227 research outputs found

    An automatically built named entity lexicon for Arabic

    Get PDF
    We have successfully adapted and extended the automatic Multilingual, Interoperable Named Entity Lexicon approach to Arabic, using Arabic WordNet (AWN) and Arabic Wikipedia (AWK). First, we extract AWN’s instantiable nouns and identify the corresponding categories and hyponym subcategories in AWK. Then, we exploit Wikipedia inter-lingual links to locate correspondences between articles in ten different languages in order to identify Named Entities (NEs). We apply keyword search on AWK abstracts to provide for Arabic articles that do not have a correspondence in any of the other languages. In addition, we perform a post-processing step to fetch further NEs from AWK not reachable through AWN. Finally, we investigate diacritization using matching with geonames databases, MADA-TOKAN tools and different heuristics for restoring vowel marks of Arabic NEs. Using this methodology, we have extracted approximately 45,000 Arabic NEs and built, to the best of our knowledge, the largest, most mature and well-structured Arabic NE lexical resource to date. We have stored and organised this lexicon following the Lexical Markup Framework (LMF) ISO standard. We conduct a quantitative and qualitative evaluation of the lexicon against a manually annotated gold standard and achieve precision scores from 95.83% (with 66.13% recall) to 99.31% (with 61.45% recall) according to different values of a threshold

    An analysis of machine translation errors on the effectiveness of an Arabic-English QA system

    Get PDF
    The aim of this paper is to investigate how much the effectiveness of a Question Answering (QA) system was affected by the performance of Machine Translation (MT) based question translation. Nearly 200 questions were selected from TREC QA tracks and ran through a question answering system. It was able to answer 42.6% of the questions correctly in a monolingual run. These questions were then translated manually from English into Arabic and back into English using an MT system, and then re-applied to the QA system. The system was able to answer 10.2% of the translated questions. An analysis of what sort of translation error affected which questions was conducted, concluding that factoid type questions are less prone to translation error than others

    Morphological, syntactic and diacritics rules for automatic diacritization of Arabic sentences

    Get PDF
    AbstractThe diacritical marks of Arabic language are characters other than letters and are in the majority of cases absent from Arab writings. This paper presents a hybrid system for automatic diacritization of Arabic sentences combining linguistic rules and statistical treatments. The used approach is based on four stages. The first phase consists of a morphological analysis using the second version of the morphological analyzer Alkhalil Morpho Sys. Morphosyntactic outputs from this step are used in the second phase to eliminate invalid word transitions according to the syntactic rules. Then, the system used in the third stage is a discrete hidden Markov model and Viterbi algorithm to determine the most probable diacritized sentence. The unseen transitions in the training corpus are processed using smoothing techniques. Finally, the last step deals with words not analyzed by Alkhalil analyzer, for which we use statistical treatments based on the letters. The word error rate of our system is around 2.58% if we ignore the diacritic of the last letter of the word and around 6.28% when this diacritic is taken into account

    Take the Hint: Improving Arabic Diacritization with Partially-Diacritized Text

    Full text link
    Automatic Arabic diacritization is useful in many applications, ranging from reading support for language learners to accurate pronunciation predictor for downstream tasks like speech synthesis. While most of the previous works focused on models that operate on raw non-diacritized text, production systems can gain accuracy by first letting humans partly annotate ambiguous words. In this paper, we propose 2SDiac, a multi-source model that can effectively support optional diacritics in input to inform all predictions. We also introduce Guided Learning, a training scheme to leverage given diacritics in input with different levels of random masking. We show that the provided hints during test affect more output positions than those annotated. Moreover, experiments on two common benchmarks show that our approach i) greatly outperforms the baseline also when evaluated on non-diacritized text; and ii) achieves state-of-the-art results while reducing the parameter count by over 60%.Comment: Arabic text diacritization, partially-diacritized text, Arabic natural language processin

    An automatic diacritization algorithm for undiacritized Arabic text

    Get PDF
    Modern Standard Arabic (MSA) is used today in most written and some spoken media. It is, however, not the native dialect of any country. Recently, the rate of the written dialectal Arabic text increased dramatically. Most of these texts have been written in the Egyptian dialectal, as it is considered the most widely used dialect and understandable throughout the Middle East. Like other Semitic languages, in written Arabic, short vowels are not written, but are represented by diacritic marks. Nonetheless, these marks are not used in most of the modern Arabic texts (for example books and newspapers). The absence of diacritic marks creates a huge ambiguity, as the un-diacritized word may correspond to more than one correct diacritization (vowelization) form. Hence, the aim of this research is to reduce the ambiguity of the absences of diacritic marks using hybrid algorithm with significantly higher accuracy than the state-of-the-art systems for MSA. Moreover, this research is to implement and evaluate the accuracy of the algorithm for dialectal Arabic text. The design of the proposed algorithm based on two main techniques as follows: statistical n-gram along with maximum likelihood estimation and morphological analyzer. Merging the word, morpheme, and letter levels with their sub-models together into one platform in order to improve the automatic diacritization accuracy is the proposition of this research. Moreover, by utilizing the feature of the case ending diacritization, which is ignoring the diacritic mark on the last letter of the word, shows a significant error improvement. The reason for this remarkable improvement is that the Arabic language prohibits adding diacritic marks over some letters. The hybrid algorithm demonstrated a good performance of 97.9% when applied to MSA corpora (Tashkeela), 97.1% when applied on LDC’s Arabic Treebank-Part 3 v1.0 and 91.8% when applied to Egyptian dialectal corpus (CallHome). The main contribution of this research is the hybrid algorithm for automatic diacritization of undiacritized MSA text and dialectal Arabic text. The proposed algorithm applied and evaluated on Egyptian colloquial dialect, the most widely dialect understood and used throughout the Arab world, which is considered as first time based on the literature review
    • …
    corecore