1 Main Contributions of Paper

The contributions of this work can be summarized as follows. First, we consider the time
varying dynamics of the MAPt/MSPt/∞ queues as an approximation of more general queue-
ing processes with non-renewal arrival and service processes. Even with its Markovian struc-
ture, MAPt/MSPt/∞ queueing models are relatively intractable as we cannot analytically
solve for the exact distribution of the queue length as a function of time. As a result, we
derive fluid and diffusion limits for the MAPt/MSPt/∞ queues using strong approximations
of time changed Poisson processes by increasing the number of independent and idential in-
put sources, a.k.a. the many-sources regime described in Shakkottai and Srikant [37], Eun
and Shroff [7], Cecchi et al. [3]. These limit theorems allow us to gain insight into the sample
path behavior of the MAPt/MSPt/∞ queue and provide estimates of performance measures
such as the mean and variance of the queue length process. We partially extend the result
of this paper to a network setting in the follow-up paper ([18]).

1.2 Organization of Paper

The remainder of this paper is organized as follows. Section 2 describes the construction of a
MAP and its time-varying extension. Section 3 constructs Poisson representaions and derives
fluid and diffusion limits. Section 3.1 constructs a Poisson representation of MAP’s. Using
it, Section 3.2 obtains a Poisson representation of MAPt/MSPt/∞ queues. We also prove
fluid and diffusion limits for this system. Lastly, Section 4 concludes and offers suggestions
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for future research and the Appendix provides all of the proofs and derivations of our limit
theorems.

2 Markovian Arrival Processes (MAP’s)

In this section, we begin with describing MAP’s. MAP’s, unlike phase type distributions,
allow one to model the dynamics of non-renewal processes to use a counting processes or
inter-arrival procecess. Unlike the phase type distribution, which restarts independently of
its past history, a MAP restarts dependent on the exit state of the Markov chain depends
on the past history of the chain.

We follow the construction of a MAP in Chakravarthy [4]. We consider an m-state
irreducible continuous time Markov chain (CTMC). After spending exp(λi) amount of time
in state i, there are two possible transitions from state i to state j. The first possible
transition to state j (including the case of i = j) happens with probability pij and incurs
an event or arrival. The second possible transition to state j (not allowing the case of
i = j) corresponds to no arrival and occurs with probability qij. Then, we define matrices
[D0]ij = d0ij and [D1]ij = d1ij where d0ii = −λi, 1 ≤ i ≤ m; d0ij = λiqij, j 6= i, 1 ≤ i, j ≤ m;

d1ij = λipij, 1,≤ i, j ≤ m, with
(∑m

j=1 pij +
∑m

j 6=i qij

)
= 1, for 1 ≤ i ≤ m. In our description

of the MAP, we have suppressed its dependence on time. However, all of our results apply
to the time varying setting and we explain it in Section 2.2.

With the above construction, a MAP is described by the two m × m matrices D0 and
D1. The matrix D0 where [D0]ij = d0ij correpsonds to transitions where there is no arrival
and the matrix D1 where [D1]ij = d1ij correpsonds to the transitions that generate an actual
arrival. With this construction, it also obvious why this is more general than phase type
distributions. Dependence is created by the fact that when an arrival is generated, then the
Markov chain can re-enter the same state, however, when no arrival is generated, it cannot
re-enter the same state. Now that we have defined a MAP, it is now important to understand
how the MAP is a generalization of some well known stochastic arrival processes.

2.1 Versatility of the MAP

The MAP is a very versatile process for modeling arrival processes that are ubiquitous
in service systems or queueing theory. There are various special cases of MAP’s that are
important for many queueing processes and we outline some of them below in the one and
two dimensional cases.

Poisson Process : D0 =
[
−λ

]
, D1 =

[
λ
]

Erlang Renewal Process : D0 =

(
−λ λ
0 −λ

)
, D1 =

(
0 0
λ 0

)

Hyperexponential Renewal Process : D0 =

(
−λ1 0

0 −λ2

)
,D1 =

(
p1λ1 p2λ1
p1λ2 p2λ2

)
,
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p1 + p2 = 1

Markov Modulated Poisson Process : D0 =

(
−λ1 λ1,2
λ2,1 −λ2

)
, D1 =

(
λ∗1,1 0
0 λ∗2,2

)

Interrupted Poisson Process : D0 =

(
−λ1 λ1,2
λ2,1 −λ2

)
, D1 =

(
λ∗1,1 λ∗1,2
0 0

)

Acyclic MAP(2) : D0 =

(
−λ1 λ1,2

0 −λ2

)
, D1 =

(
λ∗1,1 0
λ∗2,1 λ∗2,2

)

MAP(2) : D0 =

(
−λ1 λ1,2
λ2,1 −λ2

)
, D1 =

(
λ∗1,1 λ∗1,2
λ∗2,1 λ∗2,2

)
Beyond the fact that the MAP generalizes many well known arrival processes, it is also

important to note that the MAP is still a Markov process. Therefore, much of the analysis
of Markov processes is still applicable in the MAP setting. The only drawback is that fitting
a MAP is slightly more involved than a Poisson process and the MAP is high dimensional
when there are a large number of transient states. However, with the added dimensional-
ity, it allows for more flexibility in fitting and more realistic performance approximations for
stochastic models in practice. Now that we have defined a MAP, it is important to understand
how to derive a Poisson process representation for the MAP. This Poisson representation of
the MAP is integral to proving the fluid and diffusion limits of the MAPt/MSPt/∞ queues
since we will leverage strong approximations developed for time changed Poisson processes
Kurtz [19], Mandelbaum et al. [20], Hampshire et al. [11]. The Poisson representation nat-
urally allows time varying rate functions. We, therefore, explain the time varying extension
of the MAP in the next section.

2.2 Time varying extension of the MAP

The MAP described in the previous section does not have a time varying structure. The
extension to time varying parameters can be made by changing constant parameters into the
functions of time, i.e., d0ij → d0ij(t) and d1ij → d1ij(t). However, in order to derive the limit
theorems in Section 3.2, the time varying rates should be locally bounded as follows:∫ T

0

d0ij(t)dt <∞,
∫ T

0

d1ij(t)dt <∞ for i, j ∈ {1, . . . ,m} and T <∞.

In the rest of the paper, we will assume that all time varying rates are locally bounded with
respect to time t.
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3 Poisson Construction and limit theorems

In this section, we construct the Poisson representation for the MAPt/MSPt/∞ queues and
derive fluid and diffusion limits of the queue length process. We first explain the Poisson
representation for MAP’s in Section 3.1. Extending the representation, Section 3.2 constructs
the Poisson representation of MAPt/MSPt/∞ queues and derives fluid/diffusion limits for
them.

3.1 Poisson Construction of MAP’s

In this section, we describe the Poisson process construction of the MAP. Our construction
uses Poisson processes since they are well studied and strong approximations for Poisson
processes yield Brownian motion approximations. To this end, assuming mA number of
phases in the MAP, we let Uj(t) be the number of customers in phase j of the MAP at time
t. Since Uj(t)’s keep track of the current phase of the MAP,

∑mA

j=1 Uj(t) = 1. Then, we
construct a Poisson process representation for the MAP as follows:

Uj(t) = Uj(0) +

mA∑
k 6=j

ΠA0
kj

(∫ t

0

dA0kj (s)Uk(s)ds

)
+

mA∑
k=1

ΠA1
kj

(∫ t

0

dA1kj (s)Uj(s)ds

)
(3.1)

−
mA∑
k 6=j

ΠA0
jk

(∫ t

0

dA0jk (s)Uj(s)ds

)
−

mA∑
k=1

ΠA1
jk

(∫ t

0

dA1jk (s)Uj(s)ds

)
for 1 ≤ j ≤ mA,

Poisson processes, ΠA0
kj (·)’s and ΠA1

kj (·)’s count the phase transition from k to j without and
with arrivals respectively. Note that we assume that the Poisson processes explained above
have rate 1 (with random time changes) and are mutually independent. One way to view
the Poisson construction of the MAP is to view it as a token moving across the phases since
we have that

∑mA

j=1 Uj(t) = 1. Sometimes, it will not generate an arrival and when an arrival
is not generated, the continuous time Markov chain must move to different phase than it is
currently in. However, when an arrival is generated, the Markov chain can move to another
state or stay in the same state according to the transition probabilities.

3.2 Poisson Construction of MAPt/MSPt/∞ Queue

In this section, we construct a Poisson representation and derive the fluid and diffusion
limits for the case where both inter-arrival and service times are not necessarily independent
and identically distributed random variables. Dependent service times are very practical
and often arise in telephone call centers when customers call about recalled or defective
products. For example, the work of Pang and Whitt [26] explores the impact of dependence
on the nonstationary infinite server queue, especially when the successive service times are
correlated with one another. However, the combination of the non-renewal arrival and service
times has not be explored in the literature in the infinite server context. Moreover, our
approach lends itself to computational methods that have been developed for MAP’s and
MSP’s. The MAPt/MSPt/∞ has the following representation in terms of unit rate Poisson
processes:
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Uj(t) = Uj(0)︸ ︷︷ ︸
Initial Value of Token

+

mA∑
k 6=j

ΠA0
kj

(∫ t

0

dA0kj (s)Uk(s)ds

)
︸ ︷︷ ︸

MAP moves from state k to j (no arrival generated)

(3.2)

+

mA∑
k=1

mS∑
i=1

ΠA1
kji

(∫ t

0

dA1kj (s)βjiUk(s)ds

)
︸ ︷︷ ︸

MAP moves from state k to j (arrival is placed in phase i of service)

−
mA∑
k 6=j

ΠA0
jk

(∫ t

0

dA0jk (s)Uj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (no arrival generated)

−
mA∑
k=1

mS∑
i=1

ΠA1
jki

(∫ t

0

dA1jk (s)βkiUj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (arrival is placed in phase i of service)

for 1 ≤ j ≤ mA,

Xi(t) =

mA∑
j=1

mA∑
k=1

ΠA1
jki

(∫ t

0

dA1jk (s)βkiUj(s)ds

)
︸ ︷︷ ︸

MAP moves from state j to k (arrival is placed in phase i of service)

(3.3)

+

mS∑
l 6=i

ΠS0
li

(∫ t

0

dS0li (s)Xl(s)ds

)
︸ ︷︷ ︸

MSP moves from state l to i (no service completion)

−
mS∑
l 6=i

ΠS0
il

(∫ t

0

dS0il (s)Xi(s)ds

)
︸ ︷︷ ︸

MSP moves from state i to l (no service completion)

− ΠS1
i

(∫ t

0

dS1i (s)Xi(s)ds

)
︸ ︷︷ ︸

MSP leaves the system from state i (service completion)

for 1 ≤ i ≤ mS.

In this construction, Xi(t) represents the number of customers that are in phase i of the
MSP at time t. This can be also interpreted as the number of customers that are in phase i of
service. The probability vector, βj = (βj1, . . . , βjmS

), is the initial distribution to the service
process when the arrival is generated in phase j of the MAP. Moreover, Poisson processes,
ΠS0
il (·)’s count the number of transitions from phase i to phase l without service completions

and Poisson processes, ΠS1
i (·)’s count the number of service completions. For the remainder

of the paper, we will use the following notation for the stochastic queue length process.

Q(t) = (U1(t), . . . , UmA
(t), X1(t), . . . , XmS

(t))′.

q = (u1, . . . , umA
, x1, . . . , xmS

)′.
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fA0jk (t,q) : rate function of the (integrand) in ΠA0
jk (·),

fA1jki(t,q) : rate function of the (integrand) in ΠA1
jki(·),

fS0il (t,q) : rate function of the (integrand) in ΠS0
il (·),

fS1i (t,q) : rate function of the (integrand) in ΠS1
i (·)

lA0jk : (mA +mA)× 1 vector, jth element is -1, kth element is 1, and other elements are 0.

lA1jki : (mA +mS)× 1 vector, jth element is -1, kth element is 1,

(mA + i)th element is 1, and other elements are 0.

lS0il : (mA +mS)× 1 vector, (mA + i)th element is -1, (mA + l)th element is 1,

and other elements are 0.

lS1i : (mA +mS)× 1 vector, (mA + i)th element is -1, and other elements are 0.

Then, we can express equations (3.2) and (3.3) as follows:

Q(t) = Q(0) +

mA∑
j=1

mA∑
k 6=j

lA0jk ΠA0
jk

(∫ t

0

fA0jk (s,Q(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiΠ
A1
jki

(∫ t

0

fA1jki(s,Q(s))ds

)
+

mS∑
i=1

mS∑
l 6=i

lS0il ΠS0
il

(∫ t

0

fS0il (s,Q(s))ds

)

+

mS∑
i=1

lS1i ΠS1
i

(∫ t

0

fS1i (s,Q(s))ds

)
.

Remark. If the βj’s are the same for all j ∈ {1, . . . ,mA}, the Poisson representation in
equations (3.2)-(3.3) is for the MAPt/Pht/∞ queue, a special case of the MAPt/MSPt/∞
queue.

3.2.1 Fluid Limits

We prove fluid limits for the queue length process using the Poisson representation and
strong approximations. We first define a sequence of processes {Qη(t), η ∈ N , t ∈ R+} as
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follows:

Qη(t) = Qη(0) +

mA∑
j=1

mA∑
k 6=j

lA0jk ΠA0
jk

(∫ t

0

fA0jk (s,Qη(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiΠ
A1
jki

(∫ t

0

fA1jki(s,Q
η(s))ds

)
+

mS∑
i=1

mS∑
l 6=i

lS0il ΠS0
il

(∫ t

0

fS0il (s,Qη(s))ds

)

+

mS∑
i=1

lS1i ΠS1
i

(∫ t

0

fS1i (s,Qη(s))ds

)
= Qη(0) +

mA∑
j=1

mA∑
k 6=j

lA0jk ΠA0
jk

(∫ t

0

ηfA0jk (s, Q̄η(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiΠ
A1
jki

(∫ t

0

ηfA1jki(s, Q̄
η(s))ds

)
+

mS∑
i=1

mS∑
l 6=i

lS0il ΠS0
il

(∫ t

0

ηfS0il (s, Q̄η(s))ds

)

+

mS∑
i=1

lS1i ΠS1
i

(∫ t

0

ηfS1i (s, Q̄η(s))ds

)
by the linearity of the functions f ·· (·, ·)’s,

where we define Q̄η(t) = Qη(t)/η.
Note that we increase the number of independent arrival processes (sources) from the

MAP by setting
∑mA

j=1 U
η
j (t) = η for t ≥ 0 instead of accelerating the transition rates (dA0kj ’s

and dA1kj ’s). By doing that, we can directly find a sequence satisfying the initial condition
for deriving the fluid limit. One should also note that this scaling is equivalent to scaling
the rates where

∑mA

j=1 Ū
η
j (t) =

∑mA

j=1 U
η
j (t)/η = 1 and the transitions rates are η · d·ij(t). The

following theorem explains the fluid limits for the MAPt/MSPt/∞ queue.

Theorem 3.1. Suppose Qη(0)/η → q(0) almost surely as η →∞, then

lim
η→∞

1

η
Qη(t) = q(t) almost surely,

where q(t) = (u1(t), . . . , umA
(t), x1(t), . . . , xmS

(t))′ is the solution to the following system of
ordinary differential equations:

d

dt
q(t) =

mA∑
j=1

mA∑
k 6=j

lA0jk f
A0
jk (t,q(t)) +

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkif
A1
jki(t,q(t)) (3.4)

+

mS∑
i=1

mS∑
l 6=i

lS0il f
S0
il (t,q(t)) +

mS∑
i=1

lS1i f
S1
i (t,q(t))

Proof. See Appendix.

3.2.2 Diffusion Limits

With the fluid limit, q(t), derived in Section 3.2.1, we can derive the diffusion limit as follows:
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Theorem 3.2. Let Dη(t) =
√
η
(

1
η
Qη(t)− q(t)

)
and suppose that

√
η
(

1
η
Qη(0)− q(0)

)
⇒

D(0) in distribution as η →∞, then we have that

lim
η→∞

Dη(t) = D(t) in distribution,

where D(t) is the solution to the following stochastic differential equation

dD(t) = dH(t,q(t)) + ∂F(t,q(t))D(t)dt, (3.5)

and ∂F(t,q(t)) is the gradient matrix of F(t,q(t)) with respect to q(t). Moreover,

F(t,q(t)) =

mA∑
j=1

mA∑
k 6=j

lA0jk f
A0
jk (t,q(t)) +

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkif
A1
jki(t,q(t))

+

mS∑
i=1

mS∑
l 6=i

lS0il f
S0
il (t,q(t)) +

mS∑
i=1

lS1i f
S1
i (t,q(t))

dH(t,q(t)) =

mA∑
j=1

mA∑
k 6=j

lA0jk

√
fA0jk (t,q(t))dWA0

jk (t) +

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki

√
fA1jki(t,q(t))dWA1

jki(t)

+

mS∑
i=1

mS∑
l 6=i

lS0il

√
fS0il (t,q(t))dW S0

il (t) +

mS∑
i=1

lS1i

√
fS1i (t,q(t))dW S1

i (t).

where WA0
jk (t),WA1

jki(t),W
S0
il (t),W S1

i (t) are mutually independent standard Brownian mo-
tions.

Proof. See Appendix.

3.2.3 Performance Measures

Proposition 3.3. Let M(t) = E[D(t)] and Σ(t) = Cov[D(t),D(t)]. Then, M(t) and Σ(t)
are the unique solution to the following ordinary equations:

d

dt
M(t) = ∂F(t,q(t))M(t), (3.6)

d

dt
Σ(t) = ∂F(t,q(t))Σ(t) + Σ(t)∂F(t,q(t))′ + G(t,q(t)). (3.7)

where

G(t,q(t)) =

mA∑
j=1

mA∑
k 6=j

lA0jk lA0jk
′
fA0jk (t,q(t)) +

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkil
A1
jki

′
fA1jki(t,q(t)) (3.8)

+

mS∑
i=1

mS∑
l 6=i

lS0il lS0il
′
fS0il (t,q(t)) +

mS∑
i=1

lS1i lS1i
′
fS1i (t,q(t)). (3.9)

If M(0) = 0, M(t) = 0 for all t ≥ 0.
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Proof. See Arnold [2] Theorem 8.2.6 on page 131.

Recall that we start with an empty queue, which implies that we do not have to solve
Equation (3.6), i.e., M(t) = 0 for all t ≥ 0. By solving differential equations (3.4) and (3.7),
we can approximate E[Q(t)] and Cov[Q(t),Q(t)] as follows:

E[Q(t)] ≈ q(t),

Cov[Q(t),Q(t)] ≈ Σ(t).

Let Z∗(t) be the number of customers in the queueing system at time t. Then,

Z∗(t) =

mS∑
i=1

Xi(t).

Note that {Z∗(t), t ≥ 0} is a Gaussian process and therefore, we can obtain the mean and
variance of the number of customers in the queue at time t, Z∗(t), as follows:

m∗(t) ≡ E[Z∗(t)] =

mS∑
i=1

E[Xi(t)],

σ∗(t) ≡
√

Var[Z∗(t)] =

√√√√mS∑
i=1

Var[Xi(t)] +

mS∑
i=1

mS∑
l 6=i

Cov[Xi(t), Xl(t)].

4 Conclusion and Final Remarks

In this paper, we analyze the MAPt/MSPt/∞ queues and prove fluid and diffusion limits
via strong approximation techniques. It is our hope that the our analysis of the infinite
server queue will guide us in the analysis for the MAPt/MSPt/nt and MAPt/MSPt/nt +
MAPt queues. Note the second MAP term in the MAPt/MSPt/nt + MAPt queue can be
regarded as the Markovian Abandonment Process (MAP). By extending our analysis to these
types queues will allow us to model queueing systems with non-renewal arrival, service, and
abandonment random variables, which will advance the state of the art with queueing models
with dependence and correlation structures. The finite server setting is especially interesting
because it is well known in Ko and Gautam [17], Massey and Pender [21, 22], Pender and Ko
[34], Pender and Massey [35] that the fluid and diffusion limits need refining when the number
of servers is not large. Moreover, in the finite server setting, we also know that lingering can
have a substantial impact on the accuracy of the fluid and diffusion approximations. Thus,
methods by Engblom and Pender [6], Pender [33, 29, 30, 31, 32] could be very relevant to
improving the fluid and diffusion limits in the finite server setting.

Another extension that is even more interesting is the control of these networks with
general distributions. Methods such as the fluid control of Hampshire et al. [12], Niyirora
and Pender [24] seem promising as ways to optimally control the stochastic network on the
fluid and diffusion scale respectively. We plan to pursue these extensions in later work.
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A Appendix

In this section, we now provide the proof for the fluid and diffusion limit theorems of the queue
length process for the MAPt/MSPt/∞ queue. Before we begin the proof, we present two
lemmas that are vital to understanding and constructing the proof via strong approximation
theory.

Lemma A.1 (Kurtz 1978). A standard Poisson process {Π(t)}t≥0 can be realized on the
same probability space as a standard Brownian motion {W (t)}t≥0 in such a way that the
almost surely finite random variable

Z ≡ sup
t≥0

|Π(t)− t−W (t)|
log(2 ∨ t)

has finite moment generating function in the neighborhood of the origin and in particular
finite mean.

Lemma A.2 (Kurtz 1978). For any standard Brownian motion {W (t)}t≥0 and any ε > 0,
n ∈ N, and T > 0

M̃ ≡ sup
u,v,≤nεT

|W (u)−W (v)|√
|u− v| (1 + log (nεT/ |u− v|))

<∞ a.s.

A.1 Proof of Fluid Limit

In this section, we will provide the proof of the fluid limit. From equations (3.2) and (3.3),
we know the scaled queue length satisfies the following equation

Qη(t) = Qη(0) +

mA∑
j=1

mA∑
k 6=j

lA0jk ΠA0
jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiΠ
A1
jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)
+

mS∑
i=1

mS∑
l 6=i

lS0il ΠS0
il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)

+

mS∑
i=1

lS1i ΠS1
i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)
.

Thus, by adding and substracting the integrand of each Poisson process, we now have
the following bound of the scaled queue length and the fluid limit,
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∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣
≤

∣∣∣∣1ηQη(0)− q(0)

∣∣∣∣+

∣∣∣∣ mA∑
j=1

mA∑
k 6=j

lA0jk

∫ t

0

(
fA0jk (s, Q̄η(s))− fA0jk (s,q(s))

)
ds

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jki

∫ t

0

(
fA1jki(s, Q̄

η(s))− fA1jki(s,q(s))
)
ds

+

mS∑
i=1

mS∑
l 6=i

lS0il

∫ t

0

(
fS0il (s, Q̄η(s))− fS0il (s,q(s))

)
ds

+

mS∑
i=1

lS1i

∫ t

0

(
fS1i (s, Q̄η(s))− fS1i (s,q(s))

)
ds

∣∣∣∣
+

mA∑
j=1

mA∑
k 6=j

∣∣∣∣lA0jk 1

η

(
Π
A0

jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

))∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηΠ
A1

jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

∣∣∣∣lS0il 1

η
Π
S0

il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)∣∣∣∣
+

mS∑
i=1

∣∣∣∣lS1i 1

η
Π
S1

i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)∣∣∣∣
where we define Π(·) as

Π

(
η

∫ t

0

f(s, Q̄η(s))ds

)
= Π

(
η

∫ t

0

f(s, Q̄η(s))ds

)
− η

∫ t

0

f(s, Q̄η(s))ds.

Now we use the Lipschitz continuity of the rate functions in the integrand of each Poisson
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process to show that∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣
≤

∣∣∣∣1ηQη(0)− q(0)

∣∣∣∣+ C

∫ t

0

∣∣∣∣1ηQη(s)− q(s)

∣∣∣∣ ds
+

mA∑
j=1

mA∑
k 6=j

∣∣∣∣lA0jk 1

η
Π
A0

jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηΠ
A1

jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

∣∣∣∣lS0il 1

η
Π
S0

il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)∣∣∣∣+

mS∑
i=1

∣∣∣∣lS1i 1

η
Π
S1

i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)∣∣∣∣
In view of the strong approximation results given in Lemma A.1,

mA∑
j=1

mA∑
k 6=j

∣∣∣∣lA0jk [ΠA0

jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)]∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki [ΠA1

jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)
−WA1

jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)]∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

∣∣∣∣lS0il [ΠS0

il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)
−W S0

il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)]∣∣∣∣
+

mS∑
i=1

∣∣∣∣lS1i [ΠS1

i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)
−W S1

i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)]∣∣∣∣
is of the order Θ (log(η)) almost surely. Since the W (·) terms are standard Brownian mo-
tions and the rate functions or integrands of the Brownian motion processes are Lipschitz
continuous, the law of the iterated logarithm for Brownian motion asserts that

lim
η→∞

sup
t≤T

1

η
WA0
jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
WA1
jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
W S0
il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)
= 0 almost surely,

lim
η→∞

sup
t≤T

1

η
W S1
i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)
= 0 almost surely.
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This implies that

mA∑
j=1

mA∑
k 6=j

∣∣∣∣lA0jk 1

η
WA0
jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηWA1
jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

∣∣∣∣lS0il 1

η
W S0
il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)∣∣∣∣+

mS∑
i=1

∣∣∣∣lS1i 1

η
W S1
i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)∣∣∣∣
converges to zero uniformly over compact sets of time as η goes to ∞. As a result, for
sufficiently large η∗ ∈ N and ε > 0, we have that for all η ≥ η∗, that

ε/2 ≥
mA∑
j=1

mA∑
k 6=j

∣∣∣∣lA0jk 1

η
WA0
jk

(
η

∫ t

0

fA0jk (s, Q̄η(s))ds

)∣∣∣∣
+

mA∑
j=1

mA∑
k=1

mS∑
i=1

∣∣∣∣lA1jki 1ηWA1
jki

(
η

∫ t

0

fA1jki(s, Q̄
η(s))ds

)∣∣∣∣
+

mS∑
i=1

mS∑
l 6=i

∣∣∣∣lS0il 1

η
W S0
il

(
η

∫ t

0

fS0il (s, Q̄η(s))ds

)∣∣∣∣
+

mS∑
i=1

lS1i
1

η

∣∣∣∣ΠS1

i

(
η

∫ t

0

fS1i (s, Q̄η(s))ds

)∣∣∣∣+
Θ(log(η))

η
.

Thus, for some large enough constant C̃ and sufficiently large enough η∗, we have that∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣ ≤ ∣∣∣∣1ηQη(0)− q(0)

∣∣∣∣+ C

∫ t

0

∣∣∣∣1ηQη(s)− q(s)

∣∣∣∣ ds+ ε/2

Now by assuming that η is large enough that

ε/2 ≥
∣∣∣∣1ηQη(0)− q(0)

∣∣∣∣ ,
then we have that ∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣ ≤ ε+ C

∫ t

0

∣∣∣∣1ηQη(s)− q(s)

∣∣∣∣ ds.
Finally, our fluid limit result follows by Gronwall’s lemma given in Problem 2.7 of

Karatzas and Shreve [16].
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A.2 Proof of Diffusion Limit

In order to construct the diffusion limit, we need to substract the fluid limit and multiply
by
√
η. This yields the following expression for Dη(t)

Dη(t) =
√
η

(
1

η
Qη(t)− q(t)

)
=
√
η

∫ t

0

(
F(s, Q̄η(s))− F(s,q(s))

)
ds+ Vη(t).

where

√
ηVη(t) =

mA∑
j=1

mA∑
k 6=j

lA0jk Π
A0

jk

(∫ t

0

ηfA0jk (s, Q̄η(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiΠ
A1

jki

(∫ t

0

ηfA1jki(s, Q̄
η(s))ds

)

+

mS∑
i=1

mS∑
l 6=i

lS0il Π
S0

il

(∫ t

0

ηfS0il (s, Q̄η(s))ds

)
+

mS∑
i=1

lS1i Π
S1

i

(∫ t

0

ηfS1i (s, Q̄η(s))ds

)
.

Now we need two propositions that will helpful in proving our main result.

Proposition A.3. Let Mη(t) be defined by the following equation

Mη(t) =

mA∑
j=1

mA∑
k 6=j

lA0jkW
A0
jk

(∫ t

0

fA0jk (s, Q̄η(s))ds

)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiW
A1
jki

(∫ t

0

fA1jki(s, Q̄
η(s))ds

)

+

mS∑
i=1

mS∑
l 6=i

lS0il W
S0
il

(∫ t

0

fS0il (s, Q̄η(s))ds

)
+

mS∑
i=1

lS1i W
S1
i

(∫ t

0

fS1i (s, Q̄η(s))ds

)
,

then
lim
η→∞

sup
0≤t≤T

|Mη(t)−Vη(t)| = 0 in distribution. (A.1)

We will show the result for one of the Brownian motion terms and one of the centered
Poisson processes. The proof for the remaining terms will follow in a similar manner and
are therefore omitted.

Proof. Using the strong approximation result of Lemma A.1, we obtain

sup
t≥0

1
√
η

∣∣∣ΠA0

jk

(
η
∫ t
0
fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(
η
∫ t
0
fA0jk (s, Q̄η(s))ds

)∣∣∣
log
(

2 ∨ η
∫ t
0
fA0jk (s, Q̄η(s))ds

) ≤
BA0
jk√
η

(A.2)
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where the distribution of BA
jk is independent η. Using the above strong approximation result,

which the assumption that the rate functions are locally bounded by a constant K, then we
have that

sup
0≤t≤T

|Mη(t)−Vη(t)| ≤ log (2 ∨ ηKT ) sup
0≤t≤T

|Mη(t)−Vη(t)|
log (2 ∨ ηKt)

(A.3)

≤ log (2 ∨ ηKT )
BA0
jk√
η

(A.4)

Since the distribution of BA0
jk is independent η and we have that

lim
η→∞

log (2 ∨ ηKT )
√
η

= 0,

it implies that as η →∞ we have that

sup
0≤t≤T

|Mη(t)−Vη(t)| ⇒ 0 in distribution as η →∞. (A.5)

All the other terms can be proved similarly with the same technique.

Now that we have related the centered Poisson processes with time changed Brownian
motions, it remains for us to show that the fluid scaled randomly time changed Brown-
ian motion terms converge to Brownian motions time changed with the deterministic fluid
equations. The following Proposition A.4 proves this result.

Proposition A.4. The sequence of stochastic processes Mη(t) converges in distribution to
the process M(t) where

M(t) =

mA∑
j=1

mA∑
k 6=j

lA0jkW
A0
jk

(∫ t

0

fA0jk (s,q(s))ds

)
(A.6)

+

mA∑
j=1

mA∑
k=1

mS∑
i=1

lA1jkiW
A1
jki

(∫ t

0

fA1jki(s,q(s))ds

)

+

mS∑
i=1

mS∑
l 6=i

lS0il W
S0
il

(∫ t

0

fS0il (s,q(s))ds

)
+

mS∑
i=1

lS1i W
S1
i

(∫ t

0

fS1i (s,q(s))ds

)
In order to prove the convergence of the scaled Brownian motions, we will use Lemma A.2.
Moreover, we will provide the full proof for one term and the proofs for the remaining terms
follow analagously. We now define a new function γη(t) as follows.

Proof.

γη(t) ≡
∣∣∣∣∫ t

0

fA0jk (s, Q̄η(s))ds−
∫ t

0

fA0jk (s,q(s))ds

∣∣∣∣
and

γη ≡ sup
0≤t≤T

γη(t).
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This implies that∣∣∣∣WA0
jk

(∫ t

0

fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0

fA0jk (s,q(s))ds

)∣∣∣∣
=

∣∣∣WA0
jk

(∫ t
0
fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t
0
fA0jk (s,q(s))ds

)∣∣∣√
γη(t) · (1 + log (KT/γη(t)))

·
√
γη(t) · (1 + log (KT/γη(t))).

However, from Lemma A.2, we obtain∣∣∣∣WA0
jk

(∫ t

0

fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0

fA0jk (s,q(s))ds

)∣∣∣∣
≤ M̃ ·

√
γη(t) · (1 + log (KT/γη(t))).

From the Lipschitz continuity of the rate functions, we have that

γη ≤ KT · sup
0≤t≤T

∣∣∣∣1ηQη(t)− q(t)

∣∣∣∣ .
Therefore, by convergence of the fluid limit, we have that

γη ⇒ 0.

By observing that the distribution of M̃ is independent of η and that the following limit

lim
δ→0

√
δ · (1 + log (KT/δ)) = 0,

we conclude that
M̃ ·

√
γη · (1 + log (KT/γη))⇒ 0

and therefore,

lim
η→∞

sup
0≤t≤T

∣∣∣∣WA0
jk

(∫ t

0

fA0jk (s, Q̄η(s))ds

)
−WA0

jk

(∫ t

0

fA0jk (s,q(s))ds

)∣∣∣∣ ⇒ 0.

The remaining terms can be shown to converge by identical arguments and therefore, we do
not provide their proofs.

The following lemma shows that the sequence Dη(t) is stochastically bounded.

Lemma A.5. For any ε > 0, there exists η∗ ∈ N and K <∞ such that

P
(

sup
0≤t≤T

|Dη(t)| > K

)
< ε for all η ≥ η∗. (A.7)

Proof. The strong approximation for the Brownian motion yields the following representation

Dη(t) =
√
η

∫ t

0

(
F(s, Q̄η(s))− F(s,q(s))

)
ds+ Vη(t).
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We know that Vη(t) is tight since it converges to a time changed Brownian motion, which
is a continuous stochastic processes. Therefore, the tightness of Vη(t) implies that it is
bounded in probability. Moreover, by using the Lipschitz continuity of the rate functions we
have that

sup
0≤t≤T

|Dη(t)| ≤ L

∫ T

0

sup
0≤t≤s

|Dη(s)|ds+ sup
0≤t≤T

|Vη(t)|

for some Lipschitz constant L. Thus, by Gronwall’s inequality in Problem 2.7 of Karatzas
and Shreve [16] we have almost surely that

sup
0≤t≤T

Dη(t) ≤ eLT sup
0≤t≤T

Vη(t)

and this concludes the proof.

Lemma A.6. If {f η(t), η ∈ N , t ∈ R+} be a sequence of non-negative random processes
such that

lim
η→∞

∫ T

0

f η(s)ds = 0 in probability, (A.8)

then, for all δ > 0,

lim
η→∞

P
(

sup
0≤t≤T

∣∣∣∣∫ t

0

f η(s)Dη(s)ds

∣∣∣∣ > δ

)
= 0. (A.9)

Proof. If we fix ε > 0, then we know that there exists a constant η∗ ∈ N such that for all
η > η∗, there exists sets Ωη,1 and Ωη,2 such that∫ T

0

f η(s)ds < ε/2 on Ωη,1 and such that P(Ωη,1) ≥ 1− ε/2, (A.10)

and
sup

0≤t≤T
|Dη(t)| < K on Ωη,2 and such that P(Ωη,2) ≥ 1− ε/2, (A.11)

Therefore, we have that

sup
0≤t≤T

∣∣∣∣∫ t

0

f η(s)Dη(s)ds

∣∣∣∣ ≤ sup
0≤t≤T

|Dη(t)|
∫ T

0

f η(s)ds < Kε on Ωη,1 ∩ Ωη,2. (A.12)

The result follows since ε was choosen arbitrarily.

Theorem A.7. Suppose that we define D̃η(t) as

D̃η(t) ≡
∫ t

0

∂F(s,q(s))D̃η(s)ds+ Vη(t), (A.13)

then
lim
η→∞

sup
0≤t≤T

|Dη(t)− D̃η(t)| = 0 in probability. (A.14)

We know by the continuous mapping theorem and Proposition A.4, which shows that Vη(t)
converges to M(t) in Equation A.6, then we know that that D̃η(t) converges to D̃(t) given
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in Equation 3.5. Thus, in order to show our diffusion limit results in Theorem 3.2, it now
suffices to show the following convergence

lim
η→∞

sup
0≤t≤T

|Dη(t)− D̃η(t)| = 0 in probability. (A.15)

To prove this, we define the difference between the two processes as

Eη(t) = Dη(t)− D̃η(t)

=
√
η

∫ t

0

(
F(s, Q̄η(s))− F(s,q(s))

)
ds+ Vη(t)−

(∫ t

0

∂F(s,q(s))D̃η(s)ds+ Vη(t)

)
=
√
η

∫ t

0

(
F(s, Q̄η(s))− F(s,q(s))

)
ds−

∫ t

0

∂F(s,q(s))D̃η(s)ds

=

∫ t

0

∂F(s,q(s))Eη(s)ds+
√
η

∫ t

0

(
F(s, Q̄η(s))− F(s,q(s))

)
ds

−
∫ t

0

∂F(s,q(s))Dη(s)ds

Thus, by the mean value theorem and the fact that the rate functions in the Poisson
representations are continuously differentiable, there exists a vector ζη(s) that is in between
q(s) and Q̄η(s) such that

F
(
s, Q̄η(s)

)
− F(s,q(s)) = ∂F(s, ζη(s)) ·

(
Q̄η(s)− q(s)

)
= ∂F(s, ζη(s)) · 1

√
η
· √η

(
Q̄η(s)− q(s)

)
=

1
√
η
∂F(s, ζη(s))Dη(s).

From this equivalence provided by the mean value theorem, it now implies that

Eη(t) =

∫ t

0

(∂F(s, ζη(s))− ∂F(s,q(s))) Dη(s)ds+

∫ t

0

∂F(s,q(s))Eη(s)ds.

We also know that

lim
η→∞

sup
0≤t≤T

‖∂F(t, ζη(t))− ∂F(t,q(t))‖ = 0 a.s (A.16)

in lieu of the fluid limit convergence and the continuity of the function ∂F(·, ζη(·)). Moreover,
since Dη(u) is bounded in probability and Lemma A.6 is true, we have that the process

lim
η→∞

sup
0≤t≤T

∫ t

0

(∂F(s, ζη(s))− ∂F(s,q(s))) Dη(s)ds = 0 in probability.

Finally by the application of Gronwall’s inequality in Problem 2.7 of Karatzas and Shreve
[16] and Lemma A.6, we obtain our diffusion limit result.
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