3 research outputs found

    Optimal Control of Nonlinear Switched Systems: Computational Methods and Applications

    Get PDF
    A switched system is a dynamic system that operates by switching between different subsystems or modes. Such systems exhibit both continuous and discrete characteristics—a dual nature that makes designing effective control policies a challenging task. The purpose of this paper is to review some of the latest computational techniques for generating optimal control laws for switched systems with nonlinear dynamics and continuous inequality constraints. We discuss computational strategiesfor optimizing both the times at which a switched system switches from one mode to another (the so-called switching times) and the sequence in which a switched system operates its various possible modes (the so-called switching sequence). These strategies involve novel combinations of the control parameterization method, the timescaling transformation, and bilevel programming and binary relaxation techniques. We conclude the paper by discussing a number of switched system optimal control models arising in practical applications

    Global optimality conditions and optimization methods for polynomial programming problems and their applications

    Get PDF
    The polynomial programming problem which has a polynomial objective function, either with no constraints or with polynomial constraints occurs frequently in engineering design, investment science, control theory, network distribution, signal processing and locationallocation contexts. Moreover, the polynomial programming problem is known to be Nondeterministic Polynomial-time hard (NP-hard). The polynomial programming problem has attracted a lot of attention, including quadratic, cubic, homogenous or normal quartic programming problems as special cases. Existing methods for solving polynomial programming problems include algebraic methods and various convex relaxation methods. Especially, among these methods, semidefinite programming (SDP) and sum of squares (SOS) relaxations are very popular. Theoretically, SDP and SOS relaxation methods are very powerful and successful in solving the general polynomial programming problem with a compact feasible region. However, the solvability in practice depends on the size or the degree of the polynomial programming problem and the required accuracy. Hence, solving large scale SDP problems still remains a computational challenge. It is well-known that traditional local optimization methods are designed based on necessary local optimality conditions, i.e., Karush-Kuhn-Tucker (KKT) conditions. Motivated by this, some researchers proposed a necessary global optimality condition for a quadratic programming problem and designed a new local optimization method according to the necessary global optimality condition. In this thesis, we try to apply this idea to cubic and quatic programming problems, and further to general unconstrained and constrained polynomial programming problems. For these polynomial programming problems, we will investigate necessary global optimality conditions and design new local optimization methods according to these conditions. These necessary global optimality conditions are generally stronger than KKT conditions. Hence, the obtained new local minimizers by using the new local optimization methods may improve some KKT points. Our ultimate aim is to design global optimization methods for these polynomial programming problems. We notice that the filled function method is one of the well-known and practical auxiliary function methods used to achieve a global minimizer. In this thesis, we design global optimization methods by combining the new proposed local optimization methods and some auxiliary functions. The numerical examples illustrate the efficiency and stability of the optimization methods. Finally, we discuss some applications for solving some sensor network localization problems and systems of polynomial equations. It is worth mentioning that we apply the idea and the results for polynomial programming problems to nonlinear programming problems (NLP). We provide an optimality condition and design new local optimization methods according to the optimality condition and design global optimization methods for the problem (NLP) by combining the new local optimization methods and an auxiliary function. In order to test the performance of the global optimization methods, we compare them with two other heuristic methods. The results demonstrate our methods outperform the two other algorithms.Doctor of Philosoph

    A filled function method for constrained global optimization

    No full text
    In this paper, a filled function method for solving constrained global optimization problems is proposed. A filled function is proposed for escaping the current local minimizer of a constrained global optimization problem by combining the idea of filled function in unconstrained global optimization and the idea of penalty function in constrained optimization. Then a filled function method for obtaining a global minimizer or an approximate global minimizer of the constrained global optimization problem is presented. Some numerical results demonstrate the efficiency of this global optimization method for solving constrained global optimization problems. © 2007 Springer Science+Business Media, Inc.C
    corecore