694 research outputs found

    A Finite Element Model for Describing the Effect of Muscle Shortening on Surface EMG

    Get PDF
    A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. In each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with a finite-element approach using the analytically derived conductivity tensor. Representative simulations of single fiber action potentials with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model provides a new tool for interpreting surface EMG signal features with changes in muscle geometry, as it happens during dynamic contractions

    A Finite Element Model for Describing the Effect of Muscle Shortening on Surface EMG

    Get PDF
    A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. In each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with a finite-element approach using the analytically derived conductivity tensor. Representative simulations of single fiber action potentials with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model provides a new tool for interpreting surface EMG signal features with changes in muscle geometry, as it happens during dynamic contractions

    Biomechanical musculoskeletal model

    Get PDF
    Předkládaná práce je zaměřena na svalově-kosterní modelování, především pak na výpočet svalových sil a ramen momentů při libovolném pohybu s využitím nové metody určení průběhů svalů. Jejím hlavním přínosem je vývoj unikátní metody založené na svalovém obepínání anuloidů, která výrazné snižuje nedostatky již existujících metod pro určení svalových trajektorií. Metoda je vyvinuta pro výpočet korektního tvaru svalu při jakékoliv konfiguraci kloubů. Je založena na obecné známé metodě svalového obepínání série překážek tvořených tuhými geometrickými tvary a nahrazujících okolní tkáně, obecné známá jako metoda obstacle-set. Z důvodu vylepšení původní metody byly překážky tvaru koule či válce nahrazeny anuloidy. Nové vzniklá metoda dále umožňuje automatický výpočet umístění svalových úponů; pozic, natočení a poloměrů jednotlivých anuloidů; nárůst aktuálního fyziologického průřezu svalu během kontrakce či změny tvaru svalu s ohledem na sousedící svalové skupiny. Veškerá geometrie metody je založena na MRI a počtu uvažovaných svalových vláken. Dílčím cílem studie je vytvořit jednoduchý model ramene v programu MATLAB, který obsahuje pouze dvojhlavý sval pažní a je založen na nové vyvinuté metodě obepínání anuloidu. Touto cestou je prezentována implementace, použití, výhody a nevýhody této metody. Kosti modelu jsou nahrazeny tuhými tělesy spojenými reálnými klouby; skutečné chování svalů je simulováno modelem Hillova typu. Pro potřeby této práce jsou pohyby lopatky a klíční kosti zanedbány. Svalový komplex je prezentován elastickými svalovými vlákny zanedbatelného tření generující stejnou sílu po celé své délce a obepínající sousední struktury nahrazené anuloidy. Pro validaci modelu a metody obepínání anuloidu je simulován pohyb pažní kosti - abdukce a přední flexe do úhlu 90°. Trajektorie svalových vláken, síly ve svalech, aktuální délka a momentová ramena svalů jsou poté porovnána s výsledky obdobných modelů prezentovaných v literatuře, s elektromyografickým měřením a se dvěma modely ramene sestavených v programu AnyBody Modeling System. Výsledky prokazují úspěšnou validaci hlavních akčních členů abdukce a přední flexe ramene. Nová metoda svalového obepínání anuloidů je vhodnou metodou pro simulaci všech kloubů lidského těla - především pro komplikované klouby jako je např. ramenní komplex, či pro všechny typy svalů - silný, slabý, plochý, dlouhý, krátký, aj. Prezentovaná studie také stručné představuje anatomii a fyziologii ramenního komplexu, nabízí rešerši existujících ramenních modelů a metod pro výpočet svalové trajektorie a do větších detailů popisuje dynamiku vázaných mechanických systémů v prostoru. Závěrem lze říci, že metoda svalového obepínání anuloidů je užitečným nástrojem při svalové-kosterním modelování.NeobhájenoPresented thesis work is focused on musculoskeletal modeling, especially on muscle forces and moment arms calculation using the new method for muscle path determination. This method is based on obstacle-set method. However, the new torus obstacles are implemented instead of standard obstacles such as spheres and cylinders to improve the original process of muscle wrapping. This method also enables the automatic calculation of muscle lines attachments; positions, rotation and radius of torus obstacles originated from MRI and respecting the input number of muscle lines set by the user. The torus-obstacle method also considers the muscle bulging up as well as changes of muscle shapes influenced by surrounding muscles. The case of this study is to create the simple shoulder model in MATLAB including the deltoid muscle and using developed torus-obstacle method. Thanks that, the implementation, usage, advantages and disadvantages of presented method are shown. The bones are modeled by rigid bodies connected by real joints; the real muscle behavior is simulated by Hill-type model. For purpose of this work, the scapula and the clavicle are fixed. The muscle complex is replaced by elastic frictionless muscle lines of action generating the same force along the whole band and wrapping around the neighboring structures replaced by torus obstacles. The humeral abduction and forward flexion till 90° are simulated to validate the model and also the wrapping method. The paths of muscle lines, muscle forces, actual lengths and the muscle moment arms are compared to the similar models published in literature, to the electromyography measurement and to two shoulder models built in AnyBody Modeling System. The results show the successful validation of major actuators of abduction and forward flexion. In addition, the method is absolutely not time-consuming. The new torus-obstacle method is suitable for all human body joints - especially for complicated joints as shoulder complex, for all muscles - thick, thin, shallow, long, short etc. Presented study also introduces briefly the anatomy and physiology of the shoulder complex, offers the research of existing shoulder models and methods for muscle path definition and describes the multibody spatial dynamics in more details. In conclusion, developed torus-obstacle method designed for muscle trajectory computation in musculoskeletal modeling seems to be useful tool

    Highly parallel multi-physics simulation of muscular activation and EMG

    Get PDF
    Simulation of skeletal muscle activation can help to interpret electromyographic measurements and infer the behavior of the muscle fibers. Existing models consider simplified geometries or a low number of muscle fibers to reduce the computation time. We demonstrate how to simulate a finely-resolved model of biceps brachii with a typical number of 270.000 fibers. We have used domain decomposition to run simulations on 27.000 cores of the supercomputer HazelHen at HLRS in Stuttgart, Germany. We present details on opendihu, our software framework. Its configurability, efficient data structures and modular software architecture target usability, performance and extensibility for future models. We present good parallel weak scaling of the simulations

    A finite element model for the investigation of surface EMG signals during dynamic contraction

    Get PDF
    A finite element (FE) model for the generation of single fiber action potentials (SFAPs) in a muscle undergoing various degrees of fiber shortening has been developed. The muscle is assumed to be fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. At each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with an FE approach using the analytically derived conductivity tensor (Mesin, Joubert, Hanekom, Merletti&Farina 2006). Representative simulations of SFAPs with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model is expanded to include the simulation of motor unit action potentials (MUAPs). Expanding the model was done by assigning each single fiber (SF) in the motor unit (MU) a random starting position chosen from a normal distribution. For the model 300 SFs are included in an MU, with an innervation zone spread of 12 mm. Only spatial distribution was implemented. Conduction velocity (CV) was the same for all fibers of the MU. Representative simulations for the MUAPs with the muscle at different degrees of shortening are presented. The influence of interelectrode distance and angular displacement are also investigated as well as the influence of the inclusion of the conductivity tensor. It has been found that the interpretation of surface electromyography during movement or joint angle change is complicated owing to geometrical artefacts i.e. the shift of the electrodes relative to the muscle fibers and also because of the changes in the conductive properties of the tissue separating the electrode from the muscle fibers. Detection systems and electrode placement should be chosen with care. The model provides a new tool for interpreting surface electromyography (sEMG) signal features with changes in muscle geometry, as happens during dynamic contractions.Dissertation (MEng (Bio-Engineering))--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEng (Bio-Engineering)unrestricte
    corecore