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Abstract

The polynomial programming problem which has a polynomial objective function, ei-

ther with no constraints or with polynomial constraints occurs frequently in engineering de-

sign, investment science, control theory, network distribution, signal processing and location-

allocation contexts. Moreover, the polynomial programming problem is known to be Non-

deterministic Polynomial-time hard (NP-hard). The polynomial programming problem has

attracted a lot of attention, including quadratic, cubic, homogenous or normal quartic pro-

gramming problems as special cases.

Existing methods for solving polynomial programming problems include algebraic meth-

ods and various convex relaxation methods. Especially, among these methods, semidefinite

programming (SDP) and sum of squares (SOS) relaxations are very popular. Theoretically,

SDP and SOS relaxation methods are very powerful and successful in solving the general

polynomial programming problem with a compact feasible region. However, the solvability

in practice depends on the size or the degree of the polynomial programming problem and the

required accuracy. Hence, solving large scale SDP problems still remains a computational

challenge.

It is well-known that traditional local optimization methods are designed based on nec-

essary local optimality conditions, i.e., Karush-Kuhn-Tucker (KKT) conditions. Motivated

by this, some researchers proposed a necessary global optimality condition for a quadratic

programming problem and designed a new local optimization method according to the neces-

sary global optimality condition. In this thesis, we try to apply this idea to cubic and quatic
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programming problems, and further to general unconstrained and constrained polynomial

programming problems. For these polynomial programming problems, we will investigate

necessary global optimality conditions and design new local optimization methods accord-

ing to these conditions. These necessary global optimality conditions are generally stronger

than KKT conditions. Hence, the obtained new local minimizers by using the new local

optimization methods may improve some KKT points.

Our ultimate aim is to design global optimization methods for these polynomial program-

ming problems. We notice that the filled function method is one of the well-known and prac-

tical auxiliary function methods used to achieve a global minimizer. In this thesis, we design

global optimization methods by combining the new proposed local optimization methods

and some auxiliary functions. The numerical examples illustrate the efficiency and stability

of the optimization methods.

Finally, we discuss some applications for solving some sensor network localization prob-

lems and systems of polynomial equations. It is worth mentioning that we apply the idea

and the results for polynomial programming problems to nonlinear programming problems

(NLP). We provide an optimality condition and design new local optimization methods ac-

cording to the optimality condition and design global optimization methods for the problem

(NLP) by combining the new local optimization methods and an auxiliary function. In or-

der to test the performance of the global optimization methods, we compare them with two

other heuristic methods. The results demonstrate our methods outperform the two other

algorithms.
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Introduction

The polynomial programming problem which is a fundamental model in the field of opti-

mization represents a broad range of applications. These include engineering design, invest-

ment science, control theory, network distribution, signal processing and location-allocation

contexts. Many well-known test functions are polynomial functions, for example, Rosen-

brock, Wood, Powell quartic, Six-hump camelback and Goldstein and Price functions. More-

over, some functions, such as sin, log and radicals, can be reformulated into polynomial func-

tions, which extends the applications of polynomial programming problems. The polynomial

programming problems are NP-hard. Indeed, even some quadratic programming problems

are NP-hard.

For global optimization, a great deal of attention has been focused on two areas: one is

global optimality conditions; the other is global optimization methods to solve problems.

Over the years, various global optimality conditions for quadratic programming problems

and some special classes of polynomial programming problems have been established. The

development of checkable global optimality conditions for other polynomial programming

problems and general polynomial programming problems remains an important research

topic.

When it comes to using global optimization methods to solve polynomial programming

problems, perhaps the very first attempt for solving polynomial programming problems is to

treat them as nonlinear programming problems. Methods of solving these problems relied

on local optimization techniques.
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Then, polynomial programming problems attracted more attention. Many researchers fo-

cused on methods for solving polynomial programming problems, which include quadratic,

cubic, quartic and 0-1 integer programming problems as special cases. There are two mainly

methods to solve polynomial programming problems: exact algebraic algorithms and various

relaxation methods.

Exact algebraic algorithms, which find all the critical points and then compare the function

values of the polynomial at these points, were established. Existing methods include Grobner

bases and Stetter-moller method, Resultant method, eigenvalues of companion matrices and

Homotopy method. Although algebraic methods usually provide good approximation of the

optimal value as well as the global minimizer, the computation cost is huge.

Over the past two decades, various relaxation methods have been studied extensively and

intensively. Among them, semidefinite programming (SDP) and sum of squares (SOS) relax-

ations are very popular. Theoretically, SDP relaxation method is very powerful and success-

ful in solving the general polynomial programming problem with a compact feasible region.

However, the size of SDP relaxations to be solved increases rapidly as the size or the degree

of the polynomial programming problem increases or higher accuracy is required. Indeed,

SDP relaxations for the polynomial optimization can only be solved for small or moderately

large problems, which severely affects their practical applications. Bigger problems would

be solved if sparsity is exploited. To solve SOS relaxations of a polynomial programming

problem, we need to convert them into conventional SDP relaxations. This is equivalent

to solving some SDP problems, so efficient numerical methods to solve large scale SDP

problems still remain a computational challenge.

In this thesis, we focus on both global optimality conditions and global optimization

method to solve some classes of polynomial programming problems. It is well-known

that traditional local optimization methods are designed according to Karush-Kuhn-Tucker

(KKT) local optimality conditions. Motivated by this, some researchers proposed a nec-
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essary global optimality condition for a quadratic programming problem and designed a

new local optimization method according to the necessary global optimality condition. Now

we try to derive necessary global optimality conditions to cubic and quartic programming

problems, and further to general unconstrained and constrained polynomial programming

problems and then establish new local optimization methods according to these necessary

conditions. The necessary global optimality conditions are generally stronger than KKT

conditions. Hence, the obtained new local minimizers may improve some KKT points.

However, the difficulty is still there - how to escape from a new local minimizer to a global

one. The filled function method is one of the well-known and practical auxiliary function

methods to settle this difficulty. So, we design global optimization methods to solve these

polynomial programming problems by combining the new local optimization methods and

some auxiliary functions. The numerical examples illustrate the efficiency and stability of

the optimization methods.

Finally, we discuss some applications for solving some sensor network localization prob-

lems and systems of polynomial equations. The results illustrate our optimization methods

are efficient and stable. It is worth mentioning that we apply the idea and the results for poly-

nomial programming problems to nonlinear program problems (NLP). We provide an opti-

mality condition and design local and global optimization methods for the problem (NLP).

In order to test the performance of the global optimization methods, we compare them with

two other heuristic methods. The results demonstrate our methods outperform the two other

algorithms.

Outline of the thesis

The remainder of the thesis is organized as follows.

In Chapter 1, a literature review is given, including global optimization methods and lo-

cal and global optimality conditions for nonlinear programming problems and polynomial
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programming problems.

In Chapter 2, we focus on cubic programming problems with mixed variables which are

denoted by (MCP). For (MCP), we investigate some necessary local optimality conditions

and some necessary global optimality conditions, which are very easy to check. We propose

some new local optimization methods by using the proposed necessary local optimality con-

ditions and the necessary global optimality conditions. A novel global optimization method

is then proposed to solve problems (MCP) by combining these local optimization methods

together with an auxiliary function. Some numerical examples are also presented to indicate

the significance of our optimality conditions and show the efficiency of our optimization

methods.

In Chapter 3, we consider quartic programming problems with box constraints which are

denoted by (QPOP). We do not consider mixed variables because discrete variables are

treated using the same procedure as we did for cubic problems with mixed variables. For

(QPOP), we discuss a necessary global optimality condition by using some linear transfor-

mations. We then present a new local optimization method based on this necessary global

optimality condition, which may improve some KKT points. Finally, we design a global op-

timization method to solve (QPOP) by combining the new local optimization method and an

auxiliary function. Numerical examples illustrate the efficiency of the optimization methods.

After building up knowledge from cubic and quartic programming problems, in Chapter

4, we concentrate on general polynomial programming problems which are denoted by (GP).

We try to provide a necessary global optimality condition for the problem (GP) by using some

properties of univariate polynomial functions. A new local optimization method is designed

for the problem (GP) according to the necessary global optimality condition, which may

improve some KKT points. Finally, we design a global optimization method to solve the

problem (GP) by combining the new local optimization method and an auxiliary function.

In Chapter 5, we are concerned with general constrained polynomial programming prob-
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lems which are denoted by (GPP). A global necessary optimality condition for the problem

(GPP) is considered. We design a new local optimization method based on the necessary

global optimality condition and design a global optimization method by combining the new

local optimization method and an auxiliary function. We investigate the efficiency and sta-

bility of our optimization methods.

In Chapter 6, we discuss some applications for solving some sensor network localization

problems and systems of polynomial equations. In particular, we apply the idea and the re-

sults for polynomial programming problems to nonlinear programming problems (NLP). We

provide an optimality condition for (NLP). We design two new local optimization methods

and two global optimization methods (GOMs). The performance of GOMs is tested by com-

paring them with two other heuristic methods: simulated annealing heuristic pattern search

(SAHPS) and quasi-filled function method (QFFM). The results demonstrate GOMs outper-

form two other algorithms and the proposed new local optimization methods are significant

improvement of the traditional local optimization methods.
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Chapter 1.

Literature review

The polynomial programming problem is the following generic optimization model

min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

hj(x) = 0, j = 1, · · · , l,

x ∈ X ⊂ Rn

where f(x), gi(x) (i = 1, · · · ,m) and hj(x) (j = 1, · · · , l) are some multivariate polyno-

mial functions. X is a feasible set. Specifically, X is a box in this thesis.

Because of the inherent simplicity of the problem structure and rich modeling capabili-

ties, the polynomial programming problem is a fundamental model in the field of optimiza-

tion. The history of the polynomial programming problem might date back to the eighteenth

century, when Monge formulated a continuous mass transportation problem as a huge as-

signment problem (a special polynomial programming problem) that minimizes the cost for

transporting all the molecules [119]. Since the 19th century, researches have studied the re-

lationship between nonnegative polynomial function and the sum of squares of polynomials.
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In this chapter, we give an overview of global optimization methods and local and global

optimality conditions for nonlinear programming problems and polynomial programming

problems.

1.1. Global optimization methods

1.1.1. Global optimization methods for nonlinear programming

problems

Traditionally, polynomial programming problems have been treated as a subclass of the

general nonlinear programming problems, for which many methods have been put forward

and many algorithms have been designed, including exact methods and heuristic methods.

The exact methods have a rigorous guarantee for finding at least one global solution. How-

ever, it is difficult for the exact methods to handle larger dimensional models and more

complicated models. For problems with higher dimensions or without special model struc-

ture, heuristics methods behave well in practice although they do not have strict convergence

guarantees [105]. We will give a brief list of these methods below. For more details in the

idea and applications, see [105].

1. Exact methods

a) Adaptive stochastic search methods These methods are based on random sam-

pling in a feasible set, see [2, 138].

b) Bayesian search algorithms These methods are based on Bayesian networks

to model promising solutions and bias the sampling of new candidate solutions,

see [75, 98].

c) Branch and bound algorithms These methods are based on a systematic enu-

meration of all candidate solutions. The fruitless candidates are discarded using

10



upper and lower bounds, see [53, 85].

d) Enumerative strategies These methods are based on a complete enumeration of

all possible solutions, see [113].

e) Homotopy and trajectory methods These methods are based on listing all sta-

tionary points of the objective function within the feasible set, see [42, 55].

f) Integral methods These methods are based on determination of the essential

supremum of the objective function over the feasible set by approximating the

level sets of the objective function, see [74, 109].

g) ‘Naive’ (passive) approaches These methods are based on a simultaneous grid

search and a pure random search, see [2, 71].

h) Relaxation (out approximation) strategies These methods are based on a se-

quence of relaxed sub-problems which are easier to solve, see [52, 113].

2. Heuristic methods

a) Approximate convex underestimation These methods are based on directed

sampling in the feasible set to estimate the convexity characteristics of the objec-

tive function, see [84].

b) Continuation methods These methods are based on transforming the objective

function into some more simpler function and then using a local minimization

procedure to trace all minimizers back to the original function, see [73].

c) Genetic algorithms, evolution strategies These methods are based on four phases:

evaluation, selection, recombination and mutation, see [56, 72].

d) ‘Globalized’ extensions of local search methods These methods are based on a

preliminary glboal search phase, followed by local scope search. [2, 71].

e) Sequential improvement of local optima These methods are based on searching
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for gradually better optima by constructed auxiliary functions, which include

tunneling, deflation and filled function methods, see [13, 149].

f) Simulated annealing These methods are based on the physical analogy of cool-

ing crystal structures that spontaneously arrive at a stable configuration, charac-

terized by - globally or locally- minimal potential energy, see [12, 56].

g) Tabu search (TS) These methods are based on memory structures to forbid

search moves to points already visited, see [41, 56].

Among these methods, we are interested in the filled function methods which belong to

sequential improvement of local optima methods. We will introduce filled function methods

later.

1.1.2. Global optimization methods for polynomial programming

problems

Over the years, there have been attempts at developing global optimization methods to

solve polynomial programming problems, which include quadratic, cubic, quartic and 0-1

integer programming problems as special cases. Existing methods for solving polynomial

programming problems include algebraic methods and various convex relaxation methods.

Algebraic algorithms were established early as a means of solving polynomial program-

ming problems. They are used to find all the critical points and then compare the func-

tion values of the polynomial at these points. Existing methods include Grobner bases and

Stetter-moller method [51, 135], Resultant method [59], eigenvalues of companion matri-

ces [27] and Homotopy method [83, 123]. Although the algebraic methods usually provide

good approximation of the optimal value as well as the global minimizer, the computation

cost is huge [30].

Over the past two decades, various relaxation methods have been developed, which in-

clude a lift-and-project linear programming (LP) procedure for 0-1 integer linear programs
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[36], the reformulation-linearization technique (RLT) [47, 48], a semidefinite programming

(SDP) relaxation method [67, 81], the successive convex relaxation method (SCRM) for

quadratic optimization problems [94, 95], second order cone programming (SOCP) relax-

ations for quadratic optimization problems [118] and sums of squares (SOS) relaxations for

polynomial optimization problems [68, 77–80]. These methods share the following basic

idea [93]:

1. Add (redundant) valid inequality constraints to a target optimization problem in the

n-dimensional Euclidean space Rn.

2. Lift the problem with the additional inequality constraints in Rn to an equivalent op-

timization problem in a symmetric matrix space; the resulting problem is an LP with

additional rank-1 and positive semidefinite constraints on its matrix variables.

3. Relax the rank-1 constraint (and positive semidefinite constraint in cases of the RLT

and the lift-and-project LP procedure) so that the resulting feasible region is convex.

4. Project the relaxed lifted problem in the matrix space back to the original Euclidean

space Rn.

Among these methods, SDP and SOS relaxation methods have been widely used.

In theory, the SDP method is very powerful and successful in solving the general polyno-

mial programming problem with a compact feasible region. Its optimal value can be approx-

imated within any accuracy by the sequence of SDP relaxations. However, the size of SDP

relaxations to be solved increases very rapidly as the size or the degree of the polynomial

programming problem increases or higher accuracy is required. Indeed, SDP relaxations

themselves can only solve small or moderately large polynomial programming problems,

which severely limits their practical applications.

The SOS method theoretically can solve any general polynomial programming problems

to any given accuracy. However, to solve SOS relaxations of a polynomial programming
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problem, we need to convert them into conventional SDP relaxations. This is equivalent to

solving some SDP problems.

It is known that practical solvability of SDP methods depends on their sizes. This moti-

vated a number of researchers to propose new methods for solving large scale SDP relax-

ations, such as accelerated first order methods and second order methods [81,110]. However,

as the authors in [81] mentioned, so far there are few efficient numerical methods for solv-

ing large scale polynomial programming problems. In [81], regularization methods (RM)

instead of interior point methods were applied to solve large scale SDP problems arising

from general polynomial optimization. RM changed the linear semidefinite program into

the equivalent convex semidefinite program by adding quadratic terms and then used the

Newton-CG (conjugate gradient) Augmented Lagrangian regularization method to solve the

original and dual problems. RM requires much less memory storage. Even though, this

method may not extract the corresponding global minimizer from the global optimal func-

tion value. So, solving large scale SDP problems still remains a computational challenge.

As special cases of polynomial programming problems, quadratic, cubic and quatic pro-

gramming problems have also been studied by many researchers. For quadratic program-

ming problems, besides SDP and SOS relaxation methods, there are two other methods

which are widely used: active-set methods [39, 70, 104] and interior-point methods [29,

37, 39]. Recent developed methods, which are closely related to this thesis, are that au-

thors in [45, 153] present necessary global optimality conditions and design some new local

optimization methods according to these conditions and design some global optimization

methods by combining the new local optimization methods and some auxiliary functions.

For cubic programming problems, [21] presented a specialization of the convex simplex

method, the main idea of which is selecting a direction of improvement by observing the

partial derivative and choosing an optimal step by minimizing the objective function in that

direction. [25] converted indefinite cubic polynomial programming problems into convex
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optimization problems by some linear and homeomorphisms transformations. For quatic

programming problems, [89] designed a global descent algorithm for normal quartic poly-

nomials to find a global minimizer (n = 2) or an ε-global minimizer (n ≥ 3). [139] presented

a general semidefinite relaxation scheme for quartic homogeneous polynomial optimization

under quadratic constraints by using a matrix listing transformation X = xxT to relax the

quartic programming problem with quadratic constraints to a quadratic programming prob-

lem with linear constraints.

1.1.3. Filled function methods

The local optimization methods have been well developed and shown to be robust and

reliable in finding a local optimal solution. However, the difficulty is how to leave a local

minimizer to another lower one. The filled function method which belongs to the auxiliary

function methods is one of the well-known and practical methods used to settle this difficulty.

The filled function method includes two phases – local minimization and filling. These

two phases are used alternately. In the first phase, starting from a given point, any local

minimization method can be employed, such as the Quasi-Newton method and the Conjugate

Gradient method. Using one of these methods, a local minimizer x1 is found. After entering

the second phase, an auxiliary function called a filled function is constructed based on the

current local minimizer. The second phase ends when a point x∗1 6= x1 is found which

satisfies f(x∗1) < f(x1). Then the point x∗1 is regarded as a new starting point and the first

phase is reentered and so on. The above process repeats until the time when minimizing a

filled function does not yield a better solution. The current local minimum will be then taken

as a global minimizer.
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Filled function method for unconstrained programming problem

The filled function method was initially introduced by Ge in [111]. In [111], an uncon-

strained programming problem is considered. There are three assumptions:

1. The objective function is a twice continuously differentiable function F (x) on Rn.

2. F (x) satisfies the condition F (x)→ +∞ as ‖x‖ → +∞.

3. F (x) has only a finite number of minimizers.

By assumption 2, there exists a closed bounded domain Ω ⊂ Rn whose interior contains all

global minimizers of F (x). By assumption 3, every minimizer is therefore isolated.

Definition 1. [111] The basin of F (x) at an isolated minimizer x∗1 is a connected domain

B∗1 which contains x∗1 and in which starting from any point the steepest descent trajectory

of F (x) converges to x∗1, but outside which the steepest descent trajectory of F (x) does not

converge to x∗1. Suppose x̂∗1 is a maximizer of F (x). The hill of F (x) at x̂∗1 is the basin of

−F (x) at its minimizer x̂∗1.

Definition 2. [111] A minimizer x∗2 of F (x) is lower (or higher) than x∗1 iff

F (x∗2) ≤ (or >)F (x∗1) (1.1)

and that the basin of F (x) at x∗2, B∗2 say, is lower (or higher) than B∗1 iff inequality (1.1)

holds.

Definition 3. [111] A function P (x) is called a filled function of F (x) at x∗1 if P (x) has the

following properties:

(1) x∗1 is a maximizer of P (x) and the whole basin B∗1 of F (x) at x∗1 becomes a part of a hill

of P (x);

(2) P (x) has no minimizers or saddle points in any higher basin of F (x) than B∗1;
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(3) if F (x) has a lower basin (at x) than B∗1 , then there is a point x′ in such a basin that

minimizes P (x) on the line through x and x∗1.

The filled function proposed in [111] is as follows:

P (x, r, ρ) =
1

r + F (x)
exp

(
−‖x− x

∗
1‖2

ρ2

)

where the parameters r and ρ need to be chosen appropriately. This filled function has some

drawbacks, then many researchers devoted to this subject and proposed some other filled

functions in references [22, 90, 106, 112, 132–134, 141, 149].

In [149], Wu et al. proposed two new kinds of modified functions: a new filled function

and a quasi-filled function. There are also three assumptions:

1. The objective function is a continuously differentiable function f(x) on Rn.

2. f(x) satisfies the condition f(x)→ +∞ as ‖x‖ → +∞.

3. Let Y be the set of all local minimizers. The set F defined by F = {f(x)|x ∈ Y } is a

finite set.

Assumption 3 means only the number of local minimal values is finite instead of the number

of local minimizers.

Let x∗ be a local minimizer and let L be the set which consists of all the local minimizers

lower than x∗. A new definition of filled function is proposed.

Definition 4. [149] A differentiable function p(x) is a filled function corresponding to a

local minimizer x∗ if it satisfies the following properties:

(1) x∗ is a strictly local maximizer of p(x);

(2) For any x 6= x∗ satisfying f(x) ≥ f(x∗), x is not a stationary point p(x), i.e.,∇p(x) 6= 0;

(3) if x∗ is not a global minimizer, i.e., L 6= ∅, then for any x̄ ∈ L, x̄ is a local minimizer of
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p(x) and furthermore satisfies

p(x̄) < p(x∗)

p(x̄) < p(x), for any x ∈ ∂Ω.

where ∂Ω denotes the boundary of Ω.

(4) For any x1, x2 ∈ Ω satisfying f(x1) ≥ f(x∗) and f(x2) ≥ f(x∗), ‖x2 − x∗‖ > (≥

)‖x1 − x∗‖ if and only if p(x2) < (≤)p(x1).

Based on the new definition, a new filled function is proposed as:

Hq,r,x∗(x) = q(exp(−||x− x
∗||2

q
)gr(f(x)− f(x∗)) + fr(f(x)− f(x∗))

where r > 0, q > 0 are parameters, x∗ is the current local minimum, and for any r > 0, gr

and fr are defined as:

gr(t) =


1, t > 0

− 2
r3 t

3 − 3
r2 t

2 + 1, −r < t ≤ 0

0, t ≤ −r

and

fr(t) =


t+ r, t ≤ −r
r−2
r3 t

3 + r−3
r2 t

2 + 1, −r < t ≤ 0

1, t > 0

.

However, the local minimizer of the filled function will very easily go to the boundary of Ω.

Another filled function called quasi-filled function was proposed, which local minimizer on
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Ω must be in the interior of Ω. The quasi-filled function is

Fq,r,c,x∗0(x) = q

(
exp(−‖x− x

∗
0‖2

q
)gr,c

(
f(x)− f(x∗0)

)
+ hr,c

(
f(x)− f(x∗0)

))
. (1.2)

where for any r > 0 and given c > 0,

gr,c(t) =


c, t ≥ 0

− 2c
r3 t

3 − 3c
r2 t

2 + c, −r < t ≤ 0

0, t ≤ −r

(1.3)

and

hr,c(t) =



t+ r, t ≤ −r
r−2
r3 t

3 + r−3
r2 t

2 + 1, −r < t ≤ 0

1, 0 < t ≤ 1

−4c−2
r3 t3 + (6c−3)(r+2)

r3 t2

− (6c−3)(2+2r)
r3 t+ 4c−2+(6c−3)r

r3 + 1, 1 ≤ t ≤ 1 + r

2c t > 1 + r

. (1.4)

In reference [149], the properties of function Fq,r,c,x∗(x) are discussed as follows.

1. If x∗ is a local minimizer of original problem, then for any r > 0, q > 0, c > 0, x∗ is

a strictly local maximizer of Fq,r,c,x∗(x) on S.

2. For any r > 0, q > 0 and c > 0, if x ∈ S and x 6= x∗ satisfies 0 ≤ f(x)− f(x∗) ≤ 1

or f(x) − f(x∗) ≥ 1 + r, then x is not a stationary point of Fq,r,c,x∗(x). Otherwise,

if x is a stationary point of f(x), then x is not a stationary point of Fq,r,c,x∗(x). And

∇Fq,r,c,x∗(x)(x− x∗) < 0 for any x satisfying the above conditions.

19



3. If x∗ is not a global minimizer of original problem. Let

L = {x̄ | x̄ is the local minimizer of original problem satisfying f(x̄) < f(x∗)}.

Then L 6= ∅. For any x̄ ∈ L, when r ≤ β0

2
, x̄ is a local minimizer of Fq,r,c,x∗(x) and

satisfies

Fq,r,c,x∗(x̄) < Fq,r,c,x∗(x
∗), Fq,r,c,x∗(x̄) < Fq,r,c,x∗(x) for any x ∈ ∂S,

where β0 =
min

y1, y2 ∈ F, y1 6= y2

|y1 − y2| (F is the set of value functions of all lo-

cal minimizers of original problem) and ∂S is the boundary of S. Obviously, x̄ is a

stationary point of Fq,r,c,x∗(x).

4. For any x0 satisfying f(x0)− f(x∗) ≤ 1, the local minimizer x̄ of function Fq,r,c,x∗(x)

over S starting from x0 is in the interior of S when r and c satisfy the following

conditions, respectively. r ≤ f0 − 1 and c ≥ 1, where f0 satisfies that there exist a

point x0
1 ∈ S and a constant f0 > 1 such that f(x) ≥ f(x0

1) + f0 for any x ∈ ∂S.

In [45], authors proposed another filled function which is designed for solving mixed

integer programming problems:

Fr,x∗(x) =
1

‖x− x∗‖2 + 1
gr

(
f(x)− f(x∗)

)
+ fr

(
f(x)− f(x∗)

)
, (1.5)

where r > 0 is a parameter, x∗ is the current local minimizer and for any r > 0,

gr(t) =


1, t > 0

− 2

r3
t3 − 3

r2
t2 + 1, −r < t ≤ 0

0, t ≤ −r

, (1.6)
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fr(t) =


t+ r t ≤ −r

r − 2

r3
t3 +

r − 3

r2
t2 + 1, −r < t ≤ 0

1 t > 0

. (1.7)

In reference [45], the properties of this auxiliary function are discussed as follows.

1. Suppose that x∗ is a local minimizer of original problem, then x∗ is a strictly local

maximizer of Fr,x∗(x) on S for any r > 0.

2. Let x̄ be the global minimizer of the original problem and let

β = f(x∗)− f(x̄).

If x∗ is not a global minimizer of the original problem, i.e., β > 0, then x̄ is a local

minimizer of Fr,x∗(x) on S when r ≤ β.

3. Any K-K-T point x̂ (see Definition 3.3 in [45] for the definition of K-K-T point) of

Fr,x∗(x) on S satisfies one of the following conditions:

1◦. f(x̂) < f(x∗);

2◦. x̂ := (x̂1, . . . , x̂n)T satisfies that x̂i =

 ui or vi, i ∈Mx̄

ui + vi − x̄i, otherwise .

In particular, [148] and [151] proposed two filled function methods to solve the following

systems of nonlinear equations.

(SNE) hi(x) = 0, i = 1, 2, · · · ,m

x ∈ X

hi(x), i = 1, 2, · · · ,m are continuously differentiable nonlinear equations and X is a box.
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We know that solving (SNE) is equivalent to solving the following optimization problem:

(OP ) min f(x) :=
1

2

m∑
i=1

h2
i (x),

x ∈ X.

Next, we will introduce the filled function method provided in [148] which is under the

following assumption.

Assumption 1. [148] f(x) satisfies the coercivity condition, i.e. lim
‖x‖→+∞

f(x) = +∞.

Let x0 ∈ Rn. By Assumption 1, there exists a box X such that

x0 ∈ X and f(x) ≥ 2f(x0) for any x ∈ Rn \ intX, (1.8)

where intX denotes the interior of X .

To solve problem (OP), [148] present a new auxiliary function which can be a filled func-

tion, a quasi-filled function or a strict filled function with appropriately chosen parameters.

We give the definitions of these three functions as follows.

Definition 5. [151] Let x̄0 ∈ X satisfy x̄0 6= x∗ and f(x̄0) ≤ 5f(x∗)
4

. A continuously differ-

entiable function Px∗(x) is said to be a filled function of problem (1.8) at x∗ with f(x∗) > 0,

if:

1◦ x∗ is a strict local maximizer of Px∗(x) on X;

2◦ Any local minimizer x̄ of Px∗(x) on X starting from x̄0 satisfies

f(x̄) <
f(x∗)

2
or x̄ is a vertex of X;

3◦ Any x̃ ∈ X with∇Px∗(x̃) = 0 satisfies f(x̃) < f(x∗)
2

;

4◦ Any local minimizer x̂ of f(x) on X with f(x̂) ≤ f(x∗)
4

is a local minimizer of Px∗(x)

on X .
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Definition 6. [148] Let x̄0 ∈ X satisfy x̄0 6= x∗ and f(x̄0) ≤ 5f(x∗)
4

, let f(x) be differen-

tiable on X . A continuous function Px∗(x) is said to be a quasi-filled function of problem

(1.8) at x∗ with f(x∗) > 0, if:

1◦ x∗ is a strict local maximizer of Px∗(x) on X;

2◦ Any local minimizer x̄ of Px∗(x) on X starting from x̄0 satisfies x̄ ∈ intX and one of

the following results holds:

(1) f(x̄) ≤ f(x∗)

2
,

(2)
3f(x∗)

2
≤ f(x̄) ≤ 7f(x∗)

4
and∇f(x̄) 6= 0;

3◦ Any local minimizer x̂ of problem f(x) on X with f(x̂) ≤ f(x∗)
4

is a local minimizer of

Px∗(x) on X .

Definition 7. [148] Let x̄0 ∈ X satisfy x̄0 6= x∗ and f(x̄0) ≤ 5f(x∗)
4

. A continuous function

Px∗(x) is said to be a strict filled function of problem (1.8) at x∗ with f(x∗) > 0, if:

1◦ x∗ is a strict local maximizer of Px∗(x) on X;

2◦ Any local minimizer x̄ of Px∗(x) on X starting from x̄0 satisfies

f(x̄) <
f(x∗)

2
.

3◦ Any local minimizer x̂ of function f(x) on X with f(x̂) ≤ f(x∗)
4

is a local minimizer of

Px∗(x) on X .

In the following, we will introduce an auxiliary function. Let

Gq,x∗(x)

= exp (−‖x− x∗‖2)g f(x∗)
4

(
f(x)− f(x∗)

2

)
+ qh f(x∗)

4
,f(x∗)

(
f(x)− f(x∗)

2

)
,

(1.9)
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where q > 0 is a parameter and

gr(t) =


1 t ≥ 0

− 2

r3
t3 − 3

r2
t2 + 1 −r < t ≤ 0

0 t ≤ −r

(1.10)

and

hr,c(t) =



t+ r t ≤ −r
r − 2

r3
t3 +

r − 3

r2
t2 + 1, −r < t < 0

1 0 ≤ t ≤ c

− 2

r3
t3 +

(6c+ 3r)

r3
t2−

(6cr + 6c2)

r3
t+

3c2r + 2c3

r3
+ 1 c < t < c+ r

2 t ≥ c+ r

. (1.11)

Consider the following box-constrained optimization problem:

min
x∈X

Gq,x∗(x). (1.12)

We have the following properties.

1. Let f(x∗) > 0. Then for any q > 0, x∗ is a strict local maximizer of problem (1.12).

2. Assume that f is continuously differentiable on X and Assumption 1 holds. Let x∗

satisfy 0 < f(x∗) ≤ f(x0) (x0 satisfies (1.8)) and x̄0 6= x∗ be a point such that

f(x̄0)− f(x∗) ≤ f(x∗)
4

. Then,

1◦. there exists q1
x∗ ≥ 0 such that when q > q1

x∗ , any local minimizer x̄ of problem

(1.12) obtained by search starting from x̄0 satisfies x̄ ∈ intX;
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2◦. there exists q2
x∗ > 0 such that when 0 < q < q2

x∗ , any stationary point x̃ ∈ X with

x̃ 6= x∗ of function Gq,x∗(x) satisfies f(x̃) < f(x∗)
2

.

3. Let x∗ satisfy 0 < f(x∗) ≤ f(x0) (x0 satisfies (1.8)). Any local minimizer x̄ of prob-

lem f(x) on X with f(x̄) < f(x∗)
4

is a local minimizer of problem (1.12). Specially,

any solution of (NSE) must be a local minimizer of problem (1.12).

Filled function method for constrained programming problems

Wenxing Zhu presented a class of filled functions and a class of globally concavized

filled functions for box constrained continuous global optimization in the references [130]

and [131], respectively. (P ) is the original problem with box constraints and (AP ) is the

auxiliary problem, in which, the objective function is the filled function defined as follows.

In [130], the definition of a filled function is presented as follows:

Definition 8. The function p(x) is called a filled function of problem (P ) at its minimizer x∗1

if p(x) is a continuously differentiable function and has the following properties:

1. Problem (AP ) has no Kuhn-Tucker point in the region S1 = {x ∈ X : f(x) ≥ f(x∗1)}

except a prefixed point x0 ∈ S1 that is a minimizer of p(x).

2. Problem (AP ) does have a minimizer in the region S2 = {x ∈ X : f(x) < f(x∗1)} if

S2 6= Φ.

where a Kuhn-Tucker point of problem (AP ) is a point y ∈ X which satisfies the follow-

ing necessary conditions:

∂p(y)

∂xi
≥ 0, yi = li;

∂p(y)

∂xi
≤ 0, yi = ui;

∂p(y)

∂xi
= 0, li < yi < ui.
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Under three assumptions of u(x) and v(x), five simple filled functions are presented. For the

details of these assumptions, see [130].

p(x) = u(x)− Av(x);

p(x) = u(x)− ln(1 + Av(x));

p(x) = u(x)− p · sin(Av(x)), where p is a constant and p > maxx∈Xu(x);

p(x) = u(x)− p · arctg(Av(x)), where p is a constant and p >
maxx∈Xu(x)

π/2
;

p(x) = u(x)− p · (1− e−Av(x)), where p is a constant and p > maxx∈Xu(x).

In [131], the definition of a globally concavized filled function is presented as follows:

Definition 9. The function p(x) is called a globally concavized filled function of problem

(P ) at its minimizer x∗1 if p(x) is a continuously differentiable function and has the following

properties:

1. x∗1 is a maximizer of problem (AP ).

2. All minimizers or stationary points of Problem (AP ) in set S1 = {x ∈ X : f(x) ≥

f(x∗1)}, except x∗1, are on the boundary of the bounded closed box X .

3. Problem (AP ) does have a minimizer in the set S2 = {x ∈ X : f(x) < f(x∗1)} if

S2 6= Φ.

where a stationary of problem (AP ) is defined as the same as the Kuhn-Tucker point of

problem (AP ) in [130].

Two globally concavized filled functions are presented

p(x,A, h) =
1

‖x− x∗1‖+ c
arctan(A[f(x)− f(x∗1) + h]);

p(x,A, h) =
1

‖x− x∗1‖+ c
tanh(A[f(x)− f(x∗1) + h]).
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where the two parameters A is large enough and h is small enough.

Furthermore, Wu et al. proposed a filled function method for inequality constrained global

optimization problems in [146].

(P ) min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

x ∈ X

where f : X → R, gi : X → R, i = 1, · · · ,m and X is a box. The filled function is

presented as:

pr,c,q,x∗(x) =
1

‖x− x∗‖2 + 1
fr,c

(
gr(f(x)− f(x∗)) +

m∑
i=1

g r
q
(gi(x))− 2r

)
,

where c > 0, r > 0 and q > 0 are parameters, x∗ is the current local minimum, and :

fr,c(t) =


c, t ≥ 0

− 2c
r3 t

3 − 3c
r2 t

2 + c, −r < t ≤ 0

0, t ≤ −r

and

gr(t) =


t+ 2, t ≥ 0

r−4
r3 t

3 + 2r−6
r2 t2 + t+ 2, −r < t < 0

0, t ≤ −r

.

Recently, Wu et al. proposed a new filled function method for general constrained global
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optimization problems in [147].

(P ) min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m,

hj(x) = 0, j = 1, · · · , l,

x ∈ X

where f : X → R, gi, hj : X → R, i = 1, · · · ,m, j = 1, · · · , l are continuously differen-

tiable on X , and X is an open box.

In [147], first, an auxiliary function is employed to find an ε−approximate feasible solu-

tion via locally solving a smooth unconstrained optimization problem, where ε is any preset

positive number. Then a filled function is constructed to search for an approximate global

minimizer of problem P.

The filled function is presented as

Fr,x∗r(x) =

1

‖x− x∗r‖2 + 1
φ

(
ψ r

2
(f(x)− f(x∗r) +

r

2
) +

m∑
i=1

ψ r
2
(gi(x)− r

2
) +

l∑
j=1

ψ 3r2

4

(h2
j(x)− r2

4
)

)

where r > 0 is a parameter and

ψr(t) =


2
r
t− 1, t ≥ r

(t−r)2

r2 + 2
r
t− 1, 0 < t < r

0, t ≤ 0
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and

φ(t) =


1, t ≥ 1

−2t3 + 3t2, 0 < t < 1

0, t ≤ 0

.

Since the filled function methods only employ extensively improved local optimization al-

gorithms, these methods have been attracting much attention by more and more researchers.

However, when it comes to the behavior of a filled function, it depends directly on the con-

struction of the filled function. Hence, many researchers still devote to revise or present new

filled functions.

1.2. Optimality conditions

Necessary global optimality conditions are efficient tools to prove that a given point is

not an optimal solution and sufficient global optimality conditions are strong tools to check

that a given point is an optimal solution. Without these global optimality conditions, most

algorithms cannot stop properly. Much attention has been devoted to the development of

global optimality conditions.

1.2.1. Optimality conditions for nonlinear programming

problems

For optimality conditions of nonlinear programming problems, most literature focuses

on special models, such as generalized convex programming problems [60, 115, 121] and

nonconvex problems involving directionally differentiable functions [114]. Since Karush-

Kuhn-Tucker (KKT) optimality conditions are also sufficient for optimality if the functions

involved in the mathematical programming problems are convex, generalized convex func-
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tions received more attention later [60]. Researchers tried to solve this question: under what

assumptions, are the KKT conditions also sufficient for the various generalizations of convex

problems? [115] defined semilocally quasiconvex and semilocally pseudoconvex functions

and obtained sufficient optimality conditions for a class of nonlinear programming problems

involving such functions. [60] considered a nonlinear programming problem where the func-

tions involved are η−semidifferentiable and presented KKT necessary optimality conditions

and sufficient optimality conditions. [121] introduced a new class nonconvex functions called

G-invex functions and provided some necessary conditions and sufficient conditions. [114]

studied optimality conditions for nonconvex problems involving a class of directionally dif-

ferentiable functions and generalized the necessary and sufficient optimality conditions by

using the weak subgradient notion. More generally, although [126] developed necessary

global optimality conditions for nonlinear programming problems with polynomial con-

straints, as it mentioned, the conditions are difficult to check for general large dimensional

problems since the conditions involve in solving a sequence of semidefinite programs.

1.2.2. Optimality conditions for polynomial programming

problems

The polynomial programming problem as a special case of nonlinear and nonconvex pro-

gramming problems attracts a lot of attention. Besides development of various global op-

timization methods to solve it, a number of global optimality conditions appear in litera-

ture. At the early stage, the global optimality conditions focus on quadratic programming

problems. References [3, 43, 45, 57, 58, 64–66, 76, 91, 124, 125, 152] present various global

optimality conditions for the problems with quadratic objective function subject to different

constraints, such as box constraints, binary constraints, quadratic constraints, linear con-

straints and mixed variables. In particular, we mention that the global optimality conditions

introduced in [9,82,142,143] and [145] are based on abstract convexity. They are expressed
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in terms of abstract subdifferential (L-subdifferential) and abstract normal cone (L-normal

cone).

L-Subdifferential [8]. Let f : Rn → R and x0 ∈ dom f . An element l ∈ L is called an

L-subgradient of f at a point x0 ∈ Rn if f(x) ≥ f(x0) + l(x) − l(x0), ∀x ∈ Rn. The set

∂Lf(x) of all L-subgradients of f at x0 is referred to as L−subdifferential of f at x0.

L-normal Cone [8]. For a set D ⊂ Rn and x0 ∈ D, the normal cone of D at x0 with

respect to L, called as L-normal cone, is given by NL,D(x0) := {l ∈ L : l(x) − l(x0) ≤

0 for each x ∈ D}.

Furthermore, [136] discussed some global optimality conditions for a special kind of cubic

polynomial optimization problems where the cubic objective function contains no third or-

der cross terms. [82] presented sufficient global optimality conditions and necessary global

optimality conditions for some classes of polynomial integer programming problems where

the objective function contains no cross terms for more than the second order.

For the general polynomial programming problem, [127] presented global optimality con-

ditions for polynomial optimization over box or bivalent constraints by using separable poly-

nomial relaxations. However, We notice that it is not easy to decompose a polynomial func-

tion to the sum of a separable polynomial function and an SOS-convex polynomial function.

Based on the so-called Positivstellensatz (a polynomial analogue of the transposition theo-

rem for linear systems), it is possible to formulate global necessary and sufficient conditions

for general polynomial programming problems with polynomial constraints (GPP) [54]. [67]

proved in Theorem 4.2 a sufficient condition for global optimality in (GPP), which is a spe-

cial case of the global necessary and sufficient condition presented in [54]. [126] provided

another necessary and sufficient global optimality condition for (GPP). However, all these

conditions are complex and difficult to check in practice since the conditions involve solving

a sequence of semidefinite programs. Only under the idealized assumptions that all semidef-

inite programs can be solved exactly, it is possible for these conditions to be checked [54].
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It is well-known that traditional local optimization methods are designed based on KKT

conditions. Motivated by this, [45] focused on both global optimality conditions and global

optimization methods for mixed integer quadratic programming problems (MIQP). A neces-

sary global optimality condition and a sufficient global optimality condition were proposed.

A local optimization method was designed by using the necessary global optimality con-

dition and a global optimization method was designed by combining the sufficient global

optimality condition, an auxiliary function and the obtained local optimization method. In

next section, let us review the global optimality conditions and local and global optimization

methods provided in [45].

1.2.3. Local and global optimality conditions for a mixed integer

quadratic programming problem

[45] considered the following mixed integer quadratic model programming problem:

(MIQP ) min
1

2
xTAx+ aTx

s.t. x ∈ U =

(x1, · · · , xn)T

∣∣∣∣∣∣∣
xi ∈ {ui, ui+1, · · · , vi}, i ∈ I

xi ∈ [ui, vi], i ∈ J


where a ∈ Rn, A ∈ Sn and Sn is the set of all symmetric n × n matrices, ui < vi, ∀i =

1, · · · , n and ui, vi, ∀i ∈ I are integers in R, I, J ⊆ {1, · · · , n}, I
⋂
J = ∅ and I

⋃
J =

{1, · · · , n}. For x̄ ∈ U , let

˜̄xi :=


−1, if x̄i = ui

1, if x̄i = vi

sign(a+ Ax̄)i, if x̄i ∈ (ui, vi)
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bx̄i :=


˜̄xi

(a+Ax̄)i
vi−ui , i ∈ J

max
{

˜̄xi(a+ Ax̄)i, ˜̄xi
(a+Ax̄)i
vi−ui

}
, i ∈ I

bx̄ = (bx̄1 , · · · , bx̄n)T

where

sign(a+ Ax̄)i :=


−1, (a+ Ax̄)i < 0

0, (a+ Ax̄)i = 0

1, (a+ Ax̄)i > 0

For Q = diag(q1, · · · , qn) and qi ∈ R, i = 1, · · · , n, let

q̃i =

 min{0, qi}, i ∈ J

qi, i ∈ I

Q̃ = diag(q̃1, · · · , q̃n)

For A = (aij)n×n, let

ãii =

 min{0, aii}, i ∈ J

aii, i ∈ I

diag(Ã) = diag(ã11, · · · , ãnn)

33



Theorem 1. [45] (Sufficient global optimality condition for (MIQP )) Let x̄ ∈ U . If

[SC]

 b˜̄xi ≤ 0,∀i ∈ J

diag(bx̄) � 1
2
A

then x̄ is a global minimizer of problem (MIQP ).

Theorem 2. [45] (Necessary global optimality condition for (MIQP )) Let x̄ ∈ U . If x̄ is

a global minimizer of problem (MIQP ), then the following condition holds:

[NC] diag(bx̄) �
1

2
diag(Ã)

The significance of this paper is to design a new local optimization method according to

the necessary global optimality condition.

Let

Ni(x̄) =

 {x̄+ (wi − x̄i)ei|wi = ui, ui+1, · · · , vi}, ∀i ∈ I

{x̄+ (wi − x̄i)ei|wi = ui, vi},∀i ∈ J

where ei is the ith unit vector (the n dimensional vector with the ith component equals to

one and the other component equal to zero). The following algorithm was designed to solve

(MIQP):

Algorithm 1. Local optimization method for (MIQP) (LOMMIQP )

Step 1. Take an initial point x0 ∈ U . Let x̄ = x0, k := 1.

Step 2. Check whether the following condition [NC]1 holds:

[NC]1 bx̄i ≤
1

2
aii, ∀i = 1, · · · , n.

If [NC]1 does not hold, go to Step 3; otherwise, check whether the following condition
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[NC]2 holds:

[NC]2 bx̄i ≤ 0, ∀i ∈ J.

If [NC]2 holds, go to Step 5, else go to Step 4.

Step 3. Let x∗ = (x∗1, · · · , x∗n)T := argmin{f(x)|x ∈
n⋃
i=1

Ni(x̄)} and let x̄ = x∗, go to Step

2.

Step 4. Let h(y) := f(x̄1, · · · , x̄k, y1, · · · , yn−k), and let y∗ := (y∗1, · · · , y∗n−k)T be a local

minimizer or a KKT point of h(y) on UJ =
∏
i∈J

[ui, vi] starting from (x̄k+1, · · · , x̄n)T . Let

ȳ := (x̄1, · · · , x̄k, y∗1, · · · , y∗n−k) and let x̄ = ȳ, go to Step 3.

Step 5. Stop. x̄ is a local minimizer of problem (MIQP).

[45] also designed a local optimization method (LOMMP ) which was used to solve the

auxiliary function problem. For the details of the local optimization method (LOMMP ),

see [45].

Next, [45] designed a global optimization method by combining the sufficient global op-

timality condition, the proposed local optimization method and an auxiliary function which

is defined by (1.5).

Algorithm 2. Global optimization method for (MIQP) (GOM)

Step 0. Take an initial point x1 ∈ U . a sufficiently small positive number µ, and an initial

r1 > 0. Set k := 1.

Step 1. Use the local minimization method (LOMMIQP ) to solve problem (MIQP) starting

from xk. Let x∗k be the obtained local minimizer.

Step 2. Verify x∗k whether satisfies the following global optimality sufficient conditions:

[SC]k

 (bx∗k)i ≤ 0,∀i ∈ J

diag(bx∗k) � A
2
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If [SC]k holds, then go to Step 6; otherwise, let r := r1 go to Step 3.

Step 3. Construct the following auxiliary function

Fr,x̄(x) =
1

‖x− x̄‖2 + 1
gr

(
f(x)− f(x̄)

)
+ fr

(
f(x)− f(x̄)

)
,

Consider the following problem:

min Fr,x∗k(x) (1.13)

s.t. x ∈ U.

Let x̄k := x∗k, go to Step 4.

Step 4. Use the local minimization method (LOMMP ) to solve problem (1.13) starting from

x̄k. Let x̄∗k be the local minimizer of problem (1.13). If f(x̄∗k) < f(x∗k), let xk+1 := x̄∗k,

k := k + 1, go to Step 1; otherwise go to Step 5.

Step 5. If r ≥ µ, decrease r, such as, let r := r/10, go to Step 3; otherwise, go to Step 6.

Step 6. Stop and x∗k is the obtained global minimizer.

Finally, some numerical examples illustrated the efficiency and stability of the local and

global optimization methods.

In this thesis, we apply the idea and the results mentioned in [45] to cubic, quartic, and

further to general unconstrained and constrained polynomial programming problems. We

try to derive necessary global optimality conditions for these problems which are generally

stronger than KKT conditions. Hence, the obtained new local minimizers may improve some

KKT points.
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Chapter 2.

Global optimality conditions and

optimization methods for cubic

programming problems with mixed

variables (MCP )

Multivariate cubic polynomial programming problems, as special cases of the general

polynomial optimization, have a lot of practical applications in real world. In this chap-

ter, some necessary local optimality conditions and some necessary global optimality con-

ditions for cubic polynomial programming problems with mixed variables are established.

Then, some local optimization methods, including a weakly local optimization method for

general problems with mixed variables and a strongly local optimization method for cubic

polynomial programming problems with mixed variables, are proposed by exploiting these

necessary local optimality conditions and necessary global optimality conditions. A global

optimization method is proposed for cubic polynomial programming problems by combin-

ing these local optimization methods together with an auxiliary function. Some numerical
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examples are also given to illustrate that these approaches are very efficient.

2.1. Introduction

We consider cubic polynomial programming problems with mixed variables which are

denoted by (MCP ) in this chapter. Problems of the form (MCP ) arise in many areas

of applications, such as finance and agricultural researches [21]. Especially Hanoch and

Levy [44] as well as Levy and Sarnat [49] have shown that Markowitz’s model on portfolio

selection [49] can be appropriately or perfectly described as a cubic utility function. More

applications of cubic polynomial programming problems can be found in [120]. Problems

(MCP ) also cover quadratic programming problems with box or binary constraints; see

[3, 124]. Moreover, we know that the problem (MCP) is NP-hard. In fact, even the binary

quadratic problem is NP-hard [99]. As the cubic programming problem can be regarded

as adding some third order monomials to quadratic optimization, (MCP ) is also NP-hard.

These motivate us to solve (MCP ).

General polynomial programming problems can be solved by SDP or SOS relaxation

methods [67–69, 77–80]. As we surveyed in Chapter 1, so far the most effective use of

SDP relaxations has been for the quadratic programming problems [28,77,93,139]. As spe-

cial cases of polynomial programming problems, problems (MCP) have also been studied by

many researchers. In [21], a specialization of the convex simplex method for cubic polyno-

mial programming problems was presented, the main idea of which is selecting a direction

of improvement by observing the partial derivative and choosing an optimal step by mini-

mizing the objective function in that direction. Recently, [25] has converted indefinite cubic

polynomial programming problems into convex optimization problems by some linear and

homeomorphisms transformations.

We know that the necessary local optimality conditions are the main tools for the devel-

opment of efficient numerical methods in local optimization. Although [126] provided a
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necessary and sufficient global optimality condition for general polynomial programming

problems, as it mentioned, the condition is difficult to check for general large dimensional

problems since the condition involves in solving a sequence of semidefinite programs. Ref-

erences [3, 20, 43, 57, 58, 64–66, 76, 91, 103, 124, 125, 152]focus on global optimality condi-

tions for the problems with quadratic objective function subject to different constraints, such

as box constraints, binary constraints, quadratic constraints, linear constraints and mixed

variables. Recently, [45] established a new local optimization method for quadratic pro-

gramming problems with mixed variables (MIQP ) by using the necessary global optimal-

ity condition. It also gave a new global optimization method for (MIQP ) by combining

the new local optimization method, a sufficient global optimality condition together with an

auxiliary function. Also, [136] discussed some global optimality conditions for a special

kind of cubic polynomial optimization problems where the cubic objective function contains

no third order cross terms. In this chapter, we will first investigate some necessary local op-

timality conditions and some necessary global optimality conditions for problems (MCP ),

which are very easy to check. Then, we will propose some new local optimization methods

by using the proposed necessary local optimality conditions and the necessary global opti-

mality conditions. A novel global optimization method is then proposed to solve problems

(MCP ) by combining these local optimization methods together with an auxiliary function.

Some numerical examples are also presented to indicate the significance of our optimality

conditions and show the efficiency of our optimization methods.

2.2. Necessary optimality conditions for (MCP )

Consider the following optimization of a multivariate third order (cubic) polynomial pro-

gramming problem with mixed variables:
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(MCP) min f(x) =
n∑

j,l,r=0
l≥j,r≥l

cj,l,rxjxlxr

s.t. (2.1)

xi ∈ [ui, vi], i = 1, . . . ,m, xi ∈ {ui, vi}, i = m+ 1, . . . , n,

where m is a nonnegative integer number, x = (x1, x2, · · · , xn)T ∈ Rn , x0 ≡ 1, ui,vi,cj,l,r

∈ R and ui < vi for any i = 1, . . . , n, Rn is the n-dimensional Euclidean space and R is the

real line.

In this section, we will derive some necessary optimality conditions including necessary local

optimality conditions and necessary global optimality conditions for the problem (MCP ).

First, we present some notations that will be used throughout this chapter. For any i =

1, . . . , n, let

Si : =

 [ui, vi], i = 1, . . . ,m,

{ui, vi}, i = m+ 1, . . . , n,

S̄i : = [ui, vi], i = 1, . . . , n,

S : =
n∏
i=1

Si, (2.2)

S̄ : =
n∏
i=1

S̄i. (2.3)

For giving some definitions, consider the following general mathematical optimization prob-

lem (P ):

(P ) min f(x) s.t. x ∈ S,
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where f(x) is continuous differentiable on S̄, S and S̄ are defined by (2.2) and (2.3), respec-

tively. For any x̄ = (x̄1, . . . , x̄n)T ∈ S, we denote

Ni(x̄) : = {x̄+ ziei | zi ∈ {ui − x̄i, vi − x̄i} \ {0}}, for i = 1, . . . , n,

δi(x̄) : =

 min{vi − x̄i, x̄i − ui}, if x̄i ∈ (ui, vi)

vi − ui, otherwise
,

δ(x̄) : = min{δi(x̄), i = 1, . . . ,m}, (2.4)

where ei = (0, . . . , 0, 1, 0, . . . , 0)T , the ith element is 1 and the others are 0. For any i =

1, . . . ,m and for any 0 < δ ≤ δ(x̄), denote

Ni,δ(x̄) : =

x̄+ αei

∣∣∣∣∣∣∣∣∣∣
α ∈ (0, δ), if x̄i = ui,

α ∈ (−δ, 0), if x̄i = vi,

α ∈ (−δ, δ), if x̄i ∈ (ui, vi)


and let

N̂δ(x̄) : = {x = (x1, · · · , xm, x̄m+1, · · · , x̄n) ∈ S
∣∣‖x− x̄‖ < δ}, (2.5)

Nδ(x̄) : = N̂δ(x̄) ∪ni=1 Ni(x̄) ∪ {x̄}.

Obviously, if δ ≤ δ(x̄), then Nδ(x̄) ⊂ S and |Ni(x̄)| ≤ 2 for i = 1, . . . , n, where |Ni(x̄)|

means the number of the points in Ni(x̄).

Definition 10. Let x̄ ∈ S. For δ > 0 such that δ ≤ δ(x̄), Nδ(x̄) is said to be a neighborhood

of x̄ with respect to S.

Definition 11. Let x̄ ∈ S. x̄ is said to be a local minimizer of the problem (P ) (local

maximizer of f(x) on S), iff there exists a positive number δ satisfying δ ≤ δ(x̄) such that
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f(x̄) ≤ f(x) (f(x̄) ≥ f(x)) for any x ∈ Nδ(x̄); furthermore, x̄ is said to be a strictly

local minimizer of the problem (P ) (strictly local maximizer of f(x) on S), iff f(x̄) < f(x)

(f(x̄) > f(x)) for any x ∈ Nδ(x̄) \ {x̄}.

Definition 12. Let x̄ ∈ S and let h(y) := f(y1, . . . , ym, x̄m+1, . . . , x̄n), where y = (y1, . . . ,

ym)T ∈
m∏
i=1

[ui, vi]. y∗ = (y∗1, . . . , y
∗
m)T is said to be a traditional local minimizer of h(y) on

m∏
i=1

[ui, vi] iff there exists a positive number δ satisfying δ ≤ δ(x̄) such that h(y) ≥ h(y∗) for

any y = (y1, . . . , ym)T ∈
m∏
i=1

[ui, vi] satisfying (y1, . . . , ym, x̄m+1, . . . , x̄n)T ∈ N̂δ(x̄), where

N̂δ(x̄) is defined by (2.5).

Definition 13. Let x̄ ∈ S. x̄ is said to be a global minimizer of the problem (P ) iff f(x) ≥

f(x̄) for any x ∈ S.

For x̄ = (x̄1, x̄2, · · · , x̄n)T ∈ S, and for any i = 1, . . . , n, we define

mx̄ : = {i | x̄i ∈ (ui, vi), i = 1, . . . ,m},

˜̄xi : =


−1, if x̄i = ui

1, if x̄i = vi

sign(∇f(x̄))i, if ui < x̄i < vi

,

bx̄i : = ˜̄xi(∇f(x̄))i,

bx̄ : = (bx̄1 , . . . , bx̄n)T ,

θi,x̄ : =


min

 ci,i,i(ui − x̄i) + 1
2
∂2f(x̄)

∂x2
i
,

ci,i,i(vi − x̄i) + 1
2
∂2f(x̄)

∂x2
i

 , i ∈ mx̄

−˜̄xici,i,i(vi − ui)2 + 1
2
∂2f(x̄)

∂x2
i

(vi − ui), otherwise

, (2.6)

θx̄ : = (θ1,x̄, · · · , θn,x̄)T ,

ηi,x̄ : = ˜̄xi 1

16ci,i,i
[
∂2f(x̄)

∂x2
i

]2, for ci,i,i 6= 0, (2.7)

yi,x̄ : = x̄i −
1

4ci,i,i

∂2f(x̄)

∂x2
i

, for ci,i,i 6= 0, (2.8)
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αi,x̄ : =

 ηi,x̄, if ˜̄xici,i,i < 0, yi,x̄ ∈ (ui, vi) and i ∈ {1, . . . ,m} \mx̄

θi,x̄, otherwise ,
(2.9)

αx̄ : = (α1,x̄, · · · , αn,x̄)T ,

where sign(∇f(x̄))i :=


−1, (∇f(x̄))i < 0

0, (∇f(x̄))i = 0

1, (∇f(x̄))i > 0

.

In the following, we will first give a necessary local optimality condition for the problem

(P ) and the problem (MCP ).

Theorem 3. (Necessary local optimality condition for (P )) Let x̄ ∈ S. If x̄ is a local

minimizer of the problem (P ), then the following condition [LNCP ] holds:

[LNCP ]

 bx̄i ≤ 0, ∀i ∈ {1, . . . ,m}

f(x̄) ≤ f(x), ∀x ∈ ∪ni=1Ni(x̄).

Proof: By definition 11, we know that x̄ is a local minimizer of the problem (P ) if and

only if there exists a positive number δ satisfying δ ≤ δ(x̄) such that f(x̄) ≤ f(x) for any

x ∈ Nδ(x̄). By ∪ni=1Ni(x̄) ⊂ Nδ(x̄), we get that

f(x̄) ≤ min{f(x) | x ∈ ∪ni=1Ni(x̄)}.

By ∪mi=1Ni,δ(x̄) ⊂ Nδ(x̄), we have that

f(x) ≥ f(x̄),∀x ∈ ∪mi=1Ni,δ(x̄),

which implies that

bx̄i = ˜̄xi(∇f(x̄))i ≤ 0, ∀i ∈ {1, . . . ,m}.
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In fact, for any i = 1, . . . ,m,

f(x) ≥ f(x̄), ∀x ∈ Ni,δ(x̄)

⇒ ∃λi, µi ≥ 0 such that


(∇f(x̄))i + λi − µi = 0

λi(x̄i − vi) = 0

µi(x̄i − ui) = 0

⇔ bx̄i = ˜̄xi(∇f(x̄))i ≤ 0.

Hence, condition [LNCP ] holds.

Corollary 1. (Necessary local optimality condition for (MCP )) Let x̄ ∈ S. If x̄ is a local

minimizer of the problem (MCP ), then the following condition [LNC] holds:

[LNC]

 bx̄i ≤ 0, ∀i ∈ {1, . . . ,m},

bx̄ ≤ θx̄.

Proof: Let x̄ ∈ S be a local minimizer of the problem (MCP ). By Theorem 3, we have

bx̄i ≤ 0,∀i ∈ {1, . . . ,m}.

Moreover, x̄ is a local minimizer of the problem (MCP ) implies that

f(x̄) ≤ min{f(x) | x ∈ ∪ni=1Ni(x̄)}.

We can easily verify that

f(x̄) ≤ min{f(x) | x ∈ ∪ni=1Ni(x̄)}

and bx̄i ≤ 0, i = 1, . . . ,m

⇒ bx̄i ≤ θi,x̄, ∀i = 1, . . . , n.

In fact, for any i = 1, . . . , n, for any x ∈ Ni(x̄), we have x = x̄ + ziei, where zi ∈
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{ui − x̄i, vi − x̄i} \ {0}, and ei = (0, ..., 0, 1, 0, ...0)T , the ith component is 1, and the others

are 0.

(a). If x̄i = ui, then xi = vi. By x̄ is a local minimizer of the problem (MCP ), we have

f(x)− f(x̄) = ci,i,i(vi − ui)3 +
1

2

∂2f(x̄)

∂x2
i

(vi − ui)2 + (∇f(x̄))i(vi − ui) ≥ 0

⇔ ci,i,i(vi − ui)2 +
1

2

∂2f(x̄)

∂x2
i

(vi − ui) + (∇f(x̄))i ≥ 0

⇔ −(∇f(x̄))i ≤ ci,i,i(vi − ui)2 +
1

2

∂2f(x̄)

∂x2
i

(vi − ui)

⇔ bx̄i ≤ θi,x̄.

(b). If x̄i = vi, then xi = ui. By x̄ is a local minimizer of the problem (MCP ), we have

f(x)− f(x̄) = ci,i,i(ui − vi)3 +
1

2

∂2f(x̄)

∂x2
i

(ui − vi)2 + (∇f(x̄))i(ui − vi) ≥ 0

⇔ ci,i,i(ui − vi)2 +
1

2

∂2f(x̄)

∂x2
i

(ui − vi) + (∇f(x̄))i ≤ 0

⇔ (∇f(x̄))i ≤ −ci,i,i(vi − ui)2 +
1

2

∂2f(x̄)

∂x2
i

(vi − ui)

⇔ bx̄i ≤ θi,x̄.

(c). If x̄i ∈ (ui, vi), then xi ∈ {ui, vi}, bx̄i = 0. By x̄ is a local minimizer of the problem

(MCP ), we have

f(x)− f(x̄) = ci,i,i(xi − x̄i)3 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)2 + (∇f(x̄))i(xi − x̄i) ≥ 0

⇔ ci,i,i(xi − x̄i)3 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)2 ≥ 0

⇔ ci,i,i(xi − x̄i) +
1

2

∂2f(x̄)

∂x2
i

≥ 0

⇔ bx̄i ≤ θi,x̄.

Hence, condition [LNC] holds.
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Remark 1. a) Let x̄ ∈ S. If m = 0 and x̄ is a local minimizer of (MCP ), then the following

condition [LNCD] holds:

[LNCD] bx̄ ≤ θx̄.

b) Let x̄ ∈ S. If m = n and x̄ is a local minimizer of (MCP ), then the following condition

[LNCC] holds:

[LNCC] bx̄ ≤ 0 and bx̄ ≤ θx̄.

Now we will discuss a necessary global optimality condition for the problem (MCP ).

Theorem 4. (Necessary global optimality condition for (MCP )) Let x̄ ∈ S. If x̄ is a

global minimizer of the problem (MCP ), then the following condition [GNC] holds:

[GNC] bx̄i ≤ 0, ∀i ∈ {1, . . . ,m} and bx̄ ≤ αx̄.

Proof: Let x̄ ∈ S. If x̄ is a global minimizer of the problem (MCP ), then for any x =

(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n)T ∈ S, ∀i = 1, . . . , n,

f(x)− f(x̄)

= ci,i,i(xi − x̄i)3 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)2 + (∇f(x̄))i(xi − x̄i) ≥ 0. (2.10)

Now we can prove that (2.10) is equivalent to [GNC]. For any i = 1, . . . ,m, we consider

the following cases:

1◦. If x̄i = ui, then (2.10) is equivalent to

gi,x̄(xi) := ci,i,i(xi − x̄i)2 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≥ 0, ∀xi ∈ (ui, vi],
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which means that

min
xi∈[ui,vi]

gi,x̄(xi) ≥ 0.

We can easily verify that

min
xi∈[ui,vi]

gi,x̄(xi) = min{0, αi,x̄}+ (∇f(x̄))i.

Here we just need to verify that

min
xi∈[ui,vi]

(
ci,i,i(xi − x̄i)2 +

1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)
)

= min{0, αi,x̄}.

In fact, obviously,

min
xi∈[ui,vi]

(
ci,i,i(xi − x̄i)2 +

1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)
)
≤ 0

and if ci,i,i > 0,

(
ci,i,i(xi − x̄i)2 +

1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)
)

= ci,i,i

[
(xi − ui) +

1

4ci,i,i

∂2f(x̄)

∂x2
i

]2

− 1

16ci,i,i

[
∂2f(x̄)

∂x2
i

]2

= ci,i,i(xi − yi,x̄)2 + ηi,x̄,

where yi,x̄ and ηi,x̄ are defined by (2.8) and (2.7), respectively.

Hence, if moreover yi,x̄ ∈ (ui, vi), then

min
xi∈[ui,vi]

(
ci,i,i(xi − x̄i)2 +

1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)
)

= ηi,x̄ = αi,x̄.

We can easily verify that in the other cases (which include (1) ci,i,i > 0 but yi,x̄ /∈ (ui, vi),
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and (2) ci,i,i ≤ 0),

min
xi∈[ui,vi]

(
ci,i,i(xi − x̄i)2 +

1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)
)

= min{0, ci,i,i(vi − ui)2 +
1

2

∂2f(x̄)

∂x2
i

(vi − ui)}

= min{0, θi,x̄}

= min{0, αi,x̄},

where θi,x̄ is defined by (2.6).

Hence, (2.10) is equivalent to

min{0, αi,x̄}+ (∇f(x̄))i ≥ 0⇔ ˜̄xi(∇f(x̄))i ≤ min{0, αi,x̄}.

2◦. If x̄i = vi, then (2.10) is equivalent to

gi,x̄(xi) := ci,i,i(xi − x̄i)2 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≤ 0, ∀xi ∈ [ui, vi),

which means that

min
xi∈[ui,vi]

[−gi,x̄(xi)] ≥ 0.

We can easily verify that

min
xi∈[ui,vi)

[−gi,x̄(xi)] = min{0, αi,x̄} − (∇f(x̄))i.

The proof is similar as the proof when x̄i = ui. Hence, (2.10) is equivalent to that

min{0, αi,x̄} − (∇f(x̄))i ≥ 0⇔ ˜̄xi(∇f(x̄))i ≤ min{0, αi,x̄}.
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3◦. If ui < x̄i < vi, then (2.10) is equivalent to

 ci,i,i(xi − x̄i)2 + 1
2
∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≤ 0, ∀xi ∈ [ui, x̄i)

ci,i,i(xi − x̄i)2 + 1
2
∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≥ 0, ∀xi ∈ (x̄i, vi]

⇔

 (∇f(x̄))i = 0,

ci,i,i(xi − x̄i) + 1
2
∂2f(x̄)

∂x2
i
≥ 0,∀xi ∈ [ui, vi], xi 6= x̄i

⇔

 (∇f(x̄))i = 0,

minxi∈[ui,vi]

[
ci,i,i(xi − x̄i) + 1

2
∂2f(x̄)

∂x2
i

]
≥ 0

.

Obviously, we have that

min
xi∈[ui,vi]

[
ci,i,i(xi − x̄i) +

1

2

∂2f(x̄)

∂x2
i

]
= min{ci,i,i(ui − x̄i) +

1

2

∂2f(x̄)

∂x2
i

, ci,i,i(vi − x̄i) +
1

2

∂2f(x̄)

∂x2
i

}

= θi,x̄

= αi,x̄.

Hence min{0, αi,x̄} = 0 = ˜̄xi(∇f(x̄))i.

For i = m+ 1, . . . , n, consider the following cases:

4◦. If x̄i = ui, then (2.10) is equivalent to

gi,x̄(xi) := ci,i,i(xi − x̄i)2 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≥ 0, for xi = vi

⇔ (∇f(x̄))i ≥ −αi,x̄

⇔ ˜̄xi(∇f(x̄))i ≤ αi,x̄.
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5◦. If x̄i = vi, then (2.10) is equivalent to

gi,x̄(xi) := ci,i,i(xi − x̄i)2 +
1

2

∂2f(x̄)

∂x2
i

(xi − x̄i) + (∇f(x̄))i ≤ 0, for xi = ui

⇔ (∇f(x̄))i ≤ αi,x̄

⇔ ˜̄xi(∇f(x̄))i ≤ αi,x̄.

Hence, if x̄ is a global minimizer of (MCP ), then the condition [GNC] holds.

Remark 2. Let x̄ ∈ S, and let h(y) := f(y1, . . . , ym, x̄m+1, . . . , x̄n), where y = (y1, . . . , ym)T

∈
m∏
i=1

[ui, vi] and f(x) is decided by (2.1). x̄ is a local minimizer of the problem (MCP ) im-

plies that ȳ = (x̄1, . . . , x̄m)T is a traditional local minimizer of h(y) on
∏m

i=1[ui, vi]. Then

the following KKT condition holds: for any i = 1, · · · ,m, ∃λi ≥ 0 and µi ≥ 0, such that

(∇f(x̄))i + λi − µi = 0

λi(x̄i − vi) = 0

µi(x̄i − ui) = 0,

which is equivalent to

[KKT ] bx̄i = ˜̄xi(∇f(x̄))i ≤ 0, i = 1, · · · ,m.

Obviously, we have that

[GNC]⇒ [LNC]⇒ [KKT ].

But

[KKT ] ; [LNC] ; [GNC].

To prove [GNC] ⇒ [LNC], by (2.9), we just need to prove that ηi,x̄ ≤ θi,x̄ when yi,x̄
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∈ (ui, vi), ˜̄xici,i,i < 0 and i ∈ {1, . . . ,m} \mx̄ since in the other cases αi,x̄ = θi,x̄. Actually,

we have that ηi,x̄ < θi,x̄ when yi,x̄ ∈ (ui, vi), ˜̄xici,i,i < 0 and i ∈ {1, . . . ,m} \mx̄.

In fact, if ˜̄xici,i,i < 0, then

ηi,x̄ − θi,x̄ < 0⇔

˜̄xi
ci,i,i

{[˜̄xi 1
16ci,i,i

[∂
2f(x̄)

∂x2
i

]2
]
−
[
−˜̄xici,i,i(vi − ui)2 + 1

2
∂2f(x̄)

∂x2
i

(vi − ui)
]}

> 0.

And

˜̄xi
ci,i,i

{[˜̄xi 1

16ci,i,i
[
∂2f(x̄)

∂x2
i

]2
]
−
[
−˜̄xici,i,i(vi − ui)2 +

1

2

∂2f(x̄)

∂x2
i

(vi − ui)
]}

=
1

16c2
i,i,i

[
∂2f(x̄)

∂x2
i

]2 + (vi − ui)2 − 1

2

˜̄xi
ci,i,i

∂2f(x̄)

∂x2
i

(vi − ui)

=

[
(vi − ui)−

1

4

˜̄xi
ci,i,i

∂2f(x̄)

∂x2
i

]2

.

If yi,x̄ ∈ (ui, vi) and i ∈ {1, . . . ,m} \mx̄, then we have that

(vi − ui)−
1

4

˜̄xi
ci,i,i

∂2f(x̄)

∂x2
i

=

 vi − yi,x̄ > 0 if x̄i = ui

yi,x̄ − ui < 0 if x̄i = vi

.

Hence if yi,x̄ ∈ (ui, vi), ˜̄xici,i,i < 0 and i ∈ {1, . . . ,m} \ mx̄, then ηi,x̄ − θi,x̄ < 0, i.e.,

ηi,x̄ < θi,x̄ which means that [GNC] implies [LNC]. But the following example illustrates

that

[KKT ] ; [LNC] ; [GNC].
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Example 1. Consider the problem

min f(x) := −2x3
1 + 2x2

1x2 − x2
1 + 2x1x2 − 3x2

2 + 8x1 + 2x2

s.t.

x1 ∈ [−4, 1], x2 ∈ {−2, 2}.

We have ∇f(x) = (−6x2
1 + 4x1x2 − 2x1 + 2x2 + 8, 2x2

1 + 2x1 − 6x2 + 2)T , ∂2f(x)

∂x2
1

=

−12x1 + 4x2 − 2, ∂2f(x)

∂x2
2

= −6. We consider the following three points: x̄ = (−2,−2)T ,

ȳ = (1,−2)T and z̄ = (−1, 2)T . From figure 2.1, we can see that x̄ = (−2,−2)T is the

global minimizer and ȳ = (1,−2)T is a local minimizer of Example 1. It is easy to check that

both [GNC] and [LNC] hold at x̄, while [LNC] holds at ȳ, but [GNC] does not hold at ȳ,

furthermore, [KKT ] holds at z̄, but [LNC] does not hold at z̄.

In fact, ∇f(x̄) = (0, 18)T , bx̄1 = 0, bx̄2 = −18, θ1,x̄ = 1, θ2,x̄ = −12; α1,x̄ = 1,

α2,x̄ = −12. Thus bx̄1 ≤ 0, bx̄1 ≤ θ1,x̄, bx̄2 ≤ θ2,x̄ which means that [LNC] holds at x̄;

bx̄1 ≤ 0, bx̄1 ≤ α1,x̄, bx̄2 ≤ α2,x̄ which means that [GNC] holds at x̄.

While ∇f(ȳ) = (−12, 18), bȳ1 = −12, bȳ2 = −18, θ1,ȳ = −5, θ2,ȳ = −12; α1,ȳ = η1,ȳ =

−15.1250, α2,ȳ = −12. Here bȳ1 ≤ 0, bȳ1 ≤ θ1,ȳ, bȳ2 ≤ θ2,ȳ which means that [LNC] holds

at ȳ; but bȳ1 > α1,ȳ, so [GNC] does not hold at ȳ.

Furthermore, ∇f(z̄) = (0,−10), bz̄1 = 0, bz̄2 = −10, θ1,z̄ = 5, θ2,z̄ = −12. Here bz̄1 ≤ 0

which means that [KKT ] holds at z̄; but bz̄2 > θ2,z̄, so [LNC] does not hold at z̄.
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Figure 2.1.: The behavior of f(x) on [−4, 1]× {−2, 2} in Example 1

Corollary 2. Let x̄ ∈ S. Ifm = 0 and x̄ is a global minimizer of (MCP ), then the following

condition [GNCD] holds:

[GNCD] bx̄ ≤ αx̄,

where αx̄ = θx̄. Hence [GNCD] = [LNCD].

It can be obtained directly from Theorem 4.

Corollary 3. Let x̄ ∈ S. Ifm = n and x̄ is a global minimizer of (MCP ), then the following

condition [GNCC] holds:

[GNCC] bx̄ ≤ 0 and bx̄ ≤ αx̄.

It can be obtained directly from Theorem 4.
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Remark 3. If cj,l,r = 0 for j + l + r = 3, 0 ≤ j, l, r ≤ 3, then the problem (MCP ) reduces

to a quadratic programming problem with mixed variables:

(MQP ) min f(x) =
1

2
xTAx+ aTx

s.t.

xi ∈ [ui, vi], i = 1, . . . ,m,

xi ∈ {ui, vi}, i = m+ 1, . . . , n,

where A = (aij)n×n is an n× n symmetric matrix. In this case,

αi,x̄ = θi,x̄ =


1
2
aii, i ∈ mx̄

1
2
aii(vi − ui), otherwise

.

Then, the necessary global optimality condition [GNC] for the problem (MQP ) is equiva-

lent to the following condition:

[GNC]′

 bx̄i ≤ 0, ∀i ∈ {1, . . . ,m},

bx̄i ≤ 1
2
aii(vi − ui), ∀i ∈ {1, . . . , n}.

When ui = −1 and vi = 1, [GNC]′ is just the condition [NC1] given in Theorem 3.7 in [145]

for a quadratic optimization problem with mixed variables.

2.3. Optimization methods for (MCP )

2.3.1. Weakly local optimization method for (P )

In this subsection, we will design a weakly local optimization method for the problem (P )

according to the necessary condition [LNCP ].
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Definition 14. Let x̄ ∈ S. x̄ is said to be a weakly local minimizer of the problem (P ) iff x̄

satisfies the condition [LNCP ].

Obviously, a local minimizer of the problem (P ) is also a weakly local minimizer of the

problem (P ) since condition [LNCP ] is a necessary condition for x̄ to be a local minimizer

of the problem (P ).

Algorithm 3. Weakly local optimization method for (P ):(WLOM).

Step 0. Take an initial point X1 = (x1
1, . . . , x

n
1 )T ∈ S. Let x̄ := X1, k := 1.

Step 1. Check whether the condition [LNCP ]1 holds:

[LNCP ]1 bx̄i ≤ 0, i = 1, . . . ,m.

If [LNCP ]1 holds, go to Step 3; otherwise go to Step 2.

Step 2. Let h(y) := f(y1, . . . , ym, x̄m+1, . . . , x̄n), where y = (y1, . . . , ym)T and y ∈
m∏
i=1

[ui, vi]. Find a traditional local minimizer y∗ = (y∗1, . . . , y
∗
m)T of h(y) on

m∏
i=1

[ui, vi]

starting from point ȳ = (x̄1, . . . , x̄m)T (any traditional (gradient based) local optimiza-

tion methods can be used to find the traditional local minimizer). Let k := k + 1, Xk :=

(y∗1, . . . , y
∗
m, x̄m+1, . . . , x̄n)T and let x̄ := Xk, go to Step 3.

Step 3. Check whether the following condition [LNCP ]2 holds:

[LNCP ]2 f(x̄) ≤ f(x),∀x ∈
n⋃
i=1

Ni(x̄).

If [LNCP ]2 does not hold, go to Step 4; otherwise, go to Step 5.

Step 4. Let x∗ = (x∗1, . . . , x
∗
n)T := argmin {f(x) | x ∈

n⋃
i=1

Ni(x̄)}, let x̄ := x∗ and go to

Step 1.

Step 5. Stop. x̄ is a weakly local minimizer of the problem (P ).
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Theorem 5. For a given initial point X1 ∈ S, we can obtain a weakly local minimizer x̄

of the problem (P ) in finite iteration times by the given weakly local optimization method

(WLOM).

Proof. Firstly, by Remark 2, we know that in step 2, if y∗ := (y∗1, . . . , y
∗
m)T is a traditional

local minimizer of h(y) on
m∏
i=1

[ui, vi] starting from the point (x̄1, . . . , x̄m)T , let k := k + 1,

Xk := (y∗1, . . . , y
∗
m, x̄m+1, . . . , x̄n)T and let x̄ := Xk, then bx̄i ≤ 0,∀i = 1, . . . ,m.

Secondly, from step 3 to step 4, since [LNCP ]2 does not hold and let x∗ = (x∗1, . . . , x
∗
n)T :

= argmin {f(x) | x ∈
n⋃
i=1

Ni(x̄)}, then we must have that f(x∗) < f(x̄). In fact, since

[LNCP ]2 does not hold, there must exist an i0 ∈ {1, . . . , n} and a yi0 ∈ Ni0(x̄) such that

f(yi0) < f(x̄). By f(x∗) ≤ f(yi0), we have that f(x∗) < f(x̄).

Here we just need to prove that Algorithm (WLOM) needs only finite iteration times

from step 1 to step 5. Let

η := min

{
|f(x)− f(y)|

∣∣x, y ∈ n∏
i=1

{ui, vi} and f(x) 6= f(y)

}
,

M := max{f(x) | x ∈
n∏
i=1

{ui, vi}} and m := min{f(x) | x ∈
n∏
i=1

{ui, vi}}.

If M = m, we have
{
|f(x)− f(y)|

∣∣x, y ∈ n∏
i=1

{ui, vi} and f(x) 6= f(y)

}
= ∅, then we

define that η = 0. If M 6= m, then we have that η > 0. If η = 0, then condition [LNCP ]2

must hold. Thus Algorithm (WLOM) needs only one iteration from step 1 to step 5. Here,

we suppose that η > 0. Then a weakly local minimizer x̄ of the problem (P ) starting from a

given point X1 can be obtained in at most M−m
η

+ 1 steps by Algorithm (WLOM).

Indeed, since f(x∗) < f(x̄) from step 3→ step 4, there are at most M−m
η

iteration times

from step 3→ step 4. Obviously, the iteration time from step 1→ step 5 is less than or equal

to the iteration times from step 1→ step 4 plus 1, and the iteration time from step 1→ step

4 is equal to the iteration times from step 3 → step 4. Hence, the total iteration time from
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step1 to step 5 is at most M−m
η

+ 1.

2.3.2. Strongly local optimization method for (MCP )

In this subsection, we will design a strongly local optimization method for the problem

(MCP ) according to the global necessary optimality condition [GNC].

Definition 15. Let x̄ ∈ S. x̄ is said to be a strongly local minimizer of the problem (MCP )

iff x̄ satisfies the condition [GNC].

Obviously, x̄ is a strongly local minimizer of the problem (MCP )⇒ x̄ is a weakly local

minimizer of the problem (MCP ). By Example 1, we know that ȳ is a weakly local mini-

mizer of the problem (MCP ) ; ȳ is a strongly local minimizer of the problem (MCP ).

For the problem (MCP ), let

N ′i(x̄) : = {x̄+ (zi − x̄i)ei | zi ∈ {yi,x̄} ∩ (ui, vi)}, i = 1, . . . ,m, (2.11)

where yi,x̄ is defined by (2.8), ei with the ith component is 1 and the others are 0. Note that

|N ′i(x̄)| ≤ 1.

Algorithm 4. Strongly local optimization method for (MCP ):(SLOM).

Step 0. Take an initial point X1 = (x1
1, . . . , x

n
1 )T ∈ S. Let x̄ := X1, k := 1.

Step 1. Check whether the condition [GNC]1 holds:

[GNC]1 bx̄i ≤ 0, i = 1, . . . ,m.

If [GNC]1 holds, go to Step 3; otherwise go to Step 2.

Step 2. Let h(y) := f(y1, . . . , ym, x̄m+1, . . . , x̄n), where y = (y1, . . . , ym)T and y ∈
m∏
i=1

[ui, vi]. Find a traditional local minimizer y∗ = (y∗1, . . . , y
∗
m)T of h(y) on

m∏
i=1

[ui, vi]
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starting from point ȳ = (x̄1, . . . , x̄m)T (any traditional (gradient based) local optimiza-

tion methods can be used to find the traditional local minimizer). Let k := k + 1, and

let Xk := (y∗1, . . . , y
∗
m, x̄m+1, . . . , x̄n)T . Let x̄ := Xk, go to Step 3.

Step 3. Check whether the following condition [GNC]2 holds:

[GNC]2 bx̄i ≤ αi,x̄,∀i = 1, . . . , n.

If [GNC]2 does not hold, go to Step 4; otherwise, go to Step 5.

Step 4. Let

x∗ = (x∗1, . . . , x
∗
n)T := argmin {f(x) | x ∈ ∪ni=1Ni(x̄) ∪mi=1 N

′
i(x̄)},

let x̄ := x∗ and goto Step 1.

Step 5. Stop. x̄ is a strongly local minimizer of the problem (MCP ).

Theorem 6. For a given initial point X1 ∈ S, we can obtain a strongly local minimizer x̄ of

the problem (MCP ) in finite iteration times by the given strongly local optimization method

(SLOM).

Proof. The proof is similar as the proof of Theorem 5. Here we just need to replace [LNCP ]1

and [LNCP ]2 by [GNC]1 and [GNC]2, respectively, and replace η,M and m by

min

{
|f(x)− f(y)|

∣∣x, y ∈ m∏
i=1

{ui, vi, {yi,x̄} ∩ (ui, vi)}
n∏

i=m+1

{ui, vi}, f(x) 6= f(y)

}
,

max

{
f(x) | x ∈

m∏
i=1

{ui, vi, {yi,x̄} ∩ (ui, vi)}
n∏

i=m+1

{ui, vi}

}
,

min

{
f(x) | x ∈

m∏
i=1

{ui, vi, {yi,x̄} ∩ (ui, vi)}
n∏

i=m+1

{ui, vi}

}
,
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respectively.

Remark 4. In Algorithm 3 and Algorithm 4, in step 2, it is very easy to obtain a traditional

local minimizer of h(y) on
m∏
i=1

[ui, vi] since any traditional (gradient based) local optimiza-

tion methods, such as the Newton method, the Quasi-Newton method and the Conjugate

gradient method can be used here. In section 2.4, the optimization subroutine within the

optimization Toolbox in Matlab is used to find the traditional local minimizers. In Algorithm

3, in step 4, it is easy to find the point x∗ such that x∗ = argmin{f(x) | x ∈
n⋃
i=1

Ni(x̄)},

i.e., f(x∗) ≤ f(x) for any x ∈
n⋃
i=1

Ni(x̄) since |
n⋃
i=1

Ni(x̄)| ≤ 2n. Similarly, in Algo-

rithm 4, in step 4, it is also easy to find the point x∗ such that x∗ = argmin{f(x) | x ∈⋃n
i=1Ni(x̄)

⋃m
i=1N

′
i(x̄)}, i.e., f(x∗) ≤ f(x) for any x ∈

⋃n
i=1Ni(x̄)

⋃m
i=1N

′
i(x̄) since

|
⋃n
i=1Ni(x̄)

⋃m
i=1 N

′
i(x̄)| ≤ 2n+m.

2.3.3. Global optimization method for (MCP )

To introduce the global optimization method, in this chapter we will use the auxiliary func-

tion which was presented by (1.5) in Chapter 1. For the properties of this auxiliary function,

see Chapter 1. Note, the K-K-T point defined in property 3 in Chapter 1 and the weakly local

minimizer defined in this chapter are the same thing.

In the following, we will introduce a global optimization method to find a global minimizer

of the problem (MCP ). This method combines the weakly local optimization method for

the problem (P ) and the strongly local optimization method for the problem (MCP ) and the

auxiliary function Fr,x̄(x) which was presented by (1.5) in Chapter 1. The auxiliary function

is used to escape the current local minimizer and to find a better feasible point of the problem

(MCP ).

Algorithm 5. Global optimization method for (MCP ):(GOM).
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Step 0. Take an initial point x1 ∈ S, a sufficiently small positive number µ, and an initial

r1 > 0. Set r := r1, k := 1.

Step 1. Use the strongly local optimization method (SLOM) to solve the problem (MCP )

starting from xk. Let x∗k be the obtained strongly local minimizer of the problem (MCP ).

Step 2. Construct the following auxiliary function

Fr,x∗k(x) =
1

‖x− x∗k‖2 + 1
gr

(
f(x)− f(x∗k)) + fr(f(x)− f(x∗k)

)
.

Consider the following problem:

min Fr,x∗k(x) (2.12)

s.t. x ∈ S.

Let x̄k := x∗k, δ ≤ δ(x̄k) and i := 1, go to Step 3, where δ(x̄k) is defined by (2.4).

Step 3. Let x̄ik ∈ Ni,δ(x̄k) \ {x̄ik}. If f(x̄ik) < f(x∗k), let xk+1 := x̄ik, k := k + 1, go to Step

1; otherwise go to Step 4.

Step 4. Use the weakly local optimization method (WLOM) to solve the problem (2.12)

starting from x̄ik. Let x̄∗k be the obtained weakly local minimizer of the problem (2.12). If

f(x̄∗k) < f(x∗k), let xk+1 := x̄∗k, k := k + 1, go to Step 1; otherwise, let i := i+ 1, if i ≤ m,

go to Step 3, else go to Step 5.

Step 5. If r ≥ µ, decrease r, such as, let r := r/10, go to Step 2; otherwise, go to Step 6.

Step 6. Stop and x∗k is the obtained global minimizer or approximate global minimizer of the

problem (MCP ).

The numerical examples given in the following Section illustrate that the global minimization

method Algorithm 5 is very efficient and stable.
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2.4. Numerical examples

In this section, we apply Algorithm 5 to the following test examples. In the following exam-

ples, we take µ = r1 = 0.01.

xk: the k−th initial point;

f(xk): the function value of f(x) at the k−th initial point xk;

x∗k: the k−th strongly local minimizer of the problem (MCP ) starting from xk;

f(x∗k): the function value of f(x) at x∗k;

Example 2. Consider the problem

min f(x) := 4x3
3 + x1x2x4 + 3x2

1x2 + 2x1x
2
2 − 5x2x4 − 2x2

1 + x2
2

− x1x2 − 2x3 − 7x2

s.t.

x1, x2 ∈ [−3, 5], x3, x4 ∈ {−3, 5}.

Table 2.1 records the numerical results of solving Example 2 by Algorithm 5. From it, we

see the first strongly local minimizer x∗1 = (−2.6923, 5,−3, 5)T starting from the initial point

x1 = (5, 5, 5, 5)T is the global minimizer of Example 2 by Algorithm 5, which illustrates that

the strongly local optimization method is efficient. The other first strongly local minimizers

starting from the other initial points: x1 = (1, 1, 5,−3)T , x1 = (1.4, 1.9,−3,−3)T and

x1 = (3.2,−2.1, 5, 5)T are not the global minimizer, then we use the auxiliary function

to find the second initial points, and the second strongly local minimizers are the global

minimizer of Example 2 by Algorithm 5.
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Table 2.1.: Numerical results for Example 2

k xk f(xk) x∗k f(x∗k)

1


5
5
5
5

 1030.0000


−2.6923

5
−3
5

 -331.2308

2


1
1
5
−3

 498.0000


−3
−3
−3
−3

 -306.0000


−2.6923

5
−3
5

 -331.2308


−2.6923

5
−3
5

 -331.2308

3


1.4
1.9
−3
−3

 −76.4700


−3
−3
−3
−3

 -306.0000


−2.6923

5
−3
5

 -331.2308


−2.6923

5
−3
5

 -331.2308

4


3.2
−2.1

5
5

 477.9600


5

−2.86
−3
5

 -242.2000


−2.6923

5
−3
5

 -331.2308


−2.6923

5
−3
5

 -331.2308

Example 3. Consider the problem

min f(x) := 3x3
1 + 4x3

2 + x3
3 + 2x3

4 − x2x3x4 − 2x1x2x3 − 3x2
1x4

− 4x1x
2
2 − 2x2

1 + x2
2 + x1x2 − 2x1x3 − x2x4 − 2x1

s.t.

x1, x2 ∈ [−3, 5], x3, x4 ∈ {−3, 5}.
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Table 2.2 records the numerical results of solving Example 3 by Algorithm 5. From it, we

see the first strongly local minimizer x∗1 = (4.9641,−3,−3, 5)T starting from the initial

point x1 = (2.5,−2.5, 5, 5)T is the global minimizer of Example 3 by Algorithm 5, which

illustrates that the strongly local optimization method is efficient. The other first strongly

local minimizers starting from the other initial points are not the global minimizer, then we

use the auxiliary function to find the second initial points or the third initial points, and

the second strongly local minimizers or the third strongly local minimizers are the global

minimizer of Example 3 by Algorithm 5.

Table 2.2.: Numerical results for Example 3

k xk f(xk) x∗
k f(x∗

k)

1


2.5

−2.5

5

5

 298.1250


4.9641

−3

−3

5

 -221.0359

2


−2.6

2.7

−3

−3

 −0.3100


1.7705

−3

−3

−3

 -217.2440


4.9641

−3

−3

5

 -221.0359


4.9641

−3

−3

5

 -221.0359

3


1

1

5

−3

 79.0000


0.9364

−3

−3

−3

 -203.0281


1.7705

−3

−3

−3

 −217.2440


1.7705

−3

−3

−3

 -217.2440


4.9641

−3

−3

5

 -221.0359


4.9641

−3

−3

5

 -221.0359

4


−2

2

5

−3

 239.0000


0.9364

−3

−3

−3

 -203.0281

continue goes here. . .
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k xk f(xk) x∗
k f(x∗

k)


1.7705

−3

−3

−3

 −217.2440


1.7705

−3

−3

−3

 -217.2440


4.9641

−3

−3

5

 -221.0359


4.9641

−3

−3

5

 -221.0359

Example 4. Consider the problem

min f(x) := (x8 − 1) + 2(x9 − x8)2 + 3(x3 − x2)3 + 4(x2 − x10)3

+(x2 − x1)2 + (x4 − x3) + 5(x5 − x4)2 + (x6 − x5)3 + (x7 − x6)3

s.t.

x1, · · · , x7 ∈ [−3, 5], x8, x9, x10 ∈ {−3, 5}.

Table 2.3 records the numerical results of solving Example 4 by Algorithm 5. From Table

2.3, we see that the first strongly local minimizer starting from the initial points: x1 =

(3, 0, 3, 0, 3, 0, 3, 5,−3,−3)T and x1 = (5, 4, 3, 2, 1, 2, 3,−3, 5, 5)T are the global minimizer

of Example 4, which illustrates that the strongly local optimization method is efficient. The

other first strongly local minimizers starting from the other initial points are not the global

minimizer, then we use the auxiliary function to find the second initial points, and the second

strongly local minimizers are the global minimizer of Example 4 by Algorithm 5.

Table 2.3.: Numerical results for Example 4

k xk f(xk) x∗
k f(x∗

k)

continue goes here. . .
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k xk f(xk) x∗
k f(x∗

k)

1



3

0

3

0

3

0

3

5

−3

−3



372.0



−3

−3

−2.6666

4.3227

4.4227

5

−3

−3

−3

5



-2556.7

2



5

4

3

2

1

2

3

−3

5

5



124.0



−3

−3

−2.6667

4.3226

4.4226

5

−3

−3

−3

5



-2556.7

3



0

0

0

0

0

0

0

5

5

−3



112.0



−3

−3

−2.6667

4.8999

5

−3

−2.9944

5

5

5



-2548.3



−3

−3

−2.6667

4.3226

4.4226

5

−3

−3

−3

5



-2556.7



−3

−3

−2.6667

4.3226

4.4226

5

−3

−3

−3

5



-2556.7

4



−1

0

1

2

3

4

5

5

5

5



−484.0



−3

−3

−2.6666

4.3226

4.4226

5

−3

5

5

5



-2548.7

continue goes here. . .
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k xk f(xk) x∗
k f(x∗

k)



−3

−3

−2.6667

4.3226

4.4226

5

−3

−3

−3

5



-2556.7



−3

−3

−2.6667

4.3226

4.4226

5

−3

−3

−3

5



-2556.7

Example 5. Consider the problem

min f(x) := 2(x10 − x2
9)(1− x8) + 3(x1 − x2

10)(1− x9)

+ 4(x2 − x2
1)(1− x10) + 5(x3 − x2

2)(1− x1)

+ 6(x4 − x2
3)(1− x2) + 7(x5 − x2

4)(1− x3)

+ 8(x6 − x2
5)(1− x4) + 9(x7 − x2

6)(1− x5)

s.t.

x1, · · · , x7 ∈ [−3, 5], x8, x9, x10 ∈ {−3, 5}.

Table 2.4 records the numerical results of solving Example 5 by Algorithm 5. From Table

2.4, we can see that we obtained three global minimizers which are: (-3,5,-3,5,-3,5,-3,-3,

-3,5)T , (-3,-3,-3, -3,-3,5,-3-3,-3,-3)T and (-3,5,-3,5,-3,5,-3,-3,-3,-3)T with the optimal value

−2432.0000. The global minimizer x̄ =(-3,5,-3,5,-3,5,-3,-3,-3,5)T is just the first strongly lo-

cal minimizer of Example 5 by Algorithm 5 starting from the initial point (0,0,0,0,0,0,0,5,5,5)T ,

which illustrates that the strongly local optimization method is efficient.

The global minimizer ȳ =(-3,-3,-3,-3,-3,5,-3,-3,-3,-3)T is the first strongly local minimizer of

Example 5 by Algorithm 5 starting from initials (-2,-2,-2,-2,-2,-2,-2,5,5,5)T and (2,2,1,-1,

-1,0,3,-3,5,5)T , which illustrates that the strongly local optimization method is efficient.

The global minimizer z̄ =(-3,5,-3,5,-3,5,-3,-3,-3,-3)T is the second strongly local minimiz-
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ers of Example 5 by Algorithm 5 starting from the initial points ( 0,1,2,3,4,5,-1,5,5,-3)T ,

(5,5,-3,5,5,-3,-3,5,5,-3)T and ( 1,-1,2,-2,3,-3,0,-3,-3,-3)T .

Table 2.4.: Numerical results for Example 5

k xk f(xk) x∗
k f(x∗

k)

1



0

0

0

0

0

0

0

5

5

5



460.0000



−3

5

−3

5

−3

5

−3

−3

−3

5



-2432.0000

2



−2

−2

−2

−2

−2

−2

−2

5

5

5



−50.0000



−3

−3

−3

−3

−3

5

−3

−3

−3

−3



-2432.0000

3



2

2

1

−1

−1

0

3

−3

5

5



213.0000



−3

−3

−3

−3

−3

5

−3

−3

−3

−3



-2432.0000

4



0

1

2

3

4

5

−1

5

5

−3



1266.0000



5

−1

−3

5

−3

5

−3

−3

5

−3



-2224.0000

continue goes here. . .
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k xk f(xk) x∗
k f(x∗

k)



−3

5

−3

5

−3

5

−3

−3

−3

−3



-2432.0000



−3

5

−3

5

−3

5

−3

−3

−3

−3



-2432.0000

5



5

5

−3

5

5

−3

−3

5

5

−3



1376.0000



5

−3

5

−1

−3

5

−3

−3

5

−3



-2128.0000



−3

5

−3

5

−3

5

−3

−3

−3

5



-2432.0000



−3

5

−3

5

−3

5

−3

−3

−3

−3



-2432.0000

6



1

−1

2

−2

3

−3

0

−3

−3

−3



−415.0000



5

−3

5

−3

5

−0.4444

5

−3

5

−3



-2091.1000



−3

5

−3

5

−3

5

−3

−3

−3

5



-2432.0000



−3

5

−3

5

−3

5

−3

−3

−3

−3



-2432.0000
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2.5. Conclusion

Cubic polynomial programming problems with mixed variables (MCP ) are considered in

this chapter. We proposed a necessary local optimality condition for general problems with

mixed variables and proposed necessary local and global optimality conditions for (MCP ).

As well-known, the traditional local optimization methods are proposed according to KKT

conditions for optimization problems with continuous variables. In this chapter, we designed

a weakly local optimization method for general problems with mixed variables according

to the necessary local optimality condition and a strongly local optimization method for

(MCP ) according to the necessary global optimality condition. Moreover, a novel global

optimization method has been designed to solve (MCP ) by combining local optimization

methods together with an auxiliary function.
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Chapter 3.

Global optimality conditions and

optimization methods for quartic

programming problems (QPOP )

In this chapter multivariate quartic programming problems (QPOP) are considered. Prob-

lems (QPOP) arise in various practical applications and are proved to be NP-hard. We dis-

cuss a necessary global optimality condition for the problem (QPOP). Then we present a

new (strongly or ε−strongly) local optimization method according to the necessary global

optimality condition, which may escape and improve some KKT points. Finally we design

a global optimization method for the problem (QPOP) by combining the new (strongly or

ε−strongly) local optimization method and an auxiliary function. Numerical examples show

that our algorithms are efficient and stable.
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3.1. Introduction

In this chapter, we consider the following fourth order (quartic) polynomial programming

problems:

(QPOP ) min f(x) =
n∑

i,j,k,l=0
j≥i,k≥j,l≥k

cijklxixjxkxl (3.1)

s.t. xi ∈ [ui, vi], i = 1, . . . , n,

where x0 ≡ 1, ui, vi, cijkl ∈ R and ui < vi for any i = 1, . . . , n, n is a positive integer

number. Throughout of this chapter, let X := {(x1, . . . , xn)T | xi ∈ [ui, vi], i = 1, . . . , n}.

The motivation is from two aspects. One is that problems (QPOP) have a wide range of prac-

tical applications. To take describing complicated objects for example, previous research was

confined to fitting curves in the plane and surfaces in 3-D with conics, e.g., implicit polyno-

mials of degree 2 which are restricted [33]. the authors in [33] justified fourth-degree poly-

nomials for 2-D curves and 3-D surfaces and illustrated that a nice range of shapes that can

be represented by fourth-degree implicit polynomials. In [88], Qi and Teo raised the concept

of normal polynomial and showed that the multivariate polynomials resulting from signal

processing [4], [61], [62], [92] are normal quartic polynomials. Furthermore, the author for-

mulated the sensor network localization problem as finding the global minimizer of a quartic

polynomial in [78]. Another example is, many digital communications schemes involve the

transmission of constant modulus (CM) signals; hence, several schemes for blind equaliza-

tion of CM signals have been developed. The direct formulation of the CM equalization

problem is a fourth-order multivariate polynomial [15]. In addition, Martin L. Hazelton pre-

sented a new model for estimation of origin-destination (O-D) matrices which was actually

a quartic polynomial problem on [96]. More examples are referred to [1], [89], [102], [139].

Another motivation is that as is well-known, the polynomial programming problem is NP-
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hard even when degree is fixed to be four [137], [139].

As special cases of polynomial programming problems, problems (QPOP) have attracted

much attention recently, see [1], [89], [139] and [140]. Paper [1] focused on a question that

has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity

for quartic polynomials. [1] showed that deciding convexity of polynomials is strongly NP-

hard already for polynomials of degree 4. Paper [89] designed a global descent algorithm

for normal quartic polynomials to find a global minimizer (n = 2) or an ε-global mini-

mizer (n ≥ 3). Furthermore, paper [140] extended the global descent algorithm to general

normal polynomials. Paper [139] presented a general semidefinite relaxation scheme for

quartic homogeneous polynomial optimization under quadratic constraints by using a matrix

listing transformation X = xxT to relax the quartic programming problem with quadratic

constraints to a quadratic programming problem with linear constraints.

After we presented necessary global optimality conditions and designed optimization meth-

ods for cubic polynomial optimization problems with mixed variables in chapter 3, we try to

develop a necessary global optimality condition and optimization methods for the problem

(QPOP) in this chapter. We will first discuss a necessary global optimality condition. If a

point is a global minimizer, then it is not only a KKT point, but also a global minimizer along

any direction. Some specific directions are obtained by using some linear transformations.

Along these special directions, the objective function can be simplified into univariate poly-

nomial functions. Obviously, we could easily obtain a global minimizer for a fourth degree

univariate polynomial function. Since traditional local optimization method are designed

based on KKT conditions, we will present a new (strongly or ε−strongly) local optimization

method based on the necessary global optimality condition which may improve some KKT

points. Finally, we will design a global optimization method to solve the problem (QPOP)

by combining the new local optimization method and an auxiliary function. Numerical ex-

amples illustrate the efficiency of the optimization methods proposed in the chapter.
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3.2. Necessary global optimality condition for

(QPOP )

In this section, we will derive a necessary condition for the problem (QPOP ).

Definition 16. [100] Consider the problem of minimizing f(x) over feasible set S, and let

x̄ ∈ S. If f(x̄) ≤ f(x) for all x ∈ S, x̄ is called a global minimum. If there exists an

δ−neighborhood Nδ(x̄) ⊂ S around x̄ such that f(x̄) ≤ f(x) for each x ∈ Nδ(x̄), x̄ is

called a local minimum.

Remark 5. Let x̄ ∈ S be a local minimizer of the problem (QPOP ). Then the following

KKT necessary condition holds: for any i = 1, · · · , n, ∃λi ≥ 0 and µi ≥ 0, such that

(∇f(x̄))i + λi − µi = 0

λi(x̄i − vi) = 0

µi(x̄i − ui) = 0

which is equivalent to

[KKT ] ˜̄xi(∇f(x̄))i ≤ 0, i = 1, · · · , n.

where

˜̄xi : =


−1, if x̄i = ui

1, if x̄i = vi

sign(∇f(x̄))i, if ui < x̄i < vi

,
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and sign((∇f(x̄))i) =


−1, (∇f(x̄))i < 0

0, (∇f(x̄))i = 0

1, (∇f(x̄))i > 0

.

In the following, we will give a necessary global optimality condition for the problem

(QPOP ). If a point x̄ is a global minimizer, then it is not only a KKT point, but also a

global minimizer on any line through x̄ and within the feasible set X . Some specific lines

are obtained by using linear transformations. On these special lines, the objective function

can be simplified into univariate quartic functions. Then, we try to find the global minimizers

for these univariate quartic functions.

Before we present the necessary global optimality condition, we give lemma 1 for univariate

quartic functions.

Let ψ(y) = a(y − ȳ)4 + b(y − ȳ)3 + c(y − ȳ)2 + d(y − ȳ), y, ȳ ∈ [l, r], where l and r are

given real numbers and l ≤ r. We give some notations.

˜̄y : =


−1, if ȳ = l

1, if ȳ = r

sign(d), if l < ȳ < r

,

θ :=

 min {a(l − ȳ)2 + b(l − ȳ) + c, a(r − ȳ)2 + b(r − ȳ) + c} , ȳ ∈ (l, r)

a(r − l)3 − ˜̄yb(r − l)2 + c(r − l), otherwise

h(y) := a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ).

ξ := min

 −
˜̄yh(Y1) if Y1 ∈ (l, r); − ˜̄yh(Y2) if Y2 ∈ (l, r);

a(r − l)3 − ˜̄yb(r − l)2 + c(r − l)
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α : =



˜̄y c2
4b
, if a = 0, Y3 ∈ (l, r) and ȳ = l or r

ξ, if a 6= 0,∆ ≥ 0 and ȳ = l or r

4ac−b2
4a

, if a > 0, Y4 ∈ (l, r) and ȳ ∈ (l, r)

θ, otherwise

,

where Y1 = ȳ + −2b+
√

∆
6a

and Y2 = ȳ + −2b−
√

∆
6a

, where ∆ = 4b2 − 12ac. Y3 = ȳ − c
2b

and

Y4 = ȳ − b
2a

.

Lemma 1. ψ(y) ≥ 0, ∀y ∈ [l, r] if and only if

˜̄yd ≤ min{0, α}.

Proof: Let

ψ(y) = a(y − ȳ)4 + b(y − ȳ)3 + c(y − ȳ)2 + d(y − ȳ) ≥ 0, ∀y ∈ [l, r] (3.2)

We prove that (3.2) is equivalent to

˜̄yd ≤ min{0, α}.

by considering the following three cases: ȳ = l, ȳ = r and l < ȳ < r.

1◦. If ȳ = l, then y − ȳ ≥ 0 and (3.2) is equivalent to

a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ) + d ≥ 0,∀y ∈ [l, r],

⇔ −d ≤ a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ),∀y ∈ [l, r],

⇔ −d ≤ min
y∈[l,r]
{a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ)}

Let h(y) = a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ). The minimum of polynomial h(y) lies on

either the stationary points (roots of derivative) or the endpoints (l and r).
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When a 6= 0, the stationary points are Y1 = ȳ + −2b+
√

∆
6a

and Y2 = ȳ + −2b−
√

∆
6a

, where

∆ = 4b2 − 12ac ≥ 0. The function values are −˜̄yh(Y1) and −˜̄yh(Y2).

When a = 0, let p(y) = b(y − ȳ)2 + c(y − ȳ), the stationary point is Y3 = ȳ − c
2b

and

p(Y3) = − c2

4b
.

The function values of h(y) at the endpoints are 0 and a(r − l)3 − ˜̄yb(r − l)2 + c(r − l).

2◦. If ȳ = r, then y − ȳ ≤ 0 and (3.2) is equivalent to

a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ) + d ≤ 0,∀y ∈ [l, r],

⇔ d ≤ −a(y − ȳ)3 − b(y − ȳ)2 − c(y − ȳ),∀y ∈ [l, r],

⇔ d ≤ min
y∈[l,r]
{−a(y − ȳ)3 − b(y − ȳ)2 − c(y − ȳ)}

We can get the same results in a similar way to case 1.

3◦. If l < ȳ < r, then (3.2) is equivalent to

 a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ) + d ≤ 0, ∀y ∈ [l, ȳ)

a(y − ȳ)3 + b(y − ȳ)2 + c(y − ȳ) + d ≥ 0, ∀y ∈ (ȳ, r]

⇔

 d = ∂g(ȳ)
∂y

= 0,

q(y) := a(y − ȳ)2 + b(y − ȳ) + c ≥ 0, ∀y ∈ [l, r], y 6= ȳ

⇔


d = ∂g(ȳ)

∂y
= 0,

min
y∈[l,r]

q(y) ≥ 0.

When a 6= 0, the stationary point of q(y) is Y4 = ȳ − b
2a

and p(Y4) = 4ac−b2
4a

.

The function values of q(y) at the endpoints are a(l − ȳ)2 + b(l − ȳ) + c and a(r − ȳ)2 +

b(r − ȳ) + c.
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From the above analysis, we can see (3.2) is equivalent to that

˜̄yd ≤ min{0, α}.

Next, we present a necessary global optimality condition for the problem (QPOP ). Let

x̄ ∈ X , Q be an invertible matrix, let

x := Qy, g(y) := f(Qy) = f(x), ȳ := Q−1x̄,

and let (Q)i represent the ith row of Q, (Q)ij represent the entry of Q in the ith row and the

jth column. Then,

∂g(y)

∂yi
= (Q)i∇f(x),

∂2g(y)

∂y2
i

=
n∑
r=1

n∑
j=1

(Q)ji(Q)ri
∂2f(x)

∂xj∂xr
,

∂3g(y)

∂y3
i

=
∂(∂

2g(y)

∂y2
i

)

∂yi

=
n∑
k=1

∂(
n∑
r=1

n∑
j=1

(Q)ji(Q)ri
∂2f(x)
∂xj∂xr

)

∂xk

∂xk
∂yi

=
n∑
k=1

n∑
r=1

n∑
j=1

(Q)ji(Q)ri(Q)ki
∂3f(x)

∂xj∂xr∂xk
.

∂4g(y)

∂y4
i

= 24
n∑

j,l,r,k=0
l≥j,r≥l,k≥r

cjlrk(Q)ji(Q)li(Q)ri(Q)ki.
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Let

di : =
∂g(ȳ)

∂yi
= (Q)i∇f(x̄), (3.3)

ci : =
1

2

∂2g(ȳ)

∂y2
i

=
1

2

n∑
r=1

n∑
j=1

(Q)ji(Q)ri
∂2f(x̄)

∂xj∂xr
, (3.4)

bi : =
1

6

∂3g(ȳ)

∂y3
i

=
1

6

n∑
k=1

n∑
r=1

n∑
j=1

(Q)ji(Q)ri(Q)ki
∂3f(x̄)

∂xj∂xr∂xk
, (3.5)

ai : =
1

24

∂4g(ȳ)

∂y4
i

=
n∑

j,l,r,k=0
l≥j,r≥l,k≥r

cjlrk(Q)ji(Q)li(Q)ri(Q)ki. (3.6)

Let Y = {y = Q−1x|x ∈
n∏
i=1

[ui, vi]}. For ȳ = (ȳ1, . . . , ȳn)T , let y = (ȳ1, · · · , ȳi−1, yi, ȳi+1,

· · · , ȳn)T and x = Qy. By x = Qy ∈ X =
n∏
i=1

[ui, vi], we can obtain that

u1 −
n∑

j=1
j 6=i

(Q)1j ȳj ≤ (Q)1iyi ≤ v1 −
n∑

j=1
j 6=i

(Q)1j ȳj,

...

ui −
n∑

j=1
j 6=i

(Q)ij ȳj ≤ (Q)iiyi ≤ vi −
n∑

j=1
j 6=i

(Q)ij ȳj,

...

un −
n∑

j=1
j 6=i

(Q)nj ȳj ≤ (Q)niyi ≤ vn −
n∑

j=1
j 6=i

(Q)nj ȳj.

Let4k =
n∑

j=1
j 6=i

(Q)kj ȳj = x̄k − (Q)kiȳi = x̄k − (Q)ki(Q
−1)ix̄, k = 1, · · · , n, and let

li = max

{
min

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,min

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
, (3.7)

ri = min

{
max

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,max

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
. (3.8)
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Then we can obtain the following results:

(1) li ≤ ri

(2) [li, ri] = {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y }.

In fact, (1) for the given x̄ ∈ X , let ȳ = (ȳ1, · · · , ȳi−1, ȳi, ȳi+1, · · · , ȳn)T = Qx̄, by the

discussion above, we have that li ≤ ȳi ≤ ri. Hence, li ≤ ri;

(2) for any yi ∈ [li, ri], let y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T . By the discussion above,

we have that x = Qy ∈ X , i.e., y ∈ Y .

For any yi ∈ {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y }, let y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · ,

ȳn)T . Then x = Qy ∈ X . By the discussion above, we have that li ≤ yi ≤ ri.

For convenience, here respective to the invertible matrix Q, we give some similar notations

as those given before lemma 1.

˜̄xi : =


−1, if (Q−1)ix̄ = li

1, if (Q−1)ix̄ = ri

sign(di), if li < (Q−1)ix̄ < ri

,

θi :=


min

 ai(li − (Q−1)ix̄)2 + bi(li − (Q−1)ix̄) + ci,

ai(ri − (Q−1)ix̄)2 + bi(ri − (Q−1)ix̄) + ci

 , (Q−1)ix̄ ∈ (li, ri)

ai(ri − li)3 − ˜̄xibi(ri − li)2 + ci(ri − li), otherwise

hi(yi) := ai(yi − (Q−1)ix̄)3 + bi(yi − (Q−1)ix̄)2 + ci(yi − (Q−1)ix̄).
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ξi := min


−˜̄xih(Y1,i) if Y1,i ∈ (li, ri);

−˜̄xih(Y2,i) if Y2,i ∈ (li, ri);

ai(ri − li)3 − ˜̄xibi(ri − li)2 + ci(ri − li)



αi : =



˜̄x
c2i
4bi
, if ai = 0, Y3,i ∈ (li, ri) and (Q−1)ix̄ = li or ri

ξi, if ai 6= 0,∆i ≥ 0 and (Q−1)ix̄ = li or ri
4aici−b2i

4ai
, if ai > 0, Y4,i ∈ (li, ri) and (Q−1)ix̄ ∈ (li, ri)

θi, otherwise

,

where Y1,i = (Q−1)ix̄+ −2bi+
√

∆i

6ai
and Y2,i = (Q−1)ix̄+ −2bi−

√
∆i

6ai
, where ∆i = 4b2

i −12aici.

Y3,i = (Q−1)ix̄− ci
2bi

and Y4,i = (Q−1)ix̄− bi
2ai

.

Theorem 7. (Necessary global optimality condition for (QPOP )) Let x̄ ∈ S and Q be

any given invertible matrix. If x̄ is a global minimizer of (QPOP ), then for any i = 1, . . . , n,

the following conditions hold:

[GNC]i ˜̄xidi ≤ min{0, αi}.

Proof: Let x̄ be a global minimizer of the problem (QPOP ). Let ȳ = Q−1x̄. Then for any

i = 1, . . . , n, let y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T , yi ∈ [li, ri] and x = Qy, we have that

x ∈ X . Hence, f(x)− f(x̄) ≥ 0. Furthermore,

f(x)− f(x̄)

=
1

24

∂4g(ȳ)

∂y4
i

(yi − ȳi)4 +
1

6

∂3g(ȳ)

∂y3
i

(yi − ȳi)3 +
1

2

∂2g(ȳ)

∂y2
i

(yi − ȳi)2 + (∇g(ȳ))i(yi − ȳi)

= ai(yi − ȳi)4 + bi(yi − ȳi)3 + ci(yi − ȳi)2 + di(yi − ȳi),

where ai, bi, ci and di are defined by (3.6), (3.5), (3.4) and (3.3). By Lemma 1, f(x)−f(x̄) =
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ai(yi− ȳi)4 + bi(yi− ȳi)3 + ci(yi− ȳi)2 +di(yi− ȳi) ≥ 0,∀yi ∈ [li, ri] if and only if [GNC]i

holds.

Remark 6. If Q = I , where I is the identity matrix, then ai, bi, ci, di, li, ri, and (Q−1)ix̄

given in the condition [GNC]i are determined as following:

di =
∂f(x̄)

∂xi
,

ci =
1

2

∂2f(x̄)

∂x2
i

,

bi =
1

6

∂3f(x̄)

∂x3
i

,

ai =
1

24

∂4f(x̄)

∂x4
i

,

li = ui,

ri = vi,

(Q−1)ix̄ = x̄i.

Remark 7. (1) If the problem (QPOP ) reduces to a cubic problem, i.e., no 4th order terms

in (QPOP ), then for any i = 1, . . . , n, [GNC]i transform to

˜̄xidi ≤ min{0, αi}. (3.9)

where

αi : =


˜̄xi

c2i
4bi
, if Y3,i ∈ (li, ri) and (Q−1)ix̄ = li or ri

θi, otherwise
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ai = 0, bi is the coefficient of x3
i and

θi :=


min

 bi(li − (Q−1)ix̄) + ci

bi(ri − (Q−1)ix̄) + ci

 , (Q−1)ix̄ ∈ (li, ri)

−˜̄xibi(ri − li)2 + ci(ri − li), otherwise

Others just remain the same. We can see the condition (3.9) extends the condition given in

Corollary 2.3 in reference [144] which is just the special case of (3.9) when Q = I .

(2) If the problem (QPOP ) reduces to a quadratic problem, i.e., nether 4th nor 3th order

terms in (QPOP ), then for any i = 1, . . . , n, [GNC]i transform to

˜̄xidi ≤ min{0, αi}. (3.10)

where

αi := θi

ai = bi = 0, ci is the coefficient of x2
i and

θi :=

 ci ≥ 0, (Q−1)ix̄ ∈ (li, ri)

ci(ri − li), otherwise

Others just remain the same. We can see the condition (3.10) extends the condition [NC1]

given in Theorem 3.7 in reference [145] which is just the special case of (3.10) when Q = I

if we just consider the continuous variables other than discrete variables.

(3) Obviously, when Q = I , for any i = 1, . . . , n, conditions [GNC]i include

˜̄xidi ≤ 0,
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which is the [KKT ] condition.

3.3. Optimization methods for (QPOP )

3.3.1. Strongly or ε−strongly local optimization method for

(QPOP )

In this subsection, we will design a new local optimization method (called strongly or

ε−strongly local optimization method) for the problem (QPOP ) according to the neces-

sary global optimality condition [GNC]i for any i = 1, · · · , n.

Definition 17. Let x̄ ∈ X and Q be an invertible matrix. x̄ is said to be a strongly local

minimizer of the problem (QPOP ) with respect to Q iff x̄ satisfies the necessary global

optimality condition [GNC]i for any i = 1, · · · , n.

Definition 18. Let x̄ ∈ X and Q be an invertible matrix. x̄ is said to be a ε−strongly

local minimizer of the problem (QPOP ) with respect to Q iff for any i = 1, · · · , n, either

x̄ satisfies the condition [GNC]i or there exists a point x∗i ∈ X , such that x∗i satisfies the

condition [GNC]i and |f(x̄)− f(x∗i )| ≤ ε.

Let x̄ ∈ X , Q be an invertible matrix, and let

Ni : = {ȳ + ziei | zi ∈ {li − ȳi, ri − ȳi} \ {0}}, for i = 1, . . . , n, (3.11)

Pi := {Y1,i, Y2,i | ai 6= 0,4i ≥ 0, ȳi = li or ri} ∪

{Y3,i | ai = 0, ȳi = li or ri} ∪

{Y4,i | ai > 0, ȳi ∈ (li, ri)}, (3.12)

N ′i : = {ȳ + (zi − ȳi)ei | zi ∈ Pi ∩ (li, ri)}, i = 1, . . . , n, (3.13)
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where ȳ = Q−1x̄, li and ri are defined by (3.7) and (3.8).

Note that |Ni| ≤ 2 and |N ′i | ≤ 2 for i = 1, . . . , n, where |Ni| and |N ′i | means the number of

the points in Ni and N ′i .

Remark 8. From Theorem 7, we know that, for any given invertible matrix Q, [GNC]i

is satisfied for any i = 1, . . . , n. However, in our algorithm, we only randomly select N

invertible matrices Qi, · · · , QN , and we always choose Q1 = I , the identity matrix.

Algorithm 6. Strongly or ε−strongly local optimization method for (QPOP ):(SLOM).

Step 0. Take an initial point x0 ∈ X . Let Q1 = I ,Q2, · · · , Qs, · · · , QN be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number.

Let s := 1, Q := Qs and i = 1. Let x∗ = (x∗1, · · · , x∗n) be a local minimizer or KKT point

of f(x) on
n∏
i=1

[ui, vi] starting from x0. Let x̄ := (x∗1, · · · , x∗n), and go to Step 1;

Step 1. Check whether the condition holds:

[GNC]i ˜̄xidi ≤ min{0, αi}

If this condition holds, go to Step 2; otherwise, go to Step 3;

Step 2. If i := n, go to Step 4; otherwise, let i := i+ 1 and go to Step 1;

Step 3. Let ȳ = Q−1x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T and y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T .

Let ȳ∗i := argmin{f(Qy)|y ∈ Ni

⋃
N
′
i}, where Ni and N ′i are defined by (3.11) and (3.13),

respectively. Let ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ
∗
i , ȳi+1 · · · , ȳn). Let x̄∗ := Qȳ∗. Let x∗ = (x∗1, · · · , x∗n)

be a local minimizer or KKT point of f(x) on
n∏
i=1

[ui, vi] starting from x̄∗. If f(x∗) <

f(x̄)− ε, let x̄ := x∗, i := 1 and s = 1, go to Step 1; otherwise, let i := i+ 1 and go to Step

1.

Step 4. Let s := s+ 1. If s > N , go to Step 5; otherwise, let Q := Qs and i := 1, go to Step

1;
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Step 5. Stop. x̄ is a strongly or ε−strongly local minimizer with respect toQs, s = 1, · · · , N .

Theorem 8. For a given initial point x0 ∈ X , we can obtain a strongly or ε− strongly local

minimizer x̄ of the problem (QPOP ) in finite iteration times by the given strongly local

optimization method (SLOM).

Proof. First, we can prove that this algorithm must stop in finite iteration times.

Let M := max{f(x) | x ∈ X} and m := min{f(x) | x ∈ X}. For the given Qs, there

are at most nM−m
ε

iteration times from step 1 to step 3. In fact, for the given Qs and given

i, if [GNC]i holds or if f(x∗) ≥ f(x̄) − ε, then we will change the i into i + 1; only when

[GNC]i does not hold and f(x∗) < f(x̄)−ε, we will change i to 1 in step 3 and go to step 1.

For the same Qs, when we change i to 1, the objection function value will decrease at least ε.

Hence, there are at most M−m
ε

times to change i to 1 in step 3. The total iteration time from

step 1 to step 3 is at most nM−m
ε

. Since we have N numbers of Qs , this algorithm must stop

at most NnM−m
ε

iteration times.

Second, let L be the set of all the KKT points of the problem (QPOP ), and let Lf := {f(x) |

x ∈ L}. We can prove that

(1) If Lf is a finite set, then we can obtain a strongly local minimizer in finite iteration times

when ε is a very small number. In fact, let η := min{|f(x) − f(y)| | x, y ∈ L and f(x) 6=

f(y)}. Since Lf is a finite set, we have that η > 0. When ε < η, we know that f(x∗) <

f(x̄) − ε in step 3 is equivalent to f(x∗) < f(x̄). Hence, for the given Qs and given i,

if [GNC]i holds, then we will change the i into i + 1; if [GNC]i does not hold in step 1

which means that f(x̄) > min{f(Qy)|y ∈ Ni

⋃
N
′
i}, then in step 3, we will find a point

ȳ∗i such that f(Qȳ∗) = min{f(Qy)|y ∈ Ni

⋃
N
′
i}. Hence, we have that f(x∗) < f(x̄)

since f(x∗) ≤ f(Qȳ∗) < f(x̄) and we have x∗ ∈ L. Therefore, for the given Qs and given

i, if [GNC]i does not hold in step 1, then we can obtain a new KKT point x∗ such that

f(x∗) < f(x̄) which also satisfies that f(x∗) < f(x̄) − ε. Hence, for the given Qs, we can

find a point x̄ which satisfies the condition [GNC]i, i = 1, . . . , n in at most nM−m
ε

iteration
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times. Therefore, in finite iteration times, we can obtain a strongly local minimizer of the

problem (QPOP ) for all Qs, s = 1, . . . , N .

(2) If Lf is an infinite set, then we can obtain an ε−strongly local minimizer in finite iteration

times.

By the algorithm, for the given Qs and given i, if [GNC]i holds or if f(x∗) ≥ f(x̄) − ε,

then we will change the i into i + 1; if [GNC]i does not hold and f(x∗) < f(x̄) − ε, then

in step 3, we will find a point ȳ∗i such that f(Qȳ∗) = min{f(Qy)|y ∈ Ni

⋃
N
′
i}, where ȳ∗i

satisfies condition [GNC]i. Since this algorithm must stop in finite steps, the final obtained

point x̄ must satisfy the following condition: for the given Qs and given i, [GNC]i holds or

f(Qȳ∗) ≥ f(x∗) ≥ f(x̄) − ε, where ȳ∗i satisfies the condition [GNC]i. Hence x̄ is an ε−

strongly local minimizer of the problem (QPOP ).

Remark 9. In Algorithm 6, in Step 0 and Step 3, it is very easy to obtain a KKT point

or a local minimizer of f(x) on
n∏
i=1

[ui, vi], such as the Newton method, the Quasi-Newton

method, the Conjugate gradient method and the line search method can be used here. In

section 3.4, the optimization subroutine within the optimization Toolbox in Matlab is used

to find a KKT point or a local minimizer. In step 3, it is easy to find the point ȳ∗i such that

ȳ∗i = argmin{f(Qy) | yi ∈ Ni

⋃
N
′
i}, since we can easily find Ni and N

′
i by (3.11) and

(3.13), respectively, and since |Ni

⋃
N
′
i | ≤ 4.

3.3.2. Global optimization method for (QPOP )

In this subsection, we will design a global optimization method for the problem (QPOP ) by

combining the strongly or ε−strongly local optimization method and an auxiliary function.

The local optimization methods have been extensively developed. However the difficulty

is how to escape a local minimizer to a better one. The filled function method is one of

the well-known and practical methods to settle this difficulty. The filled function is used to

escape the current local minimizer and to find a better feasible point. In this chapter, we will
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use the auxiliary function which was presented by (1.2) in Chapter 1. For the properties of

this auxiliary function, see Chapter 1.

In the following, we will introduce a global optimization method to find a global minimizer

of the problem (QPOP ). The procedure of this global optimization method in the following

consists of three phase circle:

Phase 1: (Strongly Local Search) Start from a given feasible point xk and use strongly local

minimization method Algorithm 6 to search for a strongly local minimizer x∗k.

Phase 2: (Local Search) Construct auxiliary function Fq,r,c,x∗k(x). Find a KKT point or a

local minimizer x̄q,r,c,x∗k of function Fq,r,c,x∗k(x).

Phase 3: (Global Search) If x̄q,r,c,x∗k is better than x∗k, then let k := k + 1, xk := x̄q,r,c,x∗k

and return to Phase 1. Otherwise, stop the iteration process and return the incumbent local

optimal solution x∗k as a global optimal solution to the problem.

Algorithm 7. Global optimization method for (QPOP ):(GOM).

Step 0. Set M = 1010, µ := 10−10 and k0 = 2n. Set ei = (0, · · · , 0, 1, 0, · · · , 0), i =

1, . . . , n, where the ith component is 1 and the others are 0, and en+i = (0, · · · , 0,−1, 0, · · · ,

0), i = 1, . . . , n, where the ith component is −1 and the others are 0. Let r0 := 1, c0 := 1,

q0 := 105, δ0 := 1
2
, k := 1, i := 1 and r := r0. Let x0

1 be an initial point and let x∗0 := x0
1, go

to Step 1;

Step 1. Use the strongly local optimization method (SLOM) to solve the problem (QPOP )

starting from x0
k. Let x∗k be the obtained strongly or ε−strongly local minimizer of the

problem (QPOP ). If f(x∗k) ≥ f(x∗0) (k > 1), then go to Step 5; otherwise (including

f(x∗k) ≥ f(x∗0) when k = 1 or f(x∗k) < f(x∗0) when k ≥ 1) let q := q0, c := c0, r := r0,

δ := δ0, i := 1 and x∗0 = x∗k, k := k + 1, then go to Step 2;

Step 2. Let x̄∗k := x∗0 + δei. If x̄∗k /∈ S, goto step 3. Otherwise, if f(x̄∗k) < f(x∗0), then set

x0
k+1 := x̄∗k, and x∗0 := x̄∗k, k := k + 1 and go to Step 1; else go to Step 4;
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Step 3. If δ < µ, go to Step 8; otherwise, let δ = δ
2

and go to Step 2.

Step 4. If f(x∗0) ≤ f(x̄∗k) ≤ f(x∗0) + 1, then go to Step 5; otherwise let δ = δ
2

go to Step 2;

Step 5. Let

Fq,r,c,x∗0(x) = q

(
exp(−‖x− x

∗
0‖2

q
)gr,c

(
f(x)− f(x∗0)

)
+ hr,c

(
f(x)− f(x∗0)

))
.

Solve the problem:

min Fq,r,c,x∗0(x)

s.t. x ∈ X

starting from the initial point x̄∗k. Let x̄q,r,c,x∗k be a KKT point or a local minimizer. Then set

x0
k+1 := x̄q,r,c,x∗k and go to Step 1;

Step 6. If q < M , then increase q (in the following examples, let q := 10q), then go to Step

5; otherwise go to Step 7;

Step 7. If c < M , then increase c (in the following examples, let c := 10c), and let q := q0,

then go to Step 5; otherwise go to Step 8;

Step 8. If i < k0, then let i := i + 1, q := q0, c := c0, δ := δ0, go to Step 2; otherwise go to

Step 9;

Step 9. If r > µ, then decrease r (in the following examples, let r := r
10

), let i := 1, q := q0,

c := c0, δ := δ0, then go to Step 2; otherwise, stop and x∗0 is the obtained global minimizer

or approximate global minimizer of the problem (QPOP ).

Notes: The global optimization method applies the filled function method which belongs to

a heuristic one. This method can gradually improve the current local minimizer. Although

it cannot guarantee the result must be a global one, the numerical examples given in the
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following Section illustrate that the global minimization method Algorithm 7 is very efficient

and stable.

3.4. Numerical examples

First, we apply our Algorithms to all examples (n ≥ 3) given in reference [89].

We notice although examples in [89] are unconstrained problems, they satisfy the following

condition: f(x) → +∞ as ‖x‖ → +∞ in [149]. Hence the global minimizers must exist

in a big enough box set. We changed all examples (n ≥ 3) in [89] to box constrained

programming problems, say xi ∈ [−500, 500], i = 1, · · · , n.

Only by Algorithm 6, can we solve all examples given in reference [89]. For Question 38

and 63, we can obtain better solutions than the ‘global’ minima given in reference [89] which

shows that the strongly local optimization method Algorithm 6 is efficient (see Example 6

and Example 7).

Notations:

xk: an initial point

x̄k: a local minimizer starting from xk

f(x̄k): the function value of f(x) at x̄k

Q: the linear transformation matrix which can improve the local minimizer

x̄∗k: a strongly local minimizer starting from x̄

f(x̄∗k): the function value of f(x) at x̄∗

Notes: In Algorithm 6, when dimension of objective function is small, we takeN a bit larger;

when dimension is large, we take N a bit smaller. Such as, in Example 6, Example 7 and

Example 8, we take N = 20; in Example 9 and Example 10, we take N = 10.

89



Example 6. Consider the following problem ((Q63) in [89])

min f(x) := 9x4
1 + 7x4

2 + x4
3 + 4x4

4 + 9x4
5 + 9x4

6 + 8x2
1 + 2x1x3 + 6x1x4 + 18x1x5 +

18x1x6 + 18x2x3 + 10x2x4 + 4x2x5 + 12x2x6 + 4x2
3 + 2x3x4 + 2x3x5 +

16x3x6 + 16x4x5 + 2x2
5 + 2x5x6 + 8x2

6 + 5x1 + 8x2 + 6x3 + 9x4 + 9x5

s.t.

x1, x2, x3, x4, x5, x6 ∈ [−500, 500].

Table 3.1 records the numerical results.

Table 3.1.: Numerical results for Example 6

k xk x̄k f(x̄k) Q x̄∗
k f(x̄∗

k)

1


0
0
0
0
0
0




−0.67779608
0.91575270
−1.67672937
−1.12932064
0.76949691
0.74098543

 -31.78036845


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




−0.67779608
0.91575270
−1.67672937
−1.12932064
0.76949691
0.74098543

 -31.78036845

2


−500
−500
−500
−500
−500
−500




0.53687007
−1.02589244
1.36531333
0.84526991
−0.89744922
−0.60054219

 -19.93119153


−4 −53 72 93 −42 82
75 −27 9 4 57 22
−36 38 −8 −76 −89 9
12 −93 −70 83 −58 51
−51 38 −49 −9 56 76
−73 −48 −22 81 40 79




−0.67779608
0.91575270
−1.67672937
−1.12932064
0.76949691
0.74098543

 -31.78036845

3


0
1
0
1
0
1




−0.36396908
−1.02830653
0.56323224
0.94870966
−0.70756437
0.47089712

 -16.27241850


61 89 −83 −93 7 90
−59 −52 2 −47 −86 51
32 40 −50 −40 −70 −95
−42 −72 −25 −59 37 49
37 −11 18 27 −33 −33
−38 29 100 43 69 61




0.53687007
−1.02589244
1.36531333
0.84526991
−0.89744922
−0.60054219

 -19.93119153


−4 −53 72 93 −42 82
75 −27 9 4 57 22
−36 38 −8 −76 −89 9
12 −93 −70 83 −58 51
−51 38 −49 −9 56 76
−73 −48 −22 81 40 79




−0.67779608
0.91575270
−1.67672937
−1.12932064
0.76949691
0.74098543

 -31.78036845

The global minimizer given by reference [89] is (-0.363974062, -1.028303631, 0.563190492,

0.9486927097, -0.707559149, 0.470942714)T with the optimal value −16.27241853.

Only by using Algorithm 6, we attain the global minimizer (-0.6778, 0.9158, -1.6766, -

1.1294, 0.7695, 0.7410)T with the optimal value−31.7804, which improves the results given

in [89]
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Example 7. Consider the following problem ((Q38) in [89])

min f(x) := 76x4
1 + 172x3

1x2 + 176x3
1x3 + 285x2

1x
2
2 + 247x2

1x
2
3 + 360x2

1x2x3 +

204x1x
3
2 + 342x1x

2
2x3 + 420x1x2x

2
3 + 236x1x

3
3 + 93x4

2 + 182x3
2x3 +

293x2
2x

2
3 + 182x2x

3
3 + 126x4

3 + 6 + 76x3
1 − 57x2

1x2 − 80x2
1x3 − 92x2

1 +

81x1x
2
2 + 77x1x2x3 − 87x1x2 + 50x1x

2
3 + 74x1x3 − 60x1 + 19x3

2 −

68x2
2x3 + 78x2

2 + 34x2x
2
3 + 66x2x3 − 53x2 + 59x3

3 + 28x2
3 + 38x3

s.t.

x1, x2, x3 ∈ [−500, 500]

Table 3.2 records the numerical results.

Table 3.2.: Numerical results for Example 7

k xk x̄k f(x̄k) Q x̄∗
k f(x̄∗

k)

1

 0
0
0

  0.7528
0.2874
−0.8229

 -1.0224e+002

 −77 −32 51
0 17 −49
92 −56 1

  −7.2391
1.7116
5.0460

 −1.7734e + 004

2

 −500
−500
−500

  0.7528
0.2874
−0.8229

 -1.0224e+002

 −77 −32 51
0 17 −49
92 −56 1

  −7.2391
1.7116
5.0460

 −1.7734e + 004

3

 1
1
1

  −7.2391
1.7116
5.0460

 −1.7734e + 004

 1 0 0
0 1 0
0 0 1

  −7.2391
1.7116
5.0460

 −1.7734e + 004

The global minimizer given by reference [89] is (0.752808377, 0.287362024, -0.822919492)T

with optimal value −102.236381.

Only by using Algorithm 6, we get global minimizer ( -7.23913534, 1.71164243, 5.04604642)T

with the optimal value −1.77339078e+ 004, which improves the results given in [89]
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Example 8. Consider the problem: Dixon and Price Function [86]

min f(x) := (x1 − 1)2 +
n∑
i=2

i(2x2
i − xi−1)2

s.t. xi ∈ [−10, 10], i = 1, 2, · · · , n

For n = 5, the optimal value of this function is 0 and this function has two global mini-

mizers. By Algorithm 6, we obtain two minimizers x̄∗1 =(1.0000, 0.7071, 0.5946, 0.5452,

-0.5221)T and x̄∗2 =(1.0000, 0.7071, 0.5946, 0.5452, 0.5221)T with the same function value

7.7335e− 009. Table 3.3 records the numerical results.

For n = 10, the optimal value of this function is 0 and this function has two global mini-

mizers. By Algorithm 6, we can not obtain the global minimizer. But by Algorithm 7, we

obtain two minimizers x̄∗1 =(1.0000, 0.7071, 0.5946, 0.5453, 0.5221, 0.5109, 0.5054, 0.5027,

0.5014, -0.5007)T and x̄∗2 =(1.0000, 0.7071, 0.5946, 0.5453, 0.5221, 0.5109, 0.5054, 0.5027,

0.5014, 0.5007)T with the same function value 9.6757e− 014. Table 3.4 records the numer-

ical results.

Table 3.3.: Numerical results for Example 8 with n = 5

k xk x̄k f(x̄k) Q x̄∗
k f(x̄∗

k)

1


0
0
0
0
0




0.3333
0
0
0
0

 0.6667


3 −1 −3 −5 3
−4 −3 5 1 −2
0 −5 −2 1 5
−5 −5 5 4 4
3 5 −2 −3 2




1.0000
0.7071
0.5946
0.5452
−0.5221

 7.7335e− 009

2


10
10
10
10
10




1.0000
0.7071
0.5946
0.5452
−0.5221

 7.7335e− 009


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1.0000
0.7071
0.5946
0.5452
−0.5221

 7.7335e− 009

3


1
1
1
1
1




0.3333
0.0085
0.0223
0.1043
0.2283

 0.6666


−4 2 −3 −2 −3
−1 1 0 −5 2
−3 −3 1 −1 −3
0 −5 −4 −2 −4
−2 −5 −4 1 5




1.0000
0.7071
0.5946
0.5452
0.5221

 5.5342e− 008

Next, we try to solve two moderately large scale quartic polynomial programming problems

given in [81] by our algorithms. The computation was implemented on a Linux Desktop of
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Table 3.4.: Numerical results for Example 8 with n = 10

k xk x̄k f(x̄k) Q x̄∗
k f(x̄∗

k)

1



0
0
0
0
0
0
0
0
0
0





0.3333
0
0
0
0
0
0
0
0
0


0.6667 I10×10



0.3333
0
0
0
0
0
0
0
0
0


0.6667



1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
−0.5007


9.6757e− 014 I10×10



1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
−0.5007


9.6757e− 014

2



10
10
10
10
10
10
10
10
10
10





0.3333
−0.0000
0.0000
0.0001
0.0060
0.0550
0.1658
0.2879
0.3794
0.4356


0.6667 I10×10



0.3333
−0.0000
0.0000
0.0001
0.0060
0.0550
0.1658
0.2879
0.3794
0.4356


0.6667



1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
0.5007


9.6757e− 014 I10×10



1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
0.5007


9.6757e− 014

3



1
1
1
1
1
1
1
1
1
1





1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
−0.5007


9.6757e− 014 I10×10



1.0000
0.7071
0.5946
0.5453
0.5221
0.5109
0.5054
0.5027
0.5014
−0.5007


9.6757e− 014

3.8GB memory and 2.8GHz CPU frequency in [81], while the computation was implemented

on a Microsoft Windows XP Desktop of 3.46GB memory and 2.99GHz CPU frequency in

our thesis.

Example 9. Consider the following problem (Example 4.10 [81])

min f(x) :=
∑

1≤i<j≤n

(xixj + x2
ixj − x3

j − x2
ix

2
j)

s.t.

xi ∈ [−1, 1], i = 1, · · · , n
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For n = 50, the global optimal function value given in [81] is −1250. However the cor-

responding minimizer was not obtained in [81]. A local minimizer with a greater objective

value −1232 was given in [81]. While only by By Algorithm 6, with Q = I , we have the

following results.

From the starting point x0 =
(0.5, · · · , 0.5︸ ︷︷ ︸)

50

, we get a global minimizer by taking around

10 minutes::

(
1, · · · , 1︸ ︷︷ ︸

9

,
−1, · · · ,−1︸ ︷︷ ︸

21

, 1,−1, 1, 1,
−1, · · · ,−1︸ ︷︷ ︸

3

,
1, · · · , 1︸ ︷︷ ︸

13

)

with the optimal value −1250.

From the starting point x0 =
(−1, · · · ,−1︸ ︷︷ ︸)

50

, we get a global minimizer by taking around

7 minutes:

(
1, · · · , 1︸ ︷︷ ︸

5

,
−1, · · · ,−1︸ ︷︷ ︸

24

, 1,−1,
1, · · · , 1︸ ︷︷ ︸

19

)

with the optimal value −1250.

From the starting point x0 =
(1, · · · , 1︸ ︷︷ ︸)

50

and x0 =
(−0.5, · · · ,−0.5︸ ︷︷ ︸)

50

, we get a global

minimizer by taking around 30 minutes:

(
−1, · · · ,−1︸ ︷︷ ︸

25

,
1, · · · , 1︸ ︷︷ ︸

25

)

with the optimal value −1250.
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Example 10. Consider the following problem (Example 5.1 [81])

min f(x) := x4
1 + · · ·+ x4

n +
∑

1≤i<j<k≤n

xixjxk

s.t.

xi ∈ [−100, 100], i = 1, · · · , n

For n = 20, the global optimal function value given in [81] is−2.2267e+007. By Algorithm

6, we have the same results.

From the starting point x0 =
(1, · · · , 1︸ ︷︷ ︸)

20

and x0 =
(−1, · · · ,−1︸ ︷︷ ︸)

20

, by Algorithm 6 with

Q = I , we get a global minimizer within one minute:

(−42.75, · · · ,−42.75︸ ︷︷ ︸)
20

with the optimal value −2.2267e+ 007.

From the starting point x0 =
(0, · · · , 0︸ ︷︷ ︸)

20

by Algorithm 6 with Q =
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7 3 −1 5 −3 −7 −8 7 6 1 3 −4 −9 −10 −10 −9 −7 9 −10 −5

9 −10 −2 −5 7 6 10 3 −2 −4 −3 9 −5 8 5 4 −2 9 1 −4

−8 7 6 0 2 −4 −10 −3 −5 5 7 −1 6 9 0 −10 7 −9 8 2

9 9 6 4 1 1 6 0 −2 −7 1 −7 −10 6 0 −9 6 5 4 −5

3 4 −7 8 9 −7 7 −2 −8 4 −3 9 9 −8 8 0 −9 −5 −7 7

−8 5 0 10 −4 2 8 −9 −8 −7 9 10 5 −5 2 −8 −2 −2 −3 10

−575 −1 1 5 −5 −9 −5 9 −3 8 −1 0 −3 2 7 1 1 −1 5

1 −2 3 −8 5 3 −2 −8 10 3 1 −8 2 4 8 7 −2 9 10 −3

10 3 4 −7 −3 4 −5 −7 2 6 3 −5 −6 −8 6 5 3 −2 −7 2

10 −7 5 −5 1 5 6 −5 −9 −9 2 −2 −1 5 2 −7 3 10 7 −8

−7 4 −5 7 −9 −1 −1 −2 −6 9 −6 2 10 −8 −7 3 −4 −4 3 9

10 −10 4 −5 −9 −9 9 −9 −3 6 −4 −5 1 3 −5 0 −1 4 −3 8

10 −5 3 7 1 −6 −7 8 7 0 −1 2 0 0 8 10 −10 3 −6 7

0 −10 −7 −5 6 9 −5 9 −10 −1 −6 4 −6 6 −10 3 10 1 −2 −5

6 −8 −8 9 9 −7 −7 0 −10 −1 7 −6 0 5 0 6 −7 4 0 2

−8 7 0 −3 −8 7 −8 0 −7 −4 −6 −8 3 8 −7 −1 −8 3 −8 −10

−2 4 10 −6 1 1 8 −3 3 0 −6 −4 4 8 10 −1 −3 −7 2 −2

9 −4 −3 −5 −1 10 2 8 5 0 −7 −4 −2 −3 4 7 −6 −8 −6 −4

6 9 2 2 −10 −9 1 −3 3 7 −6 −2 −3 4 0 −9 0 10 −2 −7

10 −10 −6 −1 −3 −1 −7 −8 −1 6 −1 0 10 −6 −1 −8 −3 −7 2 −7


we get a global minimizer within 5 minutes:

(−42.75, · · · ,−42.75︸ ︷︷ ︸)
20

with the optimal value −2.2267e+ 007, where Q is taken randomly by computer.

3.5. Conclusion

Quartic polynomial programming problems (QPOP ) are considered in this chapter. We pro-

posed a necessary global optimality condition for (QPOP ). Then, we designed a strongly or

ε−strongly local optimization method for (QPOP ) according to the necessary global opti-

mality condition. Finally, a global optimization method has been designed to solve (QPOP )

by combining the local optimization method and an auxiliary function. The Numerical ex-

amples illustrate the efficiency of the optimization methods proposed in the chapter.
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Chapter 4.

Global optimality conditions and

optimization methods for general

polynomial programming problems

(GP )

This chapter is concerned with general polynomial programming problems with box con-

straints which are denoted by (GP). First, a necessary global optimality condition for prob-

lems (GP) is given. Then we design a local optimization method by using the necessary

global optimality condition to obtain some strongly or ε−strongly local minimizers which

substantially improve some KKT points. Finally, a global optimization method, by combin-

ing the new local optimization method and an auxiliary function, is designed. Numerical

examples show that our methods are efficient and stable.

97



4.1. Introduction

Problems (GP) which belong to nonlinear programming problems have a wide range of ap-

plications. These include engineering design, investment science, control theory, network

distribution, signal processing and location-allocation contexts [5], [6], [11], [17], [46], [50],

[88]. Many famous test functions are polynomial functions, such as Rosenbrock, Wood,

Powell quartic, Six-hump camelback and Goldstein and Price functions [18]. Moreover,

some functions, for example, sin, log and radicals, can be reformulated into polynomial

functions, which extends the applications of polynomial programming problems [135]. The

problems (GP) are NP-hard [68]. Indeed, even quadratic programming problems are NP-

hard [139]. The problems (GP) have attracted a lot of attention, including quadratic, cubic,

homogenous or normal quartic as special cases.

Existing methods for solving problems (GP) include algebraic methods [59], [63] , [123] and

various convex relaxation methods [35], [48], [67], [79], [80], [107]. Algebraic algorithms

tried to find all the critical points and then compared the function values of the polynomial at

these points. Although these methods usually provide good approximation, the computation

cost is huge [30]. For the idea of convex relaxation methods, please refer to the paper [93].

Among various convex relaxation methods, semidefinite programming (SDP) and sum of

squares (SOS) relaxations are very popular. As we surveyed in Chapter 1, we know that

solving large scale SDP problems still remains a computational challenge.

Besides global optimization methods, more and more researchers concentrate on global op-

timality conditions for problems (GP ). [126] provided a necessary and sufficient global

optimality condition for problems (GP ), as it mentioned, the condition is difficult to check

since the condition involves solving a sequence of semidefinite programs. Furthermore [127]

presented global optimality conditions for polynomial optimization over box or bivalent con-

straints by using separable polynomial relaxations. However, We notice that it is not easy
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to decompose a polynomial function to the sum of a separable polynomial function and an

SOS-convex polynomial function.

After we built up knowledge from cubic and quartic programming problems in chapter 2 and

chapter 3, we will focus on the problem (GP ) given below in this chapter.

(GP ) min f(x) =
∑

j1,j2,··· ,jn≥0
j1+j2+···+jn≤n

cj1,j2,··· ,jnx
j1
1 x

j2
2 · · ·xjnn

s.t. xi ∈ [ui, vi], i = 1, . . . , n,

where n is a nonnegative integer number, x = (x1, x2, · · · , xn)T ∈ Rn, ui, vi, cj1,j2,··· ,jn ∈ R

and ui < vi for any i = 1, . . . , n. Throughout this chapter, we letX := {x = (x1, . . . , xn)T |

xi ∈ [ui, vi], i = 1, . . . , n}. We will first discuss a necessary global optimality condition

for the problem (GP ). Then a new local optimization method will be designed for the

problem (GP ) according to the necessary global optimality condition, which may improve

some KKT points. Finally, we will design a global optimization method to solve the problem

(GP ) by combining the new local optimization method and an auxiliary function. Numerical

examples illustrate the efficiency of the optimization methods proposed in the chapter.

4.2. Preliminary

Definition 19. [100] Consider the problem of minimizing f(x) over feasible set X , and let

x̄ ∈ X . Let Bδ(x̄) = {x|‖x − x̄‖ < δ} and Nδ(x̄) = Bδ(x̄)
⋂
X . If f(x̄) ≤ f(x) for all

x ∈ X , x̄ is called a global minimum. If there exists an δ−neighborhoodNδ(x̄) ⊂ X around

x̄ such that f(x̄) ≤ f(x) for each x ∈ Nδ(x̄), x̄ is called a local minimum.

Firstly, we will review KKT necessary conditions for (GP ).

Let x̄ be a local minimizer of (GP ). Then there exist scalars ai and bi such that
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[KKT ]



(∇f(x̄))i + ai − bi = 0,

ai(x̄i − vi) = 0 for i = 1, · · · , n,

bi(−x̄i + ui) = 0 for i = 1, · · · , n,

ai ≥ 0 for i = 1, · · · , n,

bi ≥ 0 for i = 1, · · · , n.

In this chapter, we try to give a necessary global optimality condition for the problem (GP )

according to the following points. If a point x̄ is a global minimizer, then it is not only a

KKT point, but also a global minimizer on any line through x̄ and within the feasible set

X; Some specific lines can be obtained by using linear transformations. On these special

lines, the objective function can be simplified into univariate polynomial functions. Then,

the necessary and sufficient global optimality conditions for these univariate polynomial

problems construct a necessary global optimality condition for the problem (GP ).

In the following, let us introduce some relevant properties of the univariate polynomial which

will be used later.

Consider the following polynomial with real coefficients:

p(x) =
n∑
i=0

αix
i, x ∈ [a, b].

We know that the number of distinct real roots of a polynomial in an interval can be obtained

by using Sturm’s theorem.

Definition 20. [128] Consider the polynomial function p(x). Let p1(x) = p′(x) (the deriva-

tive of p(x)). Let us seek the greatest common divisor pn of p and p1 with the help of Euclid’s
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algorithm:

p = q1p1 − p2,

p1 = q2p2 − p3,

· · · · · · · · · · · ·

pn−2 = qn−1pn−1 − pn,

pn−1 = qnpn.

The sequence p, p1, · · · , pn−1, pn is called the Sturm sequence of the polynomial p.

Theorem 9. (Sturm Theorem) [128] Consider the polynomial function p(x). Let Vp(x) be

the number of sign changes in the Sturm sequence

p(x), p1(x), · · · , pn(x).

The number of the roots of p (without taking multiplicities into account) confined between a

and b, where p(a) 6= 0, p(b) 6= 0 and a < b, is equal to Vp(a)− Vp(b).

Remark 10. (P27 in ( [128])) In this theorem, we use the notion of number of sign changes

in the sequence a0, a1, · · · , an, where a0an 6= 0. The number of sign changes is determined

as follows: all the zero terms of the sequence considered are deleted and, for the remaining

non-zero terms, one counts the number of pairs of neighboring terms of different sign.

In Sturm’s theorem, we do not know any information about the multiplicity of every multiple

root for a polynomial in an interval. Reference [87] discusses more information about mul-

tiple roots and furthermore gives a necessary and sufficient condition for “a polynomial only

have even multiplicity roots or only have odd multiplicity roots in a given interval”. Next we

will introduce some relevant notations and this necessary and sufficient condition.

Denote xi, i = 1, 2, 3, · · · , l as all distinct real roots of p(x) in an interval [a, b] and the
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corresponding multiplicities as mi, i = 1, 2, 3, · · · , l, respectively. Let

K = max{m1,m2, · · · ,ml}. (4.1)

Denote p0(x) = p(x) and denote pi(x) as a greatest common divisor of pi−1(x) and (pi−1(x))′,

i = 1, 2, · · · , K. For a polynomial p(x), K is fixed but unknown. In our following al-

gorithm, we do not need to know the exact value of K. We know that K satisfies that

pK(x) ≡ constant, which is used as the termination criterion in the algorithm.

Lemma 2. ( [87]) Suppose that p(a)p(b) 6= 0. pK(x) ≡ constant. Then polynomial p(x)

has no odd multiplicity roots in an interval [a, b] if and only if

Vp2i(a)− Vp2i(b) = Vp2i+1(a)− Vp2i+1(b), i = 0, 1, 2, · · · ,
[K − 1

2

]
.

where Vp(x) is defined in Theorem 9.

Proposition 1. Let p(x) 6≡ 0 be a polynomial with real coefficients. Suppose that p(a)p(b) 6=

0. pK(x) ≡ constant. p(x) ≥ 0 (p(x) ≤ 0), ∀x ∈ [a, b] if and only if p(a) > 0 (p(a) < 0),

and p(x) has no odd multiplicity root in (a, b), i.e., the following equations hold:

Vp2i(a)− Vp2i(b) = Vp2i+1(a)− Vp2i+1(b), i = 0, 1, 2, · · · ,
[K − 1

2

]
. (4.2)

Proof: We only prove the case of p(x) ≥ 0, ∀x ∈ [a, b]. For the case of p(x) ≤ 0, ∀x ∈ [a, b],

the proof is similar.

Firstly, we prove the necessary condition. If p(x) ≥ 0, ∀x ∈ [a, b] and p(a) 6= 0, then we

must have that p(a) > 0. Suppose that p(x) has an odd multiplicity root x1 in (a, b) and

the multiplicity is m, i.e., there exists a polynomial q(x) such that p(x) = (x − x1)mq(x)

and q(x1) 6= 0. By the continuity of q(x), there exists a small real number δ > 0, such that
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x1 +δ ∈ (a, b) and x1−δ ∈ (a, b) and q(x1 +δ)q(x1−δ) > 0. However p(x1 +δ)p(x1−δ) =

−δ2mq(x1 + δ)q(x1 − δ) < 0, which contradicts p(x) ≥ 0 for any x ∈ [a, b].

Secondly, we prove the sufficient condition. Suppose that x1, . . . , xl are all the roots of

p(x) in (a, b) and the multiplicity corresponding to the roots xi, i = 1, . . . , l are m1, . . . ,ml,

respectively. If p(x) has no odd multiplicity root in (a, b), then all the mi, i = 1, . . . , l are

even. Then there exists a polynomial q(x) such that p(x) = (x−x1)m1 . . . (x−xl)mlq(x) and

q(x) 6= 0 for any x ∈ (a, b). Furthermore, we can prove that if p(a) > 0, then q(x) > 0 for

any x ∈ [a, b]. In fact, obviously, we have that q(a) > 0. If there exists an x ∈ (a, b] such that

q(x) < 0, then there must exist an x̄ ∈ (a, x) such that q(x̄) = 0 which contradicts q(x) 6= 0

for any x ∈ (a, b). For any x ∈ [a, b], we have that p(x) = (x−x1)m1 . . . (x−xl)mlq(x) ≥ 0

since mi, i = 1, . . . , l are even and q(x) > 0 for any x ∈ [a, b].

In Proposition 1, p(a)p(b) 6= 0 is required. If p(a)p(b) = 0, we can introduce the following

function p̄(x):

p̄(x) =

 p(x), if p(a)p(b) 6= 0

p(x)/[(x− a)s(b− x)t], if p(a)p(b) = 0,

where s and t are multiplicities of roots a and b, respectively (s = 0 or t = 0 means a or b is

not root). Obviously, p̄(a)p̄(b) 6= 0. We can obtain the following Proposition 2.

Proposition 2. p(x) 6≡ 0 is a polynomial with real coefficients. pK(x) ≡ constant. p(x) ≥ 0

(p(x) ≤ 0) ∀x ∈ [a, b] if and only if p̄(a) > 0 (p̄(a) < 0), and the following equations hold:

Vp̄2i(a)− Vp̄2i(b) = Vp̄2i+1(a)− Vp̄2i+1(b), i = 0, 1, 2, · · · ,
[K − 1

2

]
.

Proof: Obviously, x1, · · · , xl are roots of p(x) in (a, b) with m1, · · · ,ml multiplicity, re-

spectively, if and only if p̄(x) has the same roots x1, · · · , xl and with the same multiplic-

ity mi, i = 1, . . . , l, respectively. Furthermore, p(x)p̄(x) ≥ 0 for any x ∈ [a, b] and
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p̄(a)p̄(b) 6= 0. Hence, p(x) ≥ 0 (p(x) ≤ 0), ∀x ∈ [a, b] if and only if p̄(x) ≥ 0 (p̄(x) ≤ 0)

for any x ∈ [a, b] and p̄(a)p̄(b) 6= 0. Moreover, by the definition of K, the K for both func-

tions p and p̄ is the same. By Proposition 1, we can have p(x) ≥ 0 (p(x) ≤ 0), ∀x ∈ [a, b] if

and only if p̄(a) > 0 (p̄(a) < 0), and the following equations hold:

Vp̄2i(a)− Vp̄2i(b) = Vp̄2i+1(a)− Vp̄2i+1(b), i = 0, 1, 2, · · · ,
[K − 1

2

]
.

The following algorithm can be used to check whether p(x) ≥ 0 for any x ∈ [a, b].

Algorithm 8. Step 1. If p(a) = 0, go to Step 2; if p(b) = 0, go to Step 3; otherwise, go to

Step 4.

Step 2. p(x) = p(x)
x−a , go to Step 1.

Step 3. p(x) = p(x)
b−x , go to Step 1.

Step 4. If p(a) < 0, go to Step 7; otherwise let p0 := p and go to Step 5.

Step 5. Let p1 := gcd(p0, (p0)′), s0 := sturmseq(p0, x) and s1 := sturmseq(p1, x). If

sturm(s0, x, a, b) = sturm(s1, x, a, b), go to Step 6; otherwise, go to Step 7.

Step 6. Let p0 := gcd(p1, (p1)′). If p0 is a constant, go to Step 8; otherwise go to Step 5.

Step 7. Stop, polynomial p does not satisfy that p(x) ≥ 0 for any x ∈ [a, b].

Step 8. Stop, polynomial p satisfies that p(x) ≥ 0 for any x ∈ [a, b].

Note, p′ is the derivative of p and gcd(p, q) represents greatest common divisor of polynomi-

als p and q. ‘sturmseq’ and ‘sturm’ are built-in functions in Maple.

Function ‘s := sturmseq(p, x)’ can compute a Sturm sequence s for the polynomial p

and function ‘sturm(s, x, a, b)’ uses Sturm’s theorem to return the number of real roots of

polynomial p in the interval (a, b].
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4.3. Necessary global optimality condition for (GP )

In this section, we will give a necessary global optimality condition for the problem (GP ).

Let x̄ ∈ X , Q be an invertible matrix, let

x := Qy, g(y) := f(Qy) = f(x), ȳ := Q−1x̄,

and let (Q)i represent the ith row of Q, (Q)ij represent the entry of Q in the ith row and the

jth column.

Let Y = {y = Q−1x|x ∈ X}. For ȳ = (ȳ1, . . . , ȳn)T = Q−1x̄, let Yi := {y =

(ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T | y ∈ Y }. Let 4k =
n∑

j=1
j 6=i

(Q)kj ȳj = x̄k − (Q)kiȳi =

x̄k − (Q)ki(Q
−1)ix̄, k = 1, · · · , n, and let

li = max

{
min

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,min

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
,

ri = min

{
max

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,max

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
.

Then we can obtain the following results:

(1) li ≤ ri

(2) [li, ri] = {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y }.

Let Gi(yi) := f(Qy) − f(Qȳ), y ∈ Yi, which is a univariate polynomial of yi, for any

i = 1, · · · , n. Let

Ḡi =

 Gi, if Gi(li)Gi(ri) 6= 0

Gi/[(yi − li)s(i)(ri − yi)t(i)], if Gi(li)Gi(ri) = 0
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where s(i) and t(i) are multiplicities of roots li and ri, respectively. If li or ri is not root of

Gi, then s(i) = 0 or t(i) = 0.

Theorem 10. (Necessary global optimality condition for (GP )) Let x̄ ∈ X and Q be any

given invertible matrix. If x̄ is a global minimizer of (GP ), then for any i = 1, · · · , n, the

following conditions [NC]i hold:

[NC]i: Ḡi(li) > 0, and the following equations hold:

VḠ2k
i

(li)− VḠ2k
i

(ri) = VḠ2k+1
i

(li)− VḠ2k+1
i

(ri), k = 0, 1, 2, · · · ,
[Ki − 1

2

]
where Ki is defined in (4.1) by taking p := Gi.

Proof: Let x̄ be a global minimizer of the problem (GP ). Then

f(x)− f(x̄) ≥ 0. ∀x ∈ X.

Let ȳ = Qx̄. For any y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T ∈ Y , i.e., yi ∈ [li, ri], ∀i =

1, . . . , n, let Gi(yi) = f(Qy) − f(Qȳ), ∀i = 1, . . . , n and let x = Qy, we have that x ∈ X

and

Gi(yi) = f(Qy)− f(Qȳ) = f(x)− f(x̄) ≥ 0,∀yi ∈ [li, ri]. (4.3)

Obviously, each Gi(yi), i = 1, · · · , n is a univariate polynomial of yi.

By Proposition 2, for any i = 1, · · · , n, (4.3) is equivalent to the conditions [NC]i: Ḡi(li) >

0, and the following equations hold:

VḠ2k
i

(li)− VḠ2k
i

(ri) = VḠ2k+1
i

(li)− VḠ2k+1
i

(ri), k = 0, 1, 2, · · · ,
[Ki − 1

2

]
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Remark 11. In Theorem 10, we do not need to consider the trivial caseGi(yi) ≡ 0, for some

i = 1, · · · , n.

Remark 12. Actually, the condition [NC]i given in Theorem 10 is the necessary and suffi-

cient condition for ȳi to be a global minimizer of the following problem:

min f(Qy) (4.4)

s.t. y ∈ Ni,

where

Ni := {ȳ + (zi − ȳi)ei | zi ∈ [li, ri]}, (4.5)

In particular, if Q = I , where I is the identity matrix, then the problem is:

min f(x) (4.6)

s.t. x ∈ {x̄+ (zi − x̄i)ei | zi ∈ [ui, vi]},

where ei is the ith unit vector (the n dimensional vector with the ith component equals to

one and the other components equal to zero).

Remark 13. (1) If the problem (GP ) reduces to a quartic polynomial programming problem

(QPOP ), then for any i = 1, . . . , n, [NC]i is equivalent to the following condition:

˜̄xidi ≤ min{0, αi}, (4.7)

which is given by Theorem 7 in chapter 3, since both conditions [NC]i and (4.7), for i =

1, · · · , n, are equivalent to f(x)− f(x̄) ≥ 0, ∀x = Q(ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T , where

yi ∈ [li, ri]. For the notations therein, see Theorem 7 in chapter 3.

107



(2) If the problem (GP ) reduces to a cubic polynomial programming problem, then for any

i = 1, . . . , n, [NC]i is equivalent to

˜̄xidi ≤ min{0, αi}, (4.8)

which is given by Remark 7 (1) in chapter 3. For the notations therein, see Remark 7 (1) in

chapter 3. The condition (4.8) extends the condition of Corollary 3 in chapter 2 which is just

the special case of (4.8) when Q = I .

(3) If the problem (GP ) reduces to a quadratic polynomial optimization problem, then for

any i = 1, . . . , n, [NC]i is equivalent to

˜̄xidi ≤ min{0, αi}, (4.9)

which is given by Remark 7 (2) in chapter 3. For the notations therein, see Remark 7 (2) in

chapter 3. The condition (4.9) extends the condition for continuous variables of Proposition

2.1 in [45] which is just the special case of (4.9) when Q = I .

(4) The necessary global optimality condition for the problem (GP ) includes KKT necessary

conditions. In fact, when Q = I , we know that [NC]i is equivalent to (4.3). From (4.3), we

have

Gi(xi) = f(x)− f(x̄)

=
1

n!

∂nf(x̄)

∂xni
(xi − x̄i)n +

1

(n− 1)!

∂n−1f(x̄)

∂xn−1
i

(xi − x̄i)n−1

+ · · ·+ 1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)2 + (∇f(x̄))i(xi − x̄i)

≥ 0

where xi ∈ (ui, vi).
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when x̄i = ui,

−(∇f(x̄))i ≤ min
xi∈[ui,vi]

{ 1

n!

∂nf(x̄)

∂xni
(xi − x̄i)n−1 + · · ·+ 1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)}

≤ 0

when x̄i = vi,

(∇f(x̄))i ≤ min
xi∈[ui,vi]

−{ 1

n!

∂nf(x̄)

∂xni
(xi − x̄i)n−1 + · · ·+ 1

2

∂2f(x̄)

∂x2
i

(xi − x̄i)}

≤ 0

when x̄i ∈ (ui, vi),

(∇f(x̄))i = 0.

The above condition is just the KKT condition [KKT ].

In the following, we will discuss a necessary and sufficient condition for a special polynomial

programming problem.

Definition 21. [127] A function f : Rn → R is a separable polynomial if f(x) =
n∑
i=1

fi(xi),

where x = (x1, · · · , xn) and each fi is a polynomial on R. The set of all the separable

polynomial functions with degree at most d on Rn is denoted by

Sd = {f ∈ R[x] : f(x) =
n∑
i=1

d∑
j=0

fijx
j
i , x = (x1, · · · , xn)}. (4.10)

For the problem (GP ), if f ∈ Sd, let x̄ = (x̄1, · · · , x̄n) ∈ X , let Gi(xi) :=
d∑
j=0

fij(x
j
i − x̄

j
i )
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for i = 1, · · · , n, and let

Ḡi =

 Gi, if Gi(ui)Gi(vi) 6= 0

Gi/[(xi − ui)s(i)(vi − xi)t(i)], if Gi(ui)Gi(vi) = 0

where s(i) and t(i) are multiplicities of roots ui and vi, respectively (s(i) = 0 or t(i) = 0

means ui or vi is not root). Then, we have the following Corollary.

Corollary 4. (Global optimality characterization) Let x̄ ∈ X . x̄ is a global minimizer of the

problem (GP ) if and only if the following conditions hold: for any i = 1, · · · , n,

Ḡi(ui) > 0, and the following equations hold:

VḠ2k
i

(ui)− VḠ2k
i

(vi) = VḠ2k+1
i

(ui)− VḠ2k+1
i

(vi), k = 0, 1, 2, · · · ,
[Ki − 1

2

]
where Ki is defined in (4.1) by taking p := Gi.

Proof:

f(x)− f(x̄) =
n∑
i=1

d∑
j=0

fij(x
j
i − x̄

j
i ) ≥ 0, ∀x ∈ X

⇔ Gi(xi) :=
d∑
j=0

fij(x
j
i − x̄

j
i ) ≥ 0, ∀i = 1, · · · , n (4.11)

By Proposition 2, for any i = 1, · · · , n, (4.11) is equivalent to the conditions : Ḡi(ui) > 0,

and the following equations hold:

VḠ2k
i

(ui)− VḠ2k
i

(vi) = VḠ2k+1
i

(ui)− VḠ2k+1
i

(vi), k = 0, 1, 2, · · · ,
[Ki − 1

2

]

Remark 14. When ui = −1, vi = 1,∀i = 1, . . . , n, the necessary and sufficient global

optimality condition given in Corollary 4 is equivalent to the condition given in Theorem
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2.1 in paper [127] with box constraint, which are just different expressions, since both are

a necessary and sufficient condition to a global minimizer of separable polynomial problem

with box constraint. This can also be seen from Remark 13 (3) and Corollary 2.1 in paper

[127].

4.4. Optimization methods for (GP )

4.4.1. Strongly or ε−strongly local optimization method for (GP )

In this section, we will introduce a strongly or ε−strongly local optimization method for the

problem (GP ) according to the necessary global optimality conditions [NC]i, i = 1, . . . , n.

Definition 22. Let x̄ ∈ X and Q be an invertible matrix. x̄ is said to be a strongly local min-

imizer of the problem (GP ) with respect to Q iff x̄ satisfies the necessary global optimality

conditions [NC]i, for any i = 1, · · · , n.

Definition 23. Let x̄ ∈ X and Q be an invertible matrix. x̄ is said to be an ε−strongly local

minimizer of the problem (GP ) with respect to Q iff for any i = 1, · · · , n, either x̄ satisfies

the condition [NC]i or there exists a point x∗i ∈ X , such that x∗i satisfies the condition [NC]i

and |f(x̄)− f(x∗i )| ≤ ε.

Remark 15. From Theorem 10, we know that, for any given invertible matrix Q, [NC]i

is satisfied for any i = 1, . . . , n. However, in our algorithm, we only randomly select N

invertible matrices Q1, · · · , QN , and we always choose Q1 = I , the identity matrix.

Let x̄ ∈ X and Q be an invertible matrix. Let ȳ = Q−1x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T , y =

(ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and let Gi(yi) := f(Qy)− f(x̄), i = 1, · · · , n.

Algorithm 9. Strongly or ε−strongly local optimization method for (GP ):(SLOM).

Step 0. Take an initial point x0 ∈ X . Let Q1 = I , Q2, · · · , Qd, · · · , QN be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number.
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Let d := 1, Q := Qd and i := 1. Let x∗ = (x∗1, · · · , x∗n)T be a local minimizer or KKT

point of f(x) on
n∏
i=1

[ui, vi] starting from x0. Let x̄ := x∗, and go to Step 1.

Step 1. Let p := Gi(yi), a := li and b := ri. Check whether the condition [NC]i holds:

p(li) > 0 and the following equations hold:

Vp2k(a)− Vp2k(b) = Vp2k+1(a)− Vp2k+1(b),

k = 0, 1, 2, · · · ,
[Ki − 1

2

]
by using the Algorithm 8. If this condition holds, go to Step 3; otherwise, go to Step 2.

Step 2. Let ȳ = (ȳ1, . . . , ȳi, . . . , ȳn)T = Q−1x̄ and y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T . Let

ȳ∗i := argmin{f(Qy)|y ∈ Ni}, where Ni is defined by (4.5). Let ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ
∗
i ,

ȳi+1 · · · , ȳn) and x̄∗ := Qȳ∗. Let x∗ = (x∗1, · · · , x∗n) be a local minimizer or KKT point of

f(x) on
n∏
i=1

[ui, vi] starting from x̄∗. If f(x∗) < f(x̄) − ε, let x̄ := x∗, i := 1, d := 1 and

Q := Qd go to Step 1; otherwise, go to Step 3.

Step 3. If i := n, go to Step 4; otherwise, let i := i+ 1 and go to Step 1.

Step 4. Let d = d+ 1. If d > N , go to Step 5; otherwise, let Q := Qd and i := 1, go to Step

1.

Step 5. Stop. x̄ is a strongly or ε−strongly local minimizer with respect toQd, d = 1, · · · , N .

Theorem 11. For a given initial point x0 ∈ X , we can obtain a strongly or ε−strongly

local minimizer x̄ of the problem (GP ) in finite iteration times by the given strongly local

optimization method (SLOM).

Proof: The proof is similar to Theorem 8 in Chapter 3.

Remark 16. In step 2 in Algorithm 9, we need to find a global minimizer of a univariate

polynomial in an interval. To achieve this, we can apply any univariate algorithm, such as
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the methods mentioned in references [38] and [40]. More particularly, we can apply some

algorithms for univariate polynomial, such as the methods mentioned in references [16]

and [129]. Besides these, we can find the minimizer of univariate polynomial by approxi-

mating the roots of derivative. We can apply references [26] and [116] to find the roots of

derivative. In our implementation, we use commands ‘diff’ and ‘roots’ in Matlab to calcu-

late all stationary points (roots of derivative) and then compare the function values of these

stationary points. The point with the smallest function value is the global minimum. Actu-

ally, here we do not need to find the exact global minimizer of a univariate polynomial in

an interval, we just need to use some approximate method to find an approximate global

minimizer ȳ∗ such that f(Qȳ∗) < f(Qȳ) or the local minimizer of f(x) on X starting from

Qȳ∗ is better than x̄.

Remark 17. In step 0 and step 2, we can apply any local optimization algorithm to get a lo-

cal minimizer or a KKT point, such as the method of Zoutendijk (Case of linear constraints)

starting from x̄. In our implementation, the optimization subroutine fmincon within the opti-

mization Toolbox in Matlab is used as the local search scheme to obtain local minimizers.

4.4.2. Global optimization method for (GP )

In this subsection, we will design a global optimization method for the problem (GP ) by

combining the strongly local optimization method and an auxiliary function. In this chap-

ter, we still use the auxiliary function which was presented by (1.2) in Chapter 1. For the

properties of this auxiliary function, see Chapter 1.

Algorithm 10. Global optimization method for (GP ):(GOM).

Step 0. Set M := 1010, µ := 10−10 and k0 := 2n. Set An×n := In×n and Bn×2n := [A,−A].

Let r0 := 1, c0 := 1, q0 := 105 and δ0 := 1
2
. Let k := 1, i := 1 and r := r0. Let x0

1 be an

initial point and x∗0 := x0
1, then go to Step 1.
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Step 1. Use the strongly or ε−strongly local optimization method (SLOM) to solve the

problem (GP ) starting from x0
k. Let x∗k be the obtained strongly or ε−strongly local min-

imizer of the problem (GP ). If f(x∗k) ≥ f(x∗0), then go to step 6; otherwise let q := q0,

c := c0, r := r0, δ := δ0, i := 1 and x∗0 := x∗k, k := k + 1, then go to Step 2.

Step 2. Let Bi indicate the ith column of B and x̄∗k := x∗0 + δBi. If x̄∗k /∈ X , go to Step 3.

Otherwise, if f(x̄∗k) < f(x∗0), then set x0
k+1 := x̄∗k and x∗0 := x̄∗k, k := k + 1 and go to Step

1; else go to Step 4.

Step 3. If δ < µ, go to Step 8; otherwise, let δ = δ
2

and go to Step 2.

Step 4. If f(x∗0) ≤ f(x̄∗k) ≤ f(x∗0) + 1, then go to Step 5; otherwise let δ = δ
2

go to Step 2.

Step 5. Let

Fq,r,c,x∗0(x) = q

(
exp(−‖x− x

∗
0‖2

q
)gr,c

(
f(x)− f(x∗0)

)
+ hr,c

(
f(x)− f(x∗0)

))
.

Solve the problem:

min Fq,r,c,x∗0(x) (4.12)

s.t. x ∈ X.

by a local search method starting from the initial point x̄∗k. Let x̄q,r,c,x∗k be the local minimizer

obtained. Then set x0
k+1 := x̄q,r,c,x∗k , k := k + 1 and go to Step 1.

Step 6. If q < M , then increase q (in the following examples, let q := 10q), then go to Step

5; otherwise go to Step 7.

Step 7. If c < M , then increase c (in the following examples, let c := 10c), and let q := q0,

then go to Step 5; otherwise go to Step 8.

Step 8. If i < k0, then let i := i + 1, q := q0, c := c0, δ = δ0, go to Step 2; otherwise go to

Step 9.
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Step 9. If r > µ, then decrease r (in the following examples, let r := r
10

). Randomly select

an orthogonal matrix An×n and set Bn×2n := [A,−A]. Let i := 1, q := q0, c := c0, δ = δ0

and go to Step 2; otherwise, stop and x∗0 is the obtained global minimizer or approximate

global minimizer of the problem (GP ).

4.5. Numerical examples

In this section, we apply our two Algorithms: strongly local optimization method(SLOM)

and global optimization method(GOM) to twenty one test problems. These test problems

include Problems 4.1-4.19 from [97], Problem 4.20 from Example 4.1 and Problem 4.21

from Example 5.2 in the paper [81]. For the detailed information of these problems, see the

appendix in the end. Table 4.1 shows summary information of the twenty one test problems

that are based on a set of polynomial functions.

Table 4.1.: Test problems for (GP)

Problem Name and Global minimizer Optimal value

number parameter values x∗ f(x∗)

4.1 Beale (3, 0.5) 0

4.2 Booth (1, 3) 0

4.3 Matyas (0, 0) 0

4.4 Goldstein and Price (0, −1) 3

4.5 Six-hump Camelback (1.7036, −0.7961) −1.0316

(−1.7036, 0.7961)

4.6 Perm(3,0.5) (1, 2, 3) 0

4.7 Perm0(3,10) (1, 1/2, 1/3) 0

continue goes here. . .
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Problem Name and Global minimizer Optimal value

number parameter values x∗ f(x∗)

4.8 Perm(4,0.5) (1, 2, 3, 4) 0

4.9 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0

4.10 Colville (1, 1, 1, 1) 0

4.11 Powersum(8,18,44,114) (1, 2, 2, 3) 0

4.12 Dixon and Price xi = 2−
z−1
z , z = 2i−1 0

4.13 Dixon and Price xi = 2−
z−1
z , z = 2i−1 0

4.14 Trid xi = i(11− i) −210

4.15 Rosenbrock (1, · · · , 1) 0

4.16 Sum Squares (0, · · · , 0) 0

4.17 Zakharov (0, · · · , 0) 0

4.18 Powell (3, −1, 0, 1, 3, · · · , 0

3, −1, 0, 1)

4.19 Sphere (0, · · · , 0) 0

4.20 Example 4.1 x∗1
†1 7.5586

in [81] x∗2
†2

4.21 Example 5.2 0.0648†3

in [81]

†1x∗1 = (0.0039, 0.6285, 0.5370, 0.0259,−0.4324,−0.4266, 0.1540,−0.5108,

0.2172,−0.4029, 0.4400,−0.4307, 0.0230, 0.5378, 0.6285, 0.0039)

†2x∗2 = (0.0039, 0.6285, 0.5378, 0.0230,−0.4307, 0.4400,−0.4029, 0.2172,

−0.5108, 0.1540,−0.4266,−0.4324, 0.0259, 0.5370, 0.6285, 0.0039)
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†3 is an approximate global optimal value provided in the paper [81] and no corresponding

minimizer is mentioned.

For our experiments, we use the optimality gap mentioned in [97] is:

GAP = |f(x)− f(x∗)|

where x is a heuristic solution obtained by our method and x∗ is the optimal solution. We

then say that a heuristic solution x is optimal if:

GAP ≤

 ε f(x∗) = 0

ε× |f(x∗)| f(x∗) 6= 0

In our experimentation we set ε = 0.001 as the same of that in [97].

In the table below, some common statistics are included. We randomly select 30 initial points

for every problem. The suc.rate(success rate) means the success times out of 30. The best

is the minimum of the results, the worst indicates the maximum of the results, and then it

follows the mean, median and st.dev.(standard deviation). In some way, these statistics are

able to evaluate the search ability and solution accuracy, reliability and convergence as well

as stability.

Table 4.2.: Results of algorithms SLOM and GOM for (GP)

Problem number statistic SLOM GOM

4.1 suc.rate 29/30 30/30

best 4.4260e− 014 4.4260e− 014

worst 0.7621 6.3560e− 013

mean 0.0254 2.3292e− 013

continue goes here. . .
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Problem number statistic SLOM GOM

median 2.3569e− 013 2.3541e− 013

st.dev 0.1391 1.0040e− 013

4.2 suc.rate 30/30 30/30

best 4.0732e− 015 4.0732e− 015

worst 3.0047e− 014 3.0047e− 014

mean 1.0685e− 014 1.0685e− 014

median 1.0302e− 014 1.0302e− 014

st.dev 3.8452e− 015 3.8452e− 015

4.3 suc.rate 30/30 30/30

best 1.2579e− 016 1.2579e− 016

worst 1.2720e− 012 1.2720e− 012

mean 1.5877e− 013 1.5877e− 013

median 2.1690e− 014 2.1690e− 014

st.dev 2.8049e− 013 2.8049e− 013

4.4 suc.rate 30/30 30/30

best 3.0000 3.0000

worst 3.0000 3.0000

mean 3.0000 3.0000

median 3.0000 3.0000

st.dev 0 0

4.5 suc.rate 30/30 30/30

best −1.0316 −1.0316

worst −1.0316 −1.0316

mean −1.0316 −1.0316

continue goes here. . .
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Problem number statistic SLOM GOM

median −1.0316 −1.0316

st.dev 0 0

4.6 suc.rate 19/30 30/30

best 6.4996e− 007 6.4996e− 007

worst 0.0034 8.1093e− 007

mean 0.0012 7.0362e− 007

median 8.1093e− 007 6.4996e− 007

st.dev 0.0017 7.7179e− 008

4.7 suc.rate 30/30 30/30

best 1.4132e− 013 1.4132e− 013

worst 4.9007e− 004 1.9212e− 012

mean 1.9603e− 004 6.2854e− 013

median 1.0355e− 012 3.8054e− 013

st.dev 2.4419e− 004 4.4463e− 013

4.8 suc.rate 13/30 29/30

best 1.1067e− 006 6.6125e− 007

worst 0.4723 0.0048

mean 0.0314 3.7739e− 004

median 0.0012 1.1452e− 005

st.dev 0.0910 8.7023e− 004

4.9 suc.rate 24/30 30/30

best 3.9667e− 013 3.9667e− 013

worst 0.0109 8.7909e− 005

mean 0.0025 1.4309e− 005

continue goes here. . .
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Problem number statistic SLOM GOM

median 9.0656e− 004 4.2752e− 012

st.dev 0.0043 2.9628e− 005

4.10 suc.rate 30/30 30/30

best 3.5684e− 013 3.5684e− 013

worst 6.1499e− 013 6.1499e− 013

mean 5.4901e− 013 5.4901e− 013

median 5.7129e− 013 5.7129e− 013

st.dev 5.4297e− 014 5.4297e− 014

4.11 suc.rate 30/30 30/30

best 1.7637e− 008 1.7637e− 008

worst 4.2910e− 004 8.2802e− 007

mean 4.3089e− 005 1.9577e− 007

median 1.4991e− 007 1.4924e− 007

st.dev 1.3087e− 004 1.5486e− 007

4.12 suc.rate 25/30 30/30

best 1.8580e− 014 1.8580e− 014

worst 0.6667 1.1907e− 013

mean 0.1111 3.4096e− 014

median 2.8479e− 014 2.8479e− 014

st.dev 0.2527 1.9009e− 014

4.13 suc.rate 0/30 30/30

best 0.6667 6.6770e− 014

worst 0.6667 1.6046e− 013

mean 0.6667 1.0319e− 013

continue goes here. . .
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Problem number statistic SLOM GOM

median 0.6667 9.6125e− 014

st.dev 3.1892e− 014 2.4841e− 014

4.14 suc.rate 30/30 30/30

best −210.0000 −210.0000

worst −210.0000 −210.0000

mean −210.0000 −210.0000

median −210.0000 −210.0000

st.dev 2.5864e− 011 2.5864e− 011

4.15 suc.rate 30/30 30/30

best 3.7440e− 013 3.7440e− 013

worst 7.2587e− 006 7.2587e− 006

mean 2.4197e− 007 2.4197e− 007

median 1.3327e− 011 1.3327e− 011

st.dev 1.3252e− 006 1.3252e− 006

4.16 suc.rate 30/30 30/30

best 5.2298e− 015 5.2298e− 015

worst 3.2713e− 013 3.2713e− 013

mean 4.1423e− 014 4.1423e− 014

median 1.3512e− 014 1.3512e− 014

st.dev 7.3224e− 014 7.3224e− 014

4.17 suc.rate 30/30 30/30

best 4.7531e− 016 4.7531e− 016

worst 7.9295e− 015 7.9295e− 015

mean 2.5000e− 015 2.5000e− 015

continue goes here. . .
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Problem number statistic SLOM GOM

median 1.6761e− 015 1.6761e− 015

st.dev 2.1075e− 015 2.1075e− 015

4.18 suc.rate 30/30 30/30

best 5.9340e− 008 5.9340e− 008

worst 3.0156e− 005 3.0156e− 005

mean 5.4882e− 006 5.4882e− 006

median 2.4128e− 006 2.4128e− 006

st.dev 8.4603e− 006 8.4603e− 006

4.19 suc.rate 30/30 30/30

best 4.5263e− 016 4.5263e− 016

worst 1.5938e− 012 1.5938e− 012

mean 1.5661e− 013 1.5661e− 013

median 2.0627e− 014 2.0627e− 014

st.dev 3.0978e− 013 3.0978e− 013

4.20 suc.rate 0/30 30/30

best 7.5711 7.5586

worst 7.7002 7.5586

mean 7.6200 7.5586

median 7.6270 7.5586

st.dev 0.0351 7.0247e− 014

4.21 suc.rate 13/30 30/30

best 5.9917e− 005 1.7511e− 006

worst 0.0044 9.8407e− 006

mean 0.0018 6.6478e− 006

continue goes here. . .
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Problem number statistic SLOM GOM

median 0.0015 6.9778e− 006

st.dev 0.0016 3.2757e− 006

It is shown from table 4.2 that GOM can successfully find the global minimizer starting from

almost all of the randomly selected 30 initial points for each test problem. Only for Problem

4.8, the success rate for Algorithm GOM is 29 out of 30. For Problem 4.21, we find a better

solution than that mentioned in [81]. Overall, Algorithm GOM is very efficient and stable.

As a local optimization method, SLOM can also be considered as a competitive algorithm

with producing impressive results.

Since SDP and SOS relaxation methods are very popular for polynomial optimization, we try

to compare our GOM method with the solver GloptiPoly 3 which is a Matlab/SeDuMi add-

on for SDP-relaxations of minimization problems over multivariable polynomial functions

subject to polynomial or integer constraints [31, 32].

Table 4.3.: Comparisons between GOM and Gloptipoly 3 for (GP)

Problem number statistic GOM GloptiPoly 3

4.1 suc.rate 30/30 30/30

best 4.4260e− 014 2.4615e− 007

worst 6.3560e− 013 2.5555e− 007

4.2 suc.rate 30/30 30/30

best 4.0732e− 015 5.6296e− 008

worst 3.0047e− 014 5.6296e− 008

4.3 suc.rate 30/30 30/30

continue goes here. . .
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Problem number statistic GOM GloptiPoly 3

best 1.2579e− 016 2.8912e− 031

worst 1.2720e− 012 2.8912e− 031

4.4 suc.rate 30/30 30/30

best 3.0000 3.0000

worst 3.0000 3.0000

4.5 suc.rate 30/30 30/30

best −1.0316 −1.0316

worst −1.0316 −1.0316

4.6 suc.rate 30/30 30/30

order= 3

best 6.4996e− 007 1.6287e− 005

worst 8.1093e− 007 1.6287e− 005

4.7 suc.rate 30/30 21/30

order= 3

best 1.4132e− 013 1.7784e− 006

worst 1.9212e− 012 -

4.8 suc.rate 29/30 0/30

best 6.6125e− 007 -

worst 0.0048 -

4.9 suc.rate 30/30 0/30

best 3.9667e− 013 -

worst 8.7909e− 005 -

4.10 suc.rate 30/30 30/30

best 3.5684e− 013 6.3203e− 009

continue goes here. . .
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Problem number statistic GOM GloptiPoly 3

worst 6.1499e− 013 6.3203e− 009

4.11 suc.rate 30/30 0/30

best 1.7637e− 008 -

worst 8.2802e− 007 -

4.12 suc.rate 30/30 30/30

order= 3

best 1.8580e− 014 2.1817e− 009

worst 1.1907e− 013 2.1858e− 009

4.13 suc.rate 30/30 0/30

best 6.6770e− 014 -

worst 1.6046e− 013 -

4.14 suc.rate 30/30 30/30

best −210.0000 −210.0000

worst −210.0000 −210.0000

4.15 suc.rate 30/30 0/30

best 3.7440e− 013 -

worst 7.2587e− 006 -

4.16 suc.rate 30/30 30/30

best 5.2298e− 015 1.8780e− 030

worst 3.2713e− 013 1.8780e− 030

4.17 suc.rate 30/30 0/30

best 4.7531e− 016 -

worst 7.9295e− 015 -

4.18 suc.rate 30/30 0/30

continue goes here. . .
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Problem number statistic GOM GloptiPoly 3

best 5.9340e− 008 -

worst 3.0156e− 005 -

4.19 suc.rate 30/30 30/30

best 4.5263e− 016 4.4866e− 032

worst 1.5938e− 012 4.4866e− 032

4.20 suc.rate 30/30 0/30

best 7.5586 -

worst 7.5586 -

4.21 suc.rate 30/30 0/30

best 1.7511e− 006 -

worst 9.8407e− 006 -

When we use GloptiPoly 3 to solve non-convex polynomial programming problems, it may

not return the global optimum but a lower bound. The default order in GloptiPoly 3 is such

that twice the order is greater than or equal to the maximal degree occurring in the polynomial

expressions of the original optimization problem. More importantly, the series of optima of

SDP-relaxations of increasing orders converges monotonically to the global optimum [31].

However, the computational time increases quickly with the increasing relaxation order and

the computer may return ‘out of memory’ when the order is big enough.

In the table 4.3, we use the solver GloptiPoly 3 to solve Problem 4.1-4.21. We run Gloptipoly

3 30 times for each problem with fixed relaxation order. First, we use the default order to

calculate it. If it fails, we increase the order so that the problem may be solved. For example,

for Problem 4.7, GloptiPoly 3 fails to solve it until the order equals to 3. Even though the

order equals to 3, only 21 out of 30 times succeed. For the other 9 times, GloptiPoly 3

cannot extract the global optimum from the lower bound. If a problem cannot be solved by
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the solver GloptiPoly 3 with increasing orders from default order to the order making it out

of memory, then success rate is 0/30. From the above table, we can see GloptiPoly 3 solves

Problem 4.1-4.6, 4.10, 4.12, 4.14, 4.16, and 4.19 successfully. For Problem 4.7, GloptiPoly

3 solves it 21 times successfully out of 30. For the rest problems, GloptiPoly 3 fails, that

is GloptiPoly 3 either does not extract the global optimum from the lower bound, or returns

‘out of memory’.

For the large scale Problems 4.20 and 4.21, the method for SDP relaxations in large scale

polynomial optimization provided in [81] gave global or approximate global optimal values.

By our method GOM, for Problem 4.20, we got the same result with that in [81] and for 4.21,

we got better result than that in [81].

Note, all computations in the paper were implemented on a Microsoft Windows XP Desktop

of 3.46GB memory and 2.99GHz CPU frequency.

4.6. Conclusion

A necessary global optimality condition for the problem (GP ) is provided. A new local opti-

mization method is designed according to the necessary global condition. A global optimiza-

tion method is designed by combining the new local optimization method and an auxiliary

function. The numerical examples illustrate that our methods are efficient and stable.
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Chapter 5.

Global optimality conditions and

optimization methods for general

constrained polynomial

programming problems (GPP )

The general constrained polynomial programming problems which are denoted by (GPP )

are considered in this chapter. Problems (GPP ) have a broad range of applications and are

proved to be NP-hard. Necessary global optimality conditions for the problem (GPP ) are

established. Then, a new local optimization method for the problem (GPP ) is proposed

by exploiting these necessary global optimality conditions. A global optimization method

is proposed for the problem (GPP ) by combining this local optimization method together

with an auxiliary function. Some numerical examples are also given to illustrate that these

approaches are very efficient.
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5.1. Introduction

Problems (GPP ) are widespread in the mathematical modeling of real world systems for

a very broad range of applications. Such applications include engineering design, signal

processing, speech recognition, material science, investment science, quantum mechanics,

allocation and location problems, quadratic assignment and numerical linear algebra [17,

117]. Since polynomial functions are non-convex, the problem (GPP ) is NP-hard, even

when the objective function is quadratic and the feasible set is a simplex [81].

A classic approach for the problem (GPP ) is convex relaxation methods [30,77,81]. Among

various convex relaxation methods, semidefinite programming (SDP) and sum of squares

(SOS) relaxations are very popular. As we surveyed in Chapter 1, we know that solving

large scale SDP problems still remains a computational challenge.

Recently, some researchers applied SDP relaxation methods to some special models. [14]

provided approximation methods for complex polynomial optimization. In [14], the ob-

jective function takes three forms: multilinear, homogenous polynomial and a conjugate

symmetric form. The constraint belongs to three sets: the m-th roots of complex unity,

the complex unity and the Euclidean sphere. [23] established some approximation solution

methods to solve a quadratically constrained multivariate bi-quadratic optimization. [139]

presented a general semidefinite relaxation scheme for general n-variate quartic polynomial

optimization under homogeneous quadratic constraints. [117] considered approximation al-

gorithms for optimizing a generic multi-variate homogeneous polynomial function, subject

to homogenous quadratic constraints.

Global optimality conditions are very important in global optimization field. References

[65, 66, 76, 125] focus on global optimality conditions for the problems with quadratic ob-

jective function subject to linear constraints or quadratic constraints. Based on the so-called

Positivstellensatz (a polynomial analogue of the transposition theorem for linear systems), it
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is possible to formulate global necessary and sufficient conditions for problems (GPP) [54].

[67] proved in Theorem 4.2 a sufficient conditions for global optimality in (GPP), which

is a special case of global necessary and sufficient conditions proposed in [54]. [126] pro-

vided another necessary and sufficient global optimality conditions for (GPP). However all

these conditions are complex and difficult to check in practice since the conditions involve

solving a sequence of semidefinite programs. As it mentioned in [54], only under the ideal-

ized assumptions that all semidefinite programs can be solved exactly, it is possible for these

conditions to be checked.

In this chapter, we consider the following problem (GPP ).

(GPP ) min f(x)

s.t. gt(x) ≤ 0, t = 1, · · · ,m

x ∈ X,

where f : X → R, gt : X → R, t = 1, · · · ,m, and X is a box with xi ∈ [ui, vi], i =

1, . . . , n. S = {x ∈ X|gt(x) ≤ 0, t = 1, · · · ,m} is feasible set.

In this chapter, we will discuss necessary global optimality conditions for the problem (GPP ).

These conditions are obtained by studying KKT conditions and a necessary and sufficient

condition for a point being a global minimizer for a constrained univariate polynomial pro-

gramming problem. Then a new strongly local optimization method will be designed for the

problem (GPP) according to the necessary global optimality conditions. The new strongly

local optimization method improves traditional local optimization method which is based on

KKT conditions. Finally, we will design a global optimization method to solve the problem

(GPP) by combining the new strongly local optimization method and an auxiliary function.

Numerical examples illustrate the efficiency of the optimization methods proposed in the
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chapter.

5.2. Necessary global optimality conditions for (GPP )

In this section, we will provide necessary global optimality conditions for the problem

(GPP ). Actually, we construct a point set where the global minimizer lies in. We can

obtain the global minimizer by comparing the function values of all points in the set.

First, we consider the following univariate polynomial optimization.

(UPP ) min p(x)

s.t. qt(x) ≤ 0, t = 1, · · · ,m

x ∈ [u, v].

Let Ω = {x ∈ [u, v]|qt(x) ≤ 0, t = 1, · · · ,m}.

The problem (UPP ) is interesting not only because of the inherent simplicity of the problem

structure and rich modeling capabilities, but also because this problem forms the backbone

of multi-variate polynomial optimization [129].

For methods to solve the problem (UPP ), please refer to [47, 129] and the papers therein.

[129] applies the global optimization algorithm (GOP) which proposed for solving con-

strained nonconvex problems involving quadratic and polynomial functions in the objective

function and/or constraints presented in [19] to the special case of polynomial functions of

one variable. It illustrates the effectiveness of the algorithm. [47] presents a significant en-

hancement of reformulation-linearization technique (RLT) and shows empirically that this

approach yield very tight lower bounds.

Since the feasible set Ω is a compact set and is not easy to work out, we will construct a new

point set Ω0 ⊂ Ω.
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Let Ω1 = {u, v|qt(u) ≤ 0, qt(v) ≤ 0, t = 1, · · · ,m}, Ω2 = {x|∇p(x) = 0, qt(x) < 0, t =

1, · · · ,m, x ∈ (u, v)} and Ω3
t = {x|qt(x) = 0, qj(x) ≤ 0, j 6= t, j = 1, · · · ,m, x ∈ (u, v)},

t = 1, · · · ,m. Let

Ω0 = Ω1
⋃

Ω2

m⋃
t=1

Ω3
t . (5.1)

Remark 18. Since p(x) and qt(x), t = 1, · · · ,m, are univariate polynomials, we suppose

that the degree of p(x) is dp and the degrees of qt(x), t = 1, · · · ,m, are dqt, t = 1, · · · ,m,

respectively. We use following methods to work out these point sets Ω1, Ω2 and Ω3
t , t =

1, · · · ,m:

1. u and v will be kept if qt(u) ≤ 0, qt(v) ≤ 0, t = 1, · · · ,m. So, |Ω1| ≤ 2;

2. Calculate all stationary points of p(x) in an interval (u, v) ({x ∈ (u, v)|∇p(x) = 0})

which will be kept if qt(x) < 0, for all t = 1, · · · ,m. So, |Ω2| ≤ dp− 1;

3. Calculate all roots of qt(x) in an interval (u, v) ({x ∈ (u, v)|qt(x) = 0}), t =

1, · · · ,m, which will be kept if qj(x) ≤ 0, j 6= t, j = 1, · · · ,m. So, |Ω3| ≤
m∑
t=1

dqt.

When it comes to finding roots of a univariate polynomial, we refer to the methods proposed

in [26] and [116]. In our implementation, we use command ‘roots’ in Matlab to calculate

all roots.

Proposition 3. For the problem (UPP), let x̄ ∈ Ω. x̄ is a global minimizer of (UPP) over Ω

if and only if the following condition holds:

p(x̄) ≤ p(x), ∀x ∈ Ω0, (5.2)

where Ω0 is defined in (5.1).

Proof. ⇒ The proof is obvious since Ω0 ⊂ Ω.
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⇐We suppose that x̄ is not a global minimizer of p(x) over Ω and x∗ is a global minimizer

of p(x) over Ω. So we have p(x∗) < p(x̄).

From the condition (5.2), we know that x∗ ∈ Ω \ Ω0 (which means x∗ ∈ Ω and x∗ /∈ Ω0).

By x∗ /∈ Ω1, we have x∗ ∈ (u, v). By x∗ /∈
m⋃
t=1

Ω3
t , we have qt(x∗) < 0, t = 1, · · · ,m. By

x∗ /∈ Ω2, x∗ ∈ (u, v) and qt(x∗) < 0, t = 1, · · · ,m, we have∇p(x∗) 6= 0.

So, we have the following properties. Let d = −∇p(x∗). There exists an s > 0, such that

1. x∗ + sd ∈ (u, v);

2. qt(x∗ + sd) < 0, for all t = 1, · · · ,m;

3. p(x∗ + sd) < p(x∗)

So we can conclude x∗ + sd ∈ Ω and p(x∗ + sd) < p(x∗), which contradicts that x∗ is a

global minimizer of p(x) over Ω.

By using Proposition 3, we will give necessary global optimality conditions for the problem

(GPP ).

Let x̄ ∈ S, Q be an invertible matrix, let

x := Qy, F (y) := f(Qy) = f(x), ȳ := Q−1x̄,

and let (Q)i represent the ith row of Q, (Q)ij represent the entry of Q in the ith row and the

jth column.

Let Y = {y = Q−1x|x ∈ X}. For ȳ = (ȳ1, . . . , ȳn)T = Q−1x̄, let y = (ȳ1, · · · , ȳi−1,

yi, ȳi+1, · · · , ȳn)T . Let 4k =
n∑

j=1
j 6=i

(Q)kj ȳj = x̄k − (Q)kiȳi = x̄k − (Q)ki(Q
−1)ix̄, k =

1, · · · , n, and let

li = max

{
min

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,min

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
,

ri = min

{
max

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,max

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
.
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Then we can obtain the following results:

(1) li ≤ ri,

(2) [li, ri] = {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y }.

Let Gt(yi) = gt(Qy) = gt(x). We have S1
i = {li, ri|Gt(li) ≤ 0, Gt(ri) ≤ 0|t = 1, · · · ,m},

S2
i = {yi|∇f(Qy) = 0, gt(Qy) < 0, t = 1, · · · ,m, y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T , yi

∈ (li, ri)} and S3
t,i = {yi|gt(Qy) = 0, gj(Qy) ≤ 0, j 6= t, j = 1, · · · ,m, y = (ȳ1, · · · , ȳi−1,

yi, ȳi+1, · · · , ȳn)T , yi ∈ (li, ri)}, t = 1, · · · ,m, ∀i = 1, · · · , n. Let

S0
i = S1

i

⋃
S2
i

m⋃
t=1

S3
t,i. (5.3)

Let us review KKT conditions for the problem (GPP).

If x̄ is a local optimal solution, then the following KKT conditions hold under some con-

straint qualifications: there exist nonnegative scalars αt, t = 1, · · · ,m, βi and γi, i =

1, · · · , n, such that

[KKT ]



∇f(x̄) +
m∑
t=1

αt∇gt(x̄) + β − γ = 0,

αtgt(x̄) = 0, t = 1, · · · ,m

β(x− v) = 0

γ(u− x) = 0

,

where β = (β1, · · · , βn)T and γ = (γ1, · · · , γn)T . See [100] for various constraint qualifica-

tions, such as Abadie constraint qualification, linearity constraint qualification, Slater’s con-

straint qualification, linear independence constraint qualification, Cottle’s constraint qualifi-

cation, Zangwill’s constraint qualification, Kuhn-Tucker’s constraint qualification.

Theorem 12. (Necessary global optimality conditions for (GPP)) Let x̄ ∈ S and Q be any
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invertible matrix. If x̄ is a global minimizer of (GPP), then the following conditions hold:

[GNC]

 [KKT ] conditions hold under some constraint qualifications;

[NC]i : f(x̄) ≤ f(x), ∀(Q−1)ix ∈ S0
i , ∀i = 1, · · · , n.

where S0
i is defined in (5.3).

Proof. If x̄ is a global minimizer of (GPP), then it is also a local minimizer of (GPP). So

under some constraint qualifications, KKT conditions hold.

Next, we prove conditions [NC]i, i = 1, · · · , n hold. If x̄ is a global minimizer of (GPP),

then f(x̄) ≤ f(x), for any x ∈ S.

Let ȳ = Qx̄. For any y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T ∈ Y , i.e., yi ∈ [li, ri],∀i =

1, . . . , n, let x = Qy. Then x ∈ X . So we have f(Qȳ) ≤ f(Qy), for any yi ∈ [li, ri],∀i =

1, . . . , n. By using Proposition 3, we have the following conditions [NC]i hold:

[NC]i f(x̄) ≤ f(x), ∀(Q−1)ix ∈ S0
i , ∀i = 1, · · · , n.

Remark 19. From Theorem 12, we can see the global optimality conditions [GNC] are

stronger than KKT conditions, since [GNC] include KKT conditions.

Next, we take Problem 5.8 in section 5.4 for example to show [KKT ] + [NC]i, ∀i =

1, · · · , n below.

We fix Q = I and choose two points x̄ = (2.3295, 3.1785)T which is a global minimizer and

ȳ = (1.5996, 2.8204)T which is a local minimizer. It is easy to check that both [NC]i and

[KKT ] hold at x̄, while [KKT ] holds at ȳ, but [NC]i does not hold at ȳ.

In fact, x̄ ∈ int(X), ∇f(x̄) = (−1,−1)T and g1(x̄) = g2(x̄) = 0, which means x̄ ∈ S3
t,i ⊂

S0
i , t = 1, 2, i = 1, 2.

When i = 1 and we fix x̄2 = 3.1785, we have S1
1 = ∅, S2

1 = ∅, S3
1,1 = {2.3295, 0.5179}
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and S3
2,1 = {2.3295, 0.6247}. But f((0.5179, 3.1785)T ) = −3.6964 > f(x̄) = −5.5080

and f((0.6247, 3.1785)T ) = −3.8033 > f(x̄) = −5.5080. So f(x̄) ≤ f(x), ∀x ∈ S0
1 =

S1
1

⋃
S2

1

2⋃
t=1

S3
t,1.

When i = 2 and we fix x̄1 = 2.3295, we have S1
2 = {0}, S2

2 = ∅, S3
1,2 = {3.1785}

and S3
2,2 = {3.1785}. But f((2.3295, 0)T ) = −2.3295 > f(x̄) = −5.5080. So f(x̄) ≤

f(x), ∀x ∈ S0
2 = S1

2

⋃
S2

2

2⋃
t=1

S3
t,2.

This means conditions [NC]i, i = 1, 2, hold at x̄.

Since∇g1(x̄) = (−8.1639, 1)T and∇g2(x̄) = (4.6996, 1)T , we can find nonnegative scalars

α1 = 0.2876 and α2 = 0.7124 such that [KKT ] holds at x̄.

While ȳ ∈ int(X),∇f(ȳ) = (−1,−1)T and g1(ȳ) = g2(ȳ) = 0, which means ȳ ∈ S3
t,i ⊂ S0

i ,

t = 1, 2, i = 1, 2.

When i = 1 and we fix ȳ2 = 2.8204, we have S1
1 = ∅, S2

1 = ∅, S3
1,1 = {2.2808, 1.5996, 0.4004}.

f((2.2808, 2.8204)T ) = −5.1012, f((1.5996, 2.8204)T ) = −4.4200 and f((0.4004,2.8204)T )

= −3.2208. So f(ȳ) ≤ f(x), ∀x ∈ S0
1 = S1

1

⋃
S2

1

2⋃
t=1

S3
t,1 does not hold at ȳ. This means

[NC]1 does not hold at ȳ.

Since∇g1(ȳ) = (3.0723, 1)T and∇g2(x̄) = (−5.3793, 1)T , we can find nonnegative scalars

α1 = 0.7548 and α2 = 0.2452 such that [KKT ] holds at ȳ.

5.3. Optimization methods for (GPP )

5.3.1. New local optimization method for (GPP )

Definition 24. Let x̄ ∈ S and Q be an invertible matrix. x̄ is said to be a strongly local min-

imizer of the problem (GPP ) with respect to Q iff x̄ satisfies the necessary global optimality

conditions [GNC].

Definition 25. Let x̄ ∈ S and Q be an invertible matrix. x̄ is said to be a ε−strongly local
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minimizer of the problem (GPP ) with respect to Q iff KKT conditions hold at x̄ and for any

i = 1, · · · , n, either x̄ satisfies the condition [NC]i or there exists a point X∗i ∈ S, such that

X∗i satisfies the condition [NC]i when x̄ is replaced by X∗i , and |f(x̄)− f(X∗i )| ≤ ε.

Algorithm 11. Strongly or ε−strongly local optimization method for (GPP ):(SLOM).

Step 0. Take an initial point x0 ∈ S. Let Q1 = I , Q2, · · · , Qs, · · · , QN be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number.

Let s := 1 and Q := Qs and i = 1. Let x∗ := (x∗1, · · · , x∗n)T be a local minimizer or KKT

point of f(x) on feasible set S starting from x̄. Let x̄ := x∗ and go to Step 1.

Step 1. Let ȳ = Q−1x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T , y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and

x = Qy. Calculate S1
i , and then check whether the condition holds:

f(x̄) ≤ f(Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S1
i .

If this condition holds, go to Step 2, otherwise set S̃ = S1
i and go to Step 4.

Step 2. Calculate S2
i , and then check whether the condition holds:

f(x̄) ≤ f(Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S2
i .

If this condition holds, go to Step 3, otherwise set S̃ = S2
i and go to Step 4.

Step 3. Set t = 1. Calculate S3
t,i, and then check whether the condition holds:

f(x̄) ≤ f(Qy) + ε, ∀y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S3
t,i.

If the condition holds, set t = t + 1 and repeat to check the condition until t = m and go to

Step 5; otherwise set S̃ = S3
t,i and go to Step 4.
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Step 4. Let ȳ∗i := argmin{f(Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃} and

ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ
∗
i , ȳi+1 · · · , ȳn)T . Let x̄∗ := Qȳ∗. Let x∗ = (x∗1, · · · , x∗n) be a local

minimizer or KKT point of f(x) on S starting from x̄∗. If f(x∗) < f(x̄) − ε, let x̄ := x∗,

i := 1, s := 1 and Q := Qs, go to Step 1; otherwise go to Step 5.

Step 5. If i := n, go to Step 6; otherwise, let i := i+ 1 and go to Step 1.

Step 6. Let s := s+ 1. If s > N , go to Step 7; otherwise, let Q := Qs and i := 1, go to Step

1.

Step 7. Stop. x̄ is a strongly or ε−strongly local minimizer with respect toQs, s = 1, · · · , N .

Remark 20. In step 0 and step 4, we can apply any local optimization algorithm to get

local minimizer or KKT point, such as feasible direction methods, penalty function methods,

starting from x̄. In our implementation, the optimization subroutine ‘fmincon’ within the

optimization Toolbox in Matlab is used as the local search scheme to obtain local minimizers.

In step 1, step 2 and step 3, we need to calculate S1
i , S2

i and S3
t,i, t = 1, · · · ,m. For any

i, i ∈ {1, · · · , n}, let x̄ ∈ S, ȳ = Q−1x̄ and y = (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T , where

yi ∈ [li, ri]. Then f(Qy) and gt(Qy), t = 1, · · · ,m, are univariate polynomials. So, we refer

to Remark 18 to calculate these point sets.

Theorem 13. For a given initial point x0 ∈ S, we can obtain a strongly or ε−strongly

local minimizer x̄ of the problem (GPP ) in finite iteration times by the given strongly local

optimization method (SLOM).

Proof: First, we can prove that this algorithm must stop in finite iteration times.

Let M := max{f(x)|x ∈ S} and m := min{f(x)|x ∈ S}. For the given Qs, there are at

most nM−m
ε

iteration times from step 1 to step 5. In fact, for the given Qs and given i, if

[NC]i holds or if f(x∗) ≥ f(x̄)− ε, then we will change the i into i + 1; only when [NC]i

does not hold and f(x∗) < f(x̄) − ε, we will change i to 1 in step 4 and go to step 1. For

the same Qs, when we change i to 1, the objection function value will decrease at least ε.
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Hence, there are at most M−m
ε

times to change i to 1 in step 4. The total iteration time from

step 1 to step 5 is at most nM−m
ε

. Since we have N numbers of Qs , this algorithm must stop

at most NnM−m
ε

iteration times.

Second, let L be the set of all the KKT points of the problem (GPP ), and let Lf := {f(x) |

x ∈ L}. We can prove that

(1) If Lf is a finite set, then we can obtain a strongly local minimizer in finite iteration

times when ε is a very small number. In fact, let η := min{|f(x) − f(y)| | x, y ∈

L and f(x) 6= f(y)}. Since Lf is a finite set, we have that η > 0. When ε < η, we

know that f(x∗) < f(x̄) − ε in step 4 is equivalent to f(x∗) < f(x̄). Hence, for the

given Qs and given i, if [NC]i holds, then we will change the i into i + 1; if [NC]i

does not hold in step 1 or step 2 or step 3 which means that f(x̄) > min{f(Qy)|y =

(ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃}, then in step 4, we will find point ȳ∗i such that

f(Qȳ∗) = min{f(Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and yi ∈ S̃}. Hence, we have

that f(x∗) < f(x̄) since f(x∗) ≤ f(Qȳ∗) < f(x̄) and we have x∗ ∈ L. Therefore, for the

givenQs and given i, if [NC]i does not hold in step 1 or step 2 or step 3, then we can obtain a

new KKT point x∗ such that f(x∗) < f(x̄) which also satisfies that f(x∗) < f(x̄)−ε. Hence,

for the given Qs, we can find a point x̄ which satisfies all the condition [NC]i, i = 1, . . . , n

in at most nM−m
ε

iteration times. Therefore, in finite times, we can obtain a strongly local

minimizer of the problem (GPP ) for all Qs, s = 1, . . . , N .

(2) If Lf is an infinite set, then we can obtain an ε− strongly local minimizer in finite

iteration times.

By the algorithm, for the givenQs and given i, if [NC]i holds or if f(x∗) ≥ f(x̄)−ε, then we

will change the i into i+ 1; if [NC]i does not hold and f(x∗) < f(x̄)− ε, then in step 4, we

will find point ȳ∗i such that f(Qȳ∗) = min{f(Qy)|y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T and
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yi ∈ S̃}, where ȳ∗i satisfies condition [NC]i. Since this algorithm must stop in finite steps,

the final obtained point x̄ must satisfy the following condition: for the given Qs and given i,

[NC]i holds or f(Qȳ∗) ≥ f(x∗) ≥ f(x̄)− ε, where ȳ∗i satisfies the condition [NC]i. Hence

x̄ is an ε− strongly local minimizer of the problem (GPP ).

5.3.2. Global optimization method for (GPP )

In this section, we will design a global optimization method for the problem (GPP ) by com-

bining the strongly local optimization method and an auxiliary function. In this chapter, we

still use the auxiliary function which was presented by (1.2) in Chapter 1. For the properties

of this auxiliary function, see Chapter 1.

Algorithm 12. Global optimization method for (GPP ):(GOM).

Step 0. Set M := 1010, µ := 10−10 and k0 := 2n. Set An×n := In×n and Bn×2n := [A,−A].

Let r0 := 1, c0 := 1, q0 := 105 and δ0 := 1
2
. Let k := 1, i := 1 and r := r0. Let x0

1 be an

initial point and x∗0 := x0
1, then go to Step 1.

Step 1. Use the strongly or ε−strongly local optimization method (SLOM) to solve the

problem (GPP ) starting from x0
k. Let x∗k be the obtained strongly or ε−strongly local min-

imizer of the problem (GPP ). If f(x∗k) ≥ f(x∗0), then go to step 6; otherwise let q := q0,

c := c0, r := r0, δ := δ0, i := 1 and x∗0 := x∗k, k := k + 1, then go to Step 2.

Step 2. Let Bi indicate the ith column of B and x̄∗k := x∗0 + δBi. If x̄∗k /∈ S, go to Step 3.

Otherwise, if f(x̄∗k) < f(x∗0), then set x0
k+1 := x̄∗k and x∗0 := x̄∗k, k := k + 1 and go to Step

1; else go to Step 4.

Step 3. If δ < µ, go to Step 8; otherwise, let δ = δ
2

and go to Step 2.

Step 4. If f(x∗0) ≤ f(x̄∗k) ≤ f(x∗0) + 1, then go to Step 5; otherwise let δ = δ
2

go to Step 2.
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Step 5. Let

Fq,r,c,x∗0(x) = q

(
exp(−‖x− x

∗
0‖2

q
)gr,c

(
f(x)− f(x∗0)

)
+ hr,c

(
f(x)− f(x∗0)

))
.

Solve the problem:

min Fq,r,c,x∗0(x) (5.4)

s.t. x ∈ S.

by a local search method starting from the initial point x̄∗k. Let x̄q,r,c,x∗k be the local minimizer

obtained. Then set x0
k+1 := x̄q,r,c,x∗k , k := k + 1 and go to Step 1.

Step 6. If q < M , then increase q (in the following examples, let q := 10q), then go to Step

5; otherwise go to Step 7.

Step 7. If c < M , then increase c (in the following examples, let c := 10c), and let q := q0,

then go to Step 5; otherwise go to Step 8.

Step 8. If i < k0, then let i := i + 1, q := q0, c := c0, δ = δ0, go to Step 2; otherwise go to

Step 9.

Step 9. If r > µ, then decrease r (in the following examples, let r := r
10

). Randomly select

an orthogonal matrix An×n and set Bn×2n := [A,−A]. Let i := 1, q := q0, c := c0, δ = δ0

and go to Step 2; otherwise, stop and x∗0 is the obtained global minimizer or approximate

global minimizer of the problem (GPP ).

5.4. Numerical examples

In this section, we apply our two Algorithms: strongly local optimization method (SLOM)

and global optimization method (GOM) to fifteen test problems. Table 5.1 shows summary

information of the fifteen test problems. These test problems include Problems 5.1,5.6-5.9
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and 5.14 from the book [17], 5.10-5.12 form the paper [77] and 5.2-5.5, 5.13, 5.15 from the

website below:

http : //www − optima.amp.i.kyoto− u.ac.jp/member/student/hedar/Hedarf iles

/TestGOf iles/Page422.htm.

For the detailed information of these problems, see the appendix in the end.

Table 5.1.: Test problems for (GPP)

Number of Global minimizer Optimal value
problems x∗ f(x∗)

5.1 (0.5, 0, 3) −4
5.2 (1, · · · , 1, 3, 3, 3, 1) −15
5.3 (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 24.3062091

1.430574, 1.321644, 9.828726, 8.280092, 8.375927)
5.4 (14.095, 0.84296) −6961.81388
5.5 (2.330499, 1.951372,−0.4775414, 4.365726, 680.6300573

−0.6244870, 1.038131, 1.594227)
5.6 (5, 1, 5, 0, 5, 10) −310
5.7 (78, 33, 29.9953, 45, 36.7758) −30665.5387
5.8 (2.3295, 3.1783) −5.5079
5.9 (579.3167, 1359.943, 5110.071, 182.0174, 7049.3307

295.5985, 217.9799, 286.4162, 395.5979)
5.10 †1 −575.5928
5.11 †2 −1.0178
5.12 †3 −153.6180
5.13 ±(1/20.5, 1/2) 0.75
5.14 (40.71751, 1.470) −16.73889
5.15 (1/n0.5, · · · , 1/n0.5) −1

†1 = −(0.4034, 0.4274, 0.4486, 0.4674, 0.4839, 0.4983, 0.5107, 0.5211, 0.5296, 0.5363,
0.5410, 0.5437, 0.5444, 0.5430, 0.5393);
†2 = −(0.2418, 0.2208, 0.2085, 0.2000, 0.1934, 0.1882, 0.1838, 0.1800, 0.1767, 0.1738,
0.1712, 0.1688, 0.1667, 0.1647, 0.1629, 0.1612);
†3 = −(-0.3642, 0.3955, 0.5042, 0.5589, 0.5892, 0.6049, 0.6109, 0.6104, 0.6057, 0.5991,
0.5828, 0.5173, 0.5193, 0.5306, 0.5459, 0.5619, 0.5763, 0.5869, 0.5919, 0.5896).

There are equalities involved in Problem 5.13-5.15. We can use our algorithms to solve them

by converting equalities hs(x) = 0, s = 1, · · · , l into equivalent inequalities hs(x) ≤ 0,

s = 1, · · · , l and −hs(x) ≤ 0, s = 1, · · · , l.
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For our experiments, we use the optimality gap mentioned in [97] is:

GAP = |f(x)− f(x∗)|

where x is a heuristic solution obtained by our method and x∗ is the optimal solution. We

then say that a heuristic solution x is optimal if:

GAP ≤

 ε f(x∗) = 0

ε× |f(x∗)| f(x∗) 6= 0

In our experimentation we set ε = 0.001 as the same of that in [97].

In the table below, some common statistics are included. We randomly select 30 initial points

for every problem. The suc.rate(success rate) means the success times out of 30. The best

is the minimum of the results, the worst indicates the maximum of the results, and then it

follows the mean, median and st.dev.(standard deviation). In some way, these statistics are

able to evaluate the search ability and solution accuracy, reliability and convergence as well

as stability.

Table 5.2.: Results of algorithms SLOM and GOM for (GPP)

Problem statistic SLOM GOM

5.1 suc.rate 30/30 30/30

best −4.0000 −4.0000

worst −4.0000 −4.0000

mean −4.0000 −4.0000

median −4.0000 −4.0000

st.dev 2.7262e− 006 2.7262e− 006

continue goes here. . .
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Problem statistic SLOM GOM

5.2 suc.rate 30/30 30/30

best −15.0000 −15.0000

worst −15.0000 −15.0000

mean −15.0000 −15.0000

median −15.0000 −15.0000

st.dev 8.9121e− 006 8.9121e− 006

5.3 suc.rate 30/30 30/30

best 24.3062 24.3062

worst 24.3062 24.3062

mean 24.3062 24.3062

median 24.3062 24.3062

st.dev 4.9274e− 006 4.9274e− 006

5.4 suc.rate 30/30 30/30

best −6.9618e+ 003 −6.9618e+ 003

worst −6.9618e+ 003 −6.9618e+ 003

mean −6.9618e+ 003 −6.9618e+ 003

median −6.9618e+ 003 −6.9618e+ 003

st.dev 8.0994e− 004 8.0994e− 004

5.5 suc.rate 30/30 30/30

best 680.6301 680.6301

worst 680.6301 680.6301

mean 680.6301 680.6301

median 680.6301 680.6301

continue goes here. . .
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Problem statistic SLOM GOM

st.dev 5.3698e− 006 5.3698e− 006

5.6 suc.rate 26/30 30/30

best −310.0000 −310.0000

worst −184.0000 −310.0000

mean −293.2000 −310.0000

median −310.0000 −310.0000

st.dev 43.5640 5.9702e− 006

5.7 suc.rate 30/30 30/30

best −3.0666e+ 004 −3.0666e+ 004

worst −3.0666e+ 004 −3.0666e+ 004

mean −3.0666e+ 004 −3.0666e+ 004

median −3.0666e+ 004 −3.0666e+ 004

st.dev 4.4270e− 004 4.4270e− 004

5.8 suc.rate 30/30 30/30

best −5.5080 −5.5080

worst −5.5080 −5.5080

mean −5.5080 −5.5080

median −5.5080 −5.5080

st.dev 9.9335e− 007 9.9335e− 007

5.9 suc.rate 29/30 30/30

best 7.0492e+ 003 7.0492e+ 003

worst 8.7331e+ 003 7.0492e+ 003

mean 7.1054e+ 003 7.0492e+ 003

median 7.0492e+ 003 7.0492e+ 003

continue goes here. . .
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Problem statistic SLOM GOM

st.dev 307.4294 1.0895e− 006

5.10 suc.rate 30/30 30/30

best −575.5925 −575.5925

worst −575.5925 −575.5925

mean −575.5925 −575.5925

median −575.5925 −575.5925

st.dev 1.9967e− 006 1.9967e− 006

5.11 suc.rate 7/30 30/30

best −1.1078 −1.1078

worst −0.0108 −1.1078

mean −0.2692 −1.1078

median −0.0144 −1.1078

st.dev 0.4706 1.6607e− 014

5.12 suc.rate 30/30 30/30

best −153.6180 −153.6180

worst −153.6180 −153.6180

mean −153.6180 −153.6180

median −153.6180 −153.6180

st.dev 7.5214e− 007 7.5214e− 007

5.13 suc.rate 30/30 30/30

best 0.7500 0.7500

worst 0.7500 0.7500

mean 0.7500 0.7500

median 0.7500 0.7500

continue goes here. . .
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Problem statistic SLOM GOM

st.dev 6.2234e− 009 6.2234e− 009

5.14 suc.rate 30/30 30/30

best −16.7389 −16.7389

worst −16.7389 −16.7389

mean −16.7389 −16.7389

median −16.7389 −16.7389

st.dev 5.8438e− 007 5.8438e− 007

5.15 suc.rate 30/30 30/30

best −1.0000 −1.0000

worst −1.0000 −1.0000

mean −1.0000 −1.0000

median −1.0000 −1.0000

st.dev 8.2074e− 007 8.2074e− 007

It is shown from table 5.2 that GOM successfully solves all number of test problems and is

very efficient and stable. As a local optimization method, SLOM can also be considered as

a competitive algorithm with producing impressive results.

Next, we try to compare our GOM method with the solver GloptiPoly 3 which is a Mat-

lab/SeDuMi add-on for SDP-relaxations of minimization problems over multivariable poly-

nomial functions subject to polynomial or integer constraints [31, 32].
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Table 5.3.: Comparisons between GOM and Gloptipoly 3 for (GPP)

Problem statistic GOM GloptiPoly 3

5.1 suc.rate 30/30 30/30

order= 4

best −4.0000 −4.0000

worst −4.0000 −4.0000

5.2 suc.rate 30/30 30/30

order= 2

best −15.0000 −15.0000

worst −15.0000 −15.0000

5.3 suc.rate 30/30 30/30

best 24.3062 24.3062

worst 24.3062 24.3062

5.4 suc.rate 30/30 30/30

best −6.9618e+ 003 −6.9618e+ 003

worst −6.9618e+ 003 −6.9618e+ 003

5.5 suc.rate 30/30 30/30

order= 3

best 680.6301 680.6301

worst 680.6301 680.6301

5.6 suc.rate 30/30 30/30

order= 2

best −310.0000 −309.9998

continue goes here. . .
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Problem statistic GOM GloptiPoly 3

worst −310.0000 −309.9998

5.7 suc.rate 30/30 0/30

best −3.0666e+ 004 -

worst −3.0666e+ 004 -

5.8 suc.rate 30/30 30/30

order= 4

best −5.5080 −5.5079

worst −5.5080 −5.5079

5.9 suc.rate 30/30 0/30

best 7.0492e+ 003 -

worst 7.0492e+ 003 -

5.10 suc.rate 30/30 0/30

best −575.5925 -

worst −575.5925 -

5.11 suc.rate 30/30 0/30

best −1.1078 -

worst −1.1078 -

5.12 suc.rate 30/30 0/30

best −153.6180 -

worst −153.6180 -

5.13 suc.rate 30/30 30/30

order= 3

best 0.7500 0.7500

continue goes here. . .
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Problem statistic GOM GloptiPoly 3

worst 0.7500 0.7500

5.14 suc.rate 30/30 30/30

best −16.7389 −16.7389

worst −16.7389 −16.7389

5.15 suc.rate 30/30 0/30

best −1.0000 -

worst −1.0000 -

In the table 5.3, we use the solver GloptiPoly 3 to solve Problem 5.1-5.15. We run Gloptipoly

3 30 times for each problem with fixed relaxation order. First, we use the default order to

calculate it. If it fails, we increase the order so that the problem may be solved. For example,

for Problem 5.1, GloptiPoly 3 fails to solve it until the order equals to 4. If a problem cannot

be solved by the solver GloptiPoly 3 with increasing orders from default order to the order

making it out of memory, then the success rate is 0/30. From the above table, we can see

GloptiPoly 3 solves Problem 5.1-5.6, 5.8, 5.13-5.14 successfully. For the rest problems,

GloptiPoly 3 fails, and returns ‘out of memory’.

For the large scale Problem 5.10-5.12, the regularization methods for SOS relaxations in

large scale polynomial optimization provided in [77] gave global or approximate global op-

timal values. By our method GOM, we got the same results with those obtained in [77].

Note, all computations in the paper were implemented on a Microsoft Windows XP Desktop

of 3.46GB memory and 2.99GHz CPU frequency.
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5.5. Conclusion

We study a necessary and sufficient condition for a point being a global minimizer for a

constrained univariate polynomial programming problem. Necessary global optimality con-

ditions for the problem (GPP ) are provided based on this necessary and sufficient condition.

A new local optimization method is designed according to these necessary global conditions

which improve the traditional local optimization method (based on KKT conditions). A new

global optimization method is designed by combining the new local optimization method

and an auxiliary function. The numerical examples illustrate that our methods are efficient

and stable.
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Chapter 6.

Applications

In this chapter, we will discuss some applications for solving sensor network localization

problems and systems of polynomial equations. In particular, we will apply the idea and the

results for polynomial programming problems presented in chapter 2, 3, 4 and 5 to nonlinear

programming problems (NLP).

6.1. Sensor network localization problems

6.1.1. Introduction

Sensor network localization which is an important problem in communication and infor-

mation theory has drawn much attention recently. The basic description of this problem is

as follows. There is a sequence of unknown vectors (also called sensors) x1, · · · , xn in Eu-

clidean spaceRd for a given dimension d. The goal is to place these vectors such that the Eu-

clidean distances between these sensors and the distances to other fixed sensors a1, · · · , am

(also called anchors) are equal to the prescribed numbers [7, 78]. To be more specific, let

A = {(i, j) ∈ [n]× [n] : ‖xi−xj‖2 = dij} and B = {(i, k) ∈ [n]× [m] : ‖xi−ak‖2 = eik},

where dij , eik are prescribed distances and [n] = {1, · · · , n}. Then the problem of sensor
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network localization is to place the vectors {x1, · · · , xn} such that ‖xi−xj‖2 = dij for every

(i, j) ∈ A and ‖xi − ak‖2 = eik for every (i, k) ∈ B [78].

In [78], the author formulated the sensor network localization problem as finding the global

minimizer of a quartic polynomial.

min
X∈Rd×n

f(X) :=
∑

(i,j)∈A

(‖xi − xj‖2
2 − d2

ij)
2 +

∑
(i,k)∈B

(‖xi − ak‖2
2 − e2

ik)
2

where dij ,eik are given distances and ‖x‖2 =

√
n∑
i=1

x2
i . Therefore, we will solve some sensor

network localization problems by using our optimization methods: Algorithm 6 (SLOM) and

Algorithm 7 (GOM) provided in chapter 3.

6.1.2. Numerical examples

Example 11. Consider a simple example studied in [78] and [108], with n = 1, d = 2,

m = 2. A = ∅, B = {(1, 1), (1, 2)}, d11 = d12 = 2. The anchors are (±1, 0). In [78], this

problem becomes to a quartic polynomial problem:

min p(x11, x21) := ((x11 + 1)2 + x2
21 − 4)2 + ((x11 − 1)2 + x2

21 − 4)2

By our Algorithm 6 with Q = I , we can get the global solution are (0.0000,±1.7321) which

are the same as the solutions given in [78] and [108].

Example 12. Consider another example studied in [78], with four sensors and four anchors

a1 = (1, 1)T , a2 = (1,−1)T , a3 = (−1,−1)T , a4 = (−1, 1)T .

The network is as follows

A = {(1, 2), (1, 4), (2, 3), (3, 4)}, B = {(1, 1), (2, 2), (3, 3), (4, 4)}.
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The distances are given by

d12 = d14 = d23 = d34 = s = 2−
√

2, e11 = e22 = e33 = e44 = 1.

Let X = [x1, x2, x3, x4]. This problem becomes to a quartic polynomial problem:

min f(X) := (‖x1 − x2‖2 − s2)2 + (‖x1 − x4‖2 − s2)2(‖x2 − x3‖2 − s2)2

+(‖x3 − x4‖2 − s2)2 + (‖x1 − a1‖2 − 1)2 + (‖x2 − a2‖2 − 1)2

+(‖x3 − a3‖2 − 1)2 + (‖x4 − a4‖2 − 1)2

By our Algorithm 6 with Q = I ,, we can get the global solution are

x1 = (0.2929, 0.2929)T , x2 = (0.2929,−0.2929)T ,

x3 = (−0.2929,−0.2929)T , x4 = (−0.2929, 0.2929)T .

which is the same as the solution given in [78].

Example 13. We consider the example 5.1 in [78]. Randomly generate 500 sensors x∗1, · · · ,

x∗500 from the unit square [−0.5, 0.5] × [−0.5, 0.5]. The edge set A is chosen as follows.

Initially set A = ∅. Then for each i from 1 to 500, compute the set Ii = {j ∈ [500] :

‖x∗i − x∗j‖2 ≤ 0.3, j ≥ i}; if |Ii| ≥ 10, let Ai be the subset of Ii consisting of the 10 smallest

integers; otherwise, let Ai = Ii; the let A = A
⋃
{(i, j) : j ∈ Ai}. The edge set B is chosen

such that B = {(i, k) ∈ [n] × [m] : ‖x∗i − ak‖2 ≤ 0.3}, i.e., every anchor is connected

to all the sensors that are within distance 0.3. For every (i, j) ∈ A and (i, k) ∈ B, let the

distances be

dij = ‖x∗i − x∗j‖2, eij = ‖x∗i − ak‖2.

Four anchors are placed at the positions (±0.45,±0.45). There are no errors in the dis-

tances. The computed results obtained by Algorithm 7 are plotted in Fig. 6.1. The true
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sensor locations (denoted by circles) and the computed locations (denoted by stars) are con-

nected by solid lines. The computed locations are denoted by x̂1, · · · , x̂500. The accuracy of

the computed locations is measured by the Root Mean Square Distance (RMSD) which is

defined as

RMSD = (
1

n

n∑
i=1

‖x̂i − x∗i ‖2
2)

1
2

and RMSD is 2.9e− 006 in [78]. By our method, RMSD is 5.3640e− 005.

Figure 6.1.: 500 sensors, sufficient edges

Example 14. We consider the example 5.2 in [78]. We generate random test problems almost

in the same way as in the Example 10, except the following: if |Ii| ≥ 3, let Ai be the subset

of Ii consisting of the 3 smallest integers; otherwise, let Ai = Ii. Then the number of

edges might not be sufficient to determine the sensor locations. Assume there are no distance

errors. The computed results obtained by Algorithm 7 are plotted in Fig. 6.2. The true sensor

locations (denoted by circles) and the computed locations (denoted by stars) are connected

by solid lines. RMSD is 1.1e− 002 in [78]. By our method, RMSD is 4.46e− 002.
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Figure 6.2.: 500 sensors, insufficient edges

6.1.3. Conclusion

In this section, we applied our local and global methods for solving quartic programming

problems to sensor network localization problems. The results of numerical examples show

that we can solve these kinds of large scale problems successfully. However, we must admit

these methods to solve such large scale problems, say sensor network localization problems

with more than 500 sensors, are time-consuming. Hence, we do not recommend to use

these methods to solve such large scale problems. Since these methods are not designed for

solving very large scale problems, especially, the auxiliary function we applied is not suitable

to solve very large scale problems, practical methods to solve very large scale problems are

our further study.
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6.2. Systems of polynomial equations (SPE)

6.2.1. Introduction

Solving a system of polynomial equations is a classical and fundamental problem in many

fields of science and engineering [34, 101, 123].

The general formulation of these problems is given below.

(SPE) hi(x) = 0, i = 1, 2, · · · ,m

x ∈ X

hi(x), i = 1, 2, · · · ,m are polynomial equations and X is a box.

This problem (SPE) is NP-hard even if all the equations are quadratic [101]. Current methods

to solve the problem (SPE) can be mainly classified into symbolic and numeric [34]. Sym-

bolic methods based on resultants and Grobner bases [51,59] order the monomials and elim-

inate variables, thereby reducing the problem to finding the roots of univariate polynomials.

However these methods are efficient only for no more than three or four polynomials [34].

Numeric methods are based on either iterative or homotopy methods [123]. However these

methods either depend on a good initial guess for each solution or are computationally de-

manding, which limits the practical applications of these methods [34]. Numeric methods

based on interval arithmetic [10] have slow convergence [34].

The problem (SPE) can be transformed into an optimization problem of the form:

(OPSPE) min f(x) :=
1

2

m∑
i=1

h2
i (x)

s.t. x ∈ X

We can use our optimization methods: Algorithm 9 (SLOM) and Algorithm 10 (GOM) pro-
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vided in chapter 4 to solve this problem.

6.2.2. Optimization methods for (SPE)

Actually, the problem (OPSPE) has a particular property which is that x∗ is a global mini-

mizer of the problem (OPSPE) if and only if f(x∗) = 0. So we can use it as a termination

condition in our Algorithm 9 (SLOM) and Algorithm 10 (GOM).

The following strongly or ε−strongly local optimization method is designed for the problem

(OPSPE).

Algorithm 13. Strongly or ε−strongly local optimization method for (OPSPE):(SLOM).

Step 0. Take an initial point x0 ∈ X . Let Q1 = I , Q2, · · · , Qd, · · · , QN be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number.

Let d := 1, Q := Qd and i := 1. Let x∗ = (x∗1, · · · , x∗n)T be a local minimizer or KKT

point of f(x) on
n∏
i=1

[ui, vi] starting from x0. Let x̄ := x∗, and go to Step 1.

Step 1. If f(x̄) ≤ ε, then stop and x̄ is a global minimizer of the problem (OPSPE); other-

wise, go to Step 2.

Step 2. Let p := Gi(yi), a := li and b := ri. Check whether the condition [NC]i holds:

p(li) > 0 and the following equations hold:

Vp2k(a)− Vp2k(b) = Vp2k+1(a)− Vp2k+1(b),

k = 0, 1, 2, · · · ,
[Ki − 1

2

]
by using the Algorithm 8. If this condition holds, go to Step 4; otherwise, go to Step 3.

Step 3. Let ȳ = (ȳ1, . . . , ȳi, . . . , ȳn)T = Q−1x̄ and y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T . Let

ȳ∗i := argmin{f(Qy)|y ∈ Ni}, where Ni is defined by (4.5). Let ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ
∗
i ,

ȳi+1 · · · , ȳn) and x̄∗ := Qȳ∗. Let x∗ = (x∗1, · · · , x∗n) be a local minimizer or KKT point of
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f(x) on
n∏
i=1

[ui, vi] starting from x̄∗. If f(x∗) < f(x̄) − ε, let x̄ := x∗, i := 1, d := 1 and

Q := Qd go to Step 1; otherwise, go to Step 4.

Step 4. If i := n, go to Step 5; otherwise, let i := i+ 1 and go to Step 2.

Step 5. Let d = d+ 1. If d > N , go to Step 6; otherwise, let Q := Qd and i := 1, go to Step

2.

Step 6. Stop. x̄ is a strongly or ε−strongly local minimizer with respect toQd, d = 1, · · · , N .

Since we introduced a filled function method for nonlinear system of equations in the Chapter

1, we could change the global optimization method, i.e. Algorithm 10 (GOM) provided in

chapter 4, to a tailor-made global optimization method for the problem (OPSPE) by using the

filled function defined by (1.9) in Chapter 1. Next, we describe the new global optimization

method for the problem (OPSPE).

Algorithm 14. Global optimization method for (OPSPE):(GOM).

Step 0. Choose a small positive number µ and a large positive number M (in the examples

of next Section, we take µ = 10−10 and M = 105). Choose a positive integer number K and

directions e1, . . . , eK (in the numerical examples of next Section, we just take K = 1 and

e1 = (1, . . . , 1)T ). Choose an initial small positive number q0 for the parameter q (in the

examples of next Section, we take q0 = 10−2). Take an initial point x0 ∈ X . Let k = 0. If

f(x0) ≤ µ, then let x∗k := x0 and go to Step 5; otherwise, go to Step 1.

Step 1. Solve the problem (OPSPE) starting from xk by using Algorithm 13 (SLOM).

Let x∗k be the obtained strongly or ε−strongly local minimizer of the problem (OPSPE). If

f(x∗k) ≤ µ, go to Step 5; otherwise, let q := q0 and l := 1, then go to Step 2.

Step 2. If l ≤ K, let λ := 1, go to (a); otherwise go to Step 5.

(a). Let ylk := x∗k + λel. If f(ylk) < f(x∗k), then set xk+1 := ylk, k := k + 1, go to Step 1;

otherwise go to (b).
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(b). If f(x∗k) ≤ f(ylk) ≤
5f(x∗k)

4
, go to Step 3; otherwise set λ := λ

2
, go to (a).

Step 3. Construct the following function

Gq,x∗k
(x) = exp (−‖x− x∗k‖2)g f(x∗

k
)

4

(f(x)− f(x∗k)

2
) + qh f(x∗

k
)

4
,f(x∗k)

(f(x)− f(x∗k)

2
), (6.1)

where gr(t) and hr,c(t) are defined by (1.10) and (1.11), respectively. Find a local minimizer

of the following problem (6.2) starting from ylk:

min
x∈X

Gq,x∗k
(x), (6.2)

Let ȳlk be a local minimizer of the problem (6.2). If f(ȳlk) < f(x∗k), then let xk+1 := ȳlk and

k := k + 1, go to Step 1. Otherwise, let q := 10q, go to Step 4.

Step 4. If q ≤M , go to Step 3; otherwise, let q := q0 and l := l + 1, go to Step 2.

Step 5. Let k̄ := k and x̄ := x∗k and stop.

6.2.3. Numerical examples

In this section, we try to solve all problems of polynomial equations (Test problem 1, 2, 5

and 6) presented in reference [18] by the optimization methods mentioned in last section.

For the detailed information of these problems, see the appendix in the end.

Table 6.1 records the numerical results.

Table 6.1.: Results of algorithms SLOM and GOM for (SPE)

Problem number statistic SLOM GOM

EQ6.1 suc.rate 30/30 30/30

best 1.0581e− 013 1.0581e− 013

continue goes here. . .
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Problem number statistic SLOM GOM

worst 9.4318e− 012 9.4318e− 012

mean 3.1337e− 012 3.1337e− 012

median 2.6314e− 012 2.6314e− 012

st.dev 3.2761e− 012 3.2761e− 012

EQ6.2 suc.rate 30/30 30/30

best 4.0732e− 015 4.0732e− 015

worst 3.0047e− 014 3.0047e− 014

mean 1.0685e− 014 1.0685e− 014

median 1.0302e− 014 1.0302e− 014

st.dev 3.8452e− 015 3.8452e− 015

EQ6.3 suc.rate 30/30 30/30

best 9.1023e− 012 9.1023e− 012

worst 4.3756e− 007 9.9981e− 011

mean 1.5583e− 008 4.5824e− 011

median 4.7720e− 010 4.6579e− 011

st.dev 7.9755e− 008 3.2965e− 011

EQ6.4 suc.rate 30/30 30/30

best 2.7859e− 014 2.7859e− 014

worst 1.6228e− 009 9.9478e− 011

mean 5.5002e− 010 1.2268e− 011

median 1.1426e− 011 1.0949e− 011

st.dev 6.7377e− 010 2.0231e− 011
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6.2.4. Conclusion

In this section, we designed a tailor-made strongly or ε−strongly local optimization method

and a global optimization method for the problem (SPE) by using the particular property of

the problem (SPE) and a new auxiliary function defined by (1.9) in Chapter 1. The results

of numerical examples illustrate that the methods presented in this section are efficient and

stable.

6.3. Optimality condition and optimization methods

for nonlinear programming problems (NLP )

The nonlinear programming problem (NLP ) which appears in applied mathematical, phys-

ical, chemical, biological, environmental, engineering and economic studies is considered

in this section. First, an optimality condition for the problem (NLP ) is given by using

linear transportations and Lagrange interpolating polynomial. Based on this condition, we

design two new local optimization methods. The points obtained by the new local optimiza-

tion methods may generally improve some KKT points. Finally, two global optimization

methods are designed by combining the new local optimization methods and an auxiliary

function. Numerical examples show that our methods are efficient and stable.

6.3.1. Introduction

Consider the following nonlinear optimization problem with box constraints:

(NLP ) min f(x) (6.3)

s.t. xi ∈
n∏
i=1

[ui, vi],
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where f(x) ∈ Cr, r is a given positive integer number, Cr is the set of r times continuously

differential functions, ui < vi, i = 1, . . . , n. Throughout of this chapter, we let X := {x =

(x1, . . . , xn)T | xi ∈ [ui, vi], i = 1, . . . , n}.

Needless to say, a large number of real problems can be formulated as nonlinear program-

ming problems, including in the following areas: optimal control, structural design, mechan-

ical design, electrical networks, water resources management, stochastic resource allocation

and location of facilities. See the survey book [100] and references therein. For global opti-

mization, a great deal of attention has been focused on two areas: one is global optimization

methods to solve these problems; the other is global optimality conditions. For solving this

problem, many methods have been put forward and many algorithms have been designed,

including exact methods (adaptive stochastic search methods [2, 138], bayesian search algo-

rithms [75, 98], branch and bound algorithms [53, 85], enumerative strategies [113], ho-

motopy and trajectory methods [42, 55], integral methods [74, 109], ‘naive’(passive) ap-

proaches [2, 71] and relaxation (out approximation) strategies [52, 113]) and heuristic meth-

ods (approximate convex underestimation [84], continuation methods [73], genetic algo-

rithms, evolution strategies [56, 72], ‘globalized’ extensions of local search methods [2, 71],

sequential improvement of local optima [13, 149], simulated annealing [12, 56], and tabu

search (TS) [41, 56]). For more details in the idea and applications, see [105].

For optimality conditions of nonlinear programming problems, most literature focuses on

special models, such as generalized convex programming problems [60, 115, 121], noncon-

vex problems involving directionally differentiable functions [114], quadratic programming

problems [45], cubic programming problems [144] and quatic programming problems [150].

Since KKT optimality conditions are also sufficient for optimality if the functions involved

in the mathematical programming problem are convex, generalized convex functions re-

ceived more attention later [60]. Researchers tried to solve this question: under what as-

sumptions, are the KKT conditions also sufficient for the various generalizations of convex
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problems? [115] defined semilocally quasiconvex and semilocally pseudoconvex functions

and obtained sufficient optimality conditions for a class of nonlinear programming prob-

lems involving such functions. [60] considered a nonlinear programming problem where

the functions involved are η−semidifferentiable and presented KKT necessary optimality

conditions and sufficient optimality conditions. [121] introduced a new class nonconvex

functions called G-invex functions and provided some necessary conditions and sufficient

conditions. [114] studied optimality conditions for nonconvex problems involving a class

of directionally differentiable functions and generalized the necessary and sufficient opti-

mality conditions by using the weak subgradient notion. Instead of local optimality con-

ditions, [45], [144] and [150] tried to provide global optimality conditions for some poly-

nomial programming problems. [45] proposed a necessary global optimality condition and

a sufficient global optimality condition for mixed integer quadratic programming problems

(MIQP). [144] (see Chapter 2) and [150] (see Chapter 3) provided necessary global optimal-

ity conditions for cubic polynomial optimization problems with mixed variables (MCP) and

quartic polynomial optimization problems with box constraints (QPOP), respectively. Then,

we provide necessary global optimality conditions for general unconstrained (GP) and con-

strained (GPP) polynomial programming problems in Chapter 4 and Chapter 5, respectively.

More generally, although [126] developed necessary global optimality conditions for non-

linear programming problems with polynomial constraints, as it mentioned, the conditions

are difficult to check for general large dimensional problems since the conditions involve in

solving a sequence of semi-definite programs. [127] presented global optimality conditions

for polynomial optimization over box or bivalent constraints by using separable polynomial

relaxations. However, We notice that it is not easy to decompose a polynomial function to

the sum of a separable polynomial function and an SOS-convex polynomial function.

It is well-known that traditional local optimization methods are designed based on KKT

conditions. Motivated by this, [45] designed a new local optimization method according to
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the presented necessary global optimality condition for (MIQP) and also designed a global

optimization method by combining the sufficient global optimality condition, an special aux-

iliary function and the obtained local optimization method. Furthermore, [144] (see Chapter

2) and [150] (see Chapter 3) designed new local optimization methods according to provided

necessary global optimality conditions and gave global optimization methods by combining

the local methods and some auxiliary functions for the problem (MCP) and the problem

(QPOP), respectively. We established strongly local optimization methods and global opti-

mization methods for the problem (GP) and the problem (GPP) in Chapter 4 and Chapter 5,

respectively. number of numerical examples are also presented to indicate the significance

of the necessary global optimality conditions and show the efficiency of the optimization

methods. Particularly, we want to mention that the new local optimization methods produce

impressive results.

In this chapter, we try to extend the same idea proposed for polynomial programming prob-

lems in Chapter 2, Chapter 3, Chapter 4 and Chapter 5 to nonlinear programming problems.

We propose an optimality condition according to the following points. (i) Some specific lines

can be obtained by using linear transformations. (ii) On these special directions, the objective

function can be simplified into univariate nonlinear functions. (iii) we transform the univari-

ate functions to Lagrange interpolation polynomials by using the technique proposed in [38].

(iv) we try to find a condition which is a necessary and sufficient condition to a point being

global minimizers for these univariate polynomial functions along these lines. Then we de-

sign new local optimization methods by using this condition which may improve traditional

local optimization methods. Finally we design global optimization methods by combining

the new local optimization methods and an auxiliary function. Numerical examples illustrate

the efficiency of the optimization methods proposed in the chapter.
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6.3.2. Preliminary

Consider the following univariate nonlinear function:

g(y), y ∈ [a, b],

Definition 26. [38] The unique polynomial given by:

LN(g)(y) :=
N∑
k=0

g(yk)lN,k(y), (6.4)

where

lN,k(y) :=
∏
j 6=k

y − yj
yk − yj

(6.5)

is called the Lagrange interpolation polynomial of degree N for function g(y) with respect

to yk, k = 0, 1, . . . , N .

If g(y) is N + 1 times continuously differentiable, the the interpolation error is given by the

following proposition.

Proposition 4. [38] Suppose that g ∈ CN+1[a, b] and let LN(y) be given as (6.4), then for

any y ∈ [a, b] one has

g(y)− LN(g)(y) =
N∏
k=0

(y − yk)
gN+1(ζ)

(N + 1)!
for some ζ ∈ [a, b] (6.6)

If [a, b] = [−1, 1], then it is well-known that the uniform norm of the right-hand side is

minimized if we choose the yk’s as the roots of the Chebyshev polynomial (of the first kind)

of degree N + 1. Recall that the Chebyshev polynomial (of the first kind) are defined as:

Tj(y) := cos(j arccos(y)) (j = 0, 1, · · · ). (6.7)
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The roots of TN+1 are therefore given by

yk = cos(
(2k + 1)π

2(N + 1)
), k = 0, 1, . . . , N. (6.8)

If [a, b] 6= [−1, 1], the one simply does a linear transformation to obtain the Chebyshev nodes

on [a, b]:

b− a
2

yk +
a+ b

2
, k = 0, 1, . . . , N..

where yk is given in (6.8).

The Lagrange interpolation polynomial LN(g)(y) has the following properties:

Proposition 5. [38] Assume that LN(g)(y) is the lagrange polynomial that is based on the

N + 1 Chebyshev nodes on [a, b]. If g ∈ CN+1[a, b], then

‖g − LN(g)‖∞,[a,b] ≤
2(b− a)N+1

4N+1(N + 1)!
‖gN+1‖∞,[a,b]. (6.9)

where ‖g‖∞,[a,b] := sup
x∈[a,b]

|g(x)|.

Next, we will introduce the interpolation error when g only has a fixed degree of smoothness.

Definition 27. (Lebesgue constant) [38] The Lebesgue constant at a set of nodes {y0, · · · , yN}

is defined as

ΛN(y0, · · · , yN) = max
y∈[a,b]

N∑
k=0

|lN,k(y)|,

where lN,k(y) :=
∏

j 6=k
y−yj
yk−yj

as before.

Lemma 3. [38] Let g ∈ C[a, b] and LN(g) be the Lagrange interpolating polynomial at the
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set of nodes y0, · · · , yN . Then

‖g − LN(g)‖∞,[a,b] ≤ (1 + ΛN(y0, · · · , yN))EN .

where EN := inf
p∈R[y],degree(p)≤N

‖f − p‖∞,[a,b].

Lemma 4. If {y0, · · · , yN} is the set of Chebyshev nodes on the interval [a, b], then

ΛN(y0, · · · , yN) <
2

π
ln(1 +N) + 1.

Proof: From Lemma 2.1 in [38], we know that if [a, b] = [−1, 1], then

ΛN(y0, · · · , yN) <
2

π
ln(1 +N) + 1.

Indeed, for y ∈ [a, b], we have the same result.

Let y = b−a
2
x+ a+b

2
, then x ∈ [−1, 1] if and only if y ∈ [a, b]. So we have

ΛN(y0, · · · , yN) = max
y∈[a,b]

N∑
k=0

|lN,k(y)|

= max
x∈[−1,1]

N∑
k=0

|lN,k(x)|.

Lemma 5. If g ∈ Cr[a, b] and N > r ≥ 0, then

EN ≤ 6r+1er(1 + r)−1

(
b− a
2N

)r
ωr

(
b− a

2(N − r)

)
.

where ωr is the modulus of continuity of g(r) (r = 0 corresponds to g):

ωr(δ) = sup
x,y∈[a,b]

(|g(r)(x)− g(r)(y)| : |x− y| ≤ δ).
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Proof: From Corollary 1.4.4 in [122], we know that if g′(y) ∈ C[−1, 1], thenEN(g; [−1, 1]) ≤

6EN−1(g′; [−1, 1])N−1. Similarly, we can prove that if g′(y) ∈ C[a, b], then

EN(g; [a, b]) ≤ 6EN−1(g′; [a, b])
b− a
2N

.

By repeated application of the above inequality, we obtain

EN(g; [a, b]) ≤ 6rEN−r(g
(r); [a, b])

(
b− a

2

)r
1

N(N − 1) · · · (N − r + 1)
.

From Corollary 1.4.1 in [122], we know EN−r(g
(r); [a, b]) ≤ 6ωr

(
b−a

2(N−r)

)
. Then,

EN(g; [a, b]) ≤ 6r+1

(
b− a

2

)r
1

N(N − 1) · · · (N − r + 1)
ωr

(
b− a

2(N − r)

)
.

From the proof of Theorem 1.5 in [122], we know 1
N(N−1)···(N−r+1)

≤ er

Nr(1+r)
. Hence,

EN ≤ 6r+1er(1 + r)−1

(
b− a
2N

)r
ωr

(
b− a

2(N − r)

)
.

Using Lemma 3-5, we have the following theorem:

Theorem 14. If g ∈ Cr[a, b], LN(g)(y) is given as (6.4), yt, t = 0, 1, . . . , N are the roots

of the Chebyshev and if N > r ≥ 0, then the interpolation error using Chebyshev nodes

satisfies:

‖g − LN(g)‖∞,[a,b] ≤ 2Kr

(
b− a
2N

)r (
1

π
ln(1 +N) + 1

)
ωr

(
b− a

2(N − r)

)
, (6.10)

where Kr = 6r+1er(1 + r)−1.

Remark 21. In order to reduce the interpolation error, we have two ways.

1. We can increase N . Indeed, for any given g ∈ Cr[a, b] and ε > 0, under the mild
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assumption ln(n)ω0( 1
n
) = o(1), where ω0 is the modulus of continuity of g, we have

that there exists Ng > 0 such that ‖g − LN(g)‖∞,[a,b] ≤ ε when N ≥ Ng, see [38].

But in practice, N cannot be very big.

2. We can decrease the length of interval [a, b]. We notice from Theorem 14 that the

smaller b − a is, the smaller the interpolation error is. So, we can partition the in-

terval [a, b] into several equally spaced subintervals and then construct the Lagrange

interpolation polynomials in each small subinterval by using parallel algorithm.

Definition 28. [100] Consider the problem of minimizing f(x) over feasible set X , and let

x̄ ∈ X . Let Bδ(x̄) = {x|‖x − x̄‖ < δ} and Nδ(x̄) = Bδ(x̄)
⋂
X . If f(x̄) ≤ f(x) for all

x ∈ X , x̄ is said to be a global minimizer of f(x) over X . If there exists an δ > 0 such that

f(x̄) ≤ f(x) for each x ∈ Nδ(x̄), x̄ is said to be a local minimizer of f(x) over X .

Definition 29. [89] Let ε > 0. We say x∗ is an ε−global minimizer of nonconvex function

f : Rn → R if for all x ∈ X ,

f(x) ≥ f(x∗)− ε

.

Lemma 6. If ȳ is a global minimizer of LN(g)(y) on [a, b], then there exists a numberN0 > 0

such that when N ≥ N0, ȳ is an ε−global minimizer of g(y) on [a, b].

Proof: If ȳ is a global minimizer of LN(g)(y) on [a, b], then we have LN(g)(y) ≥ LN(g)(ȳ)

for any y ∈ [a, b]. For any ε > 0, there exists a number N0 > 0 such that when N ≥ N0,

‖g − LN(g)‖∞,[a,b] ≤ ε/2. Hence, for any y ∈ [a, b],

g(y)− g(ȳ)

= (g(y)− LN(g)(y)) + (LN(g)(y)− LN(g)(ȳ)) + (LN(g)(ȳ)− g(ȳ))

≥ −ε/2− ε/2

= −ε
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Then ȳ is an ε-global minimizer of g(y) on [a, b].

6.3.3. Optimality condition for (NLP )

In this section, we will derive an optimality condition for the problem (NLP ).

Let x̄ ∈ X , f ∈ Cr, N be a given big number such that N > r, ε be a given small number.

Let x̄ ∈ X , Q be an invertible matrix, let

x := Qy, g(y) := f(Qy) = f(x), ȳ := Q−1x̄,

and let (Q)i represent the ith row of Q, (Q)ij represent the entry of Q in the ith row and the

jth column.

Let Y = {y = Q−1x|x ∈ X}. For ȳ = (ȳ1, . . . , ȳn)T = Q−1x̄, let y = (ȳ1, · · · , ȳi−1,

yi, ȳi+1, · · · , ȳn)T . Let 4k =
n∑

j=1
j 6=i

(Q)kj ȳj = x̄k − (Q)kiȳi = x̄k − (Q)ki(Q
−1)ix̄, k =

1, · · · , n, and let

li = max

{
min

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,min

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
,

ri = min

{
max

{
u1 −41

(Q)1i

,
v1 −41

(Q)1i

}
, · · · ,max

{
un −4n

(Q)ni
,
vn −4n

(Q)ni

}}
.

Then we can obtain the following results:

(1) li ≤ ri

(2) [li, ri] = {yi | (ȳ1, · · · , ȳi−1, yi, ȳi+1, · · · , ȳn)T ∈ Y }.

Let

fi(yi) : = f(x), where x = Q(ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T , yi ∈ [li, ri], (6.11)

Gi(yi) : = LN(fi)(yi)− LN(fi)(ȳi), (6.12)
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where LN(fi) is defined by (6.4).

Definition 30. LetQ be an invertible matrix. For any i = 1, · · · , n, let x = Q(ȳ1, . . . , ȳi−1, yi,

ȳi+1, . . . , ȳn)T , yi ∈ [li, ri] and fi(yi) := f(x). If fi(yi) ≥ fi(ȳi) − ε, for any i = 1, · · · , n,

then x̄ is called an ε−strongly local minimizer of the problem (NLP) with respect to Q.

Note: For any invertible matrix Q, if x̄ is an ε−global minimizer of the problem (NLP), then

x̄ is an ε−strongly local minimizer of the problem (NLP) with respect to Q.

We notice that Gi(yi) is a univariate polynomial. Then we present the main result of this

section: the optimality condition for the problem (NLP) by recalling some properties of

univariate polynomial functions presented in Chapter 4. . Let

Ḡi(yi) : =

 Gi(yi), if Gi(li)Gi(ri) 6= 0

Gi(yi)/[(yi − li)s(i)(ri − yi)t(i)], ifGi(li)Gi(ri) = 0
, (6.13)

where s(i) and t(i) are multiplicities of roots li and ri respectively (s(i) = 0 or t(i) = 0

means li or ri is not root). Gi(yi) is defined by (6.12).

Theorem 15. Let x̄ ∈ X and Q be any given invertible matrix. Let ȳ = Q−1x̄. f ∈ Cr (r ≥

2), ε be a given small number. For any i = 1, . . . , n, if condition [LC]i holds: Ḡ(li) > 0 and

the following equations hold:

VḠ2k(li)− VḠ2k(ri) = VḠ2k+1(li)− VḠ2k+1(ri), k = 0, 1, 2, · · · ,
[Ki − 1

2

]
,

then there exists a number N0 > 0 such that when N ≥ N0, x̄ is an ε−strongly local

minimizer of the problem (NLP ) with respect to Q, where Ki is defined in (4.1).

Proof. By Proposition 2 in Chapter 4, For any i = 1, . . . , n, ȳi = (Q−1)ix̄ is a global

minimizer of LN(fi)(yi) on [li, ri] if and only if condition [LC]i holds. By Lemma 6 and

Definition 30, we can easily to obtain the results.
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Remark 22. (1) When N ≤ 4, i.e., N = 2, 3, 4, the condition [LC]i presented in Theorem

15 is equivalent to

[GNC]i ˜̄xidi ≤ min{0, αi}, (6.14)

which is easy to be checkable. For the notations therein when N = 4, see Theorem 7 in

Chapter 3. For the notations therein when N = 3 and N = 2, see Remark 7 (1) and (2),

respectively in Chapter 3.

(2) When N > 4, to check the condition [LC]i means to check if the univariate polynomial

function LN(fi)(yi)−LN(fi)(ȳi) ≥ 0 for any yi ∈ [li, ri]. We recall the algorithm 8 designed

in Chapter 4 which can be used to check whether a univariate polynomial function p(x) ≥ 0

for any x ∈ [a, b].

6.3.4. Optimization methods for (NLP )

ε−strongly local optimization method for (NLP )

In this section, we will introduce an ε−strongly local optimization method for the problem

(NLP ) according to Theorem 15.

Algorithm 15. ε−Strongly Local Optimization Method for (NLP ):(SLOM)

Step 0. Take an initial point x0 ∈ X . Let Q1 = I , Q2, · · · , Qt, · · · , QT be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number. N̄ ,

N , M and S are fixed integers. Set t := 1, i := 1, s = 1 and N := N . Let x̄ := (x∗1, · · · , x∗n)

be a local minimizer or KKT point of f(x) on
n∏
i=1

[ui, vi] starting from x0 and go to Step 1.

Step 1. Let Q := Qt, ȳ = Q−1x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T and y = (ȳ1, . . . , ȳi−1, yi,

ȳi+1, . . . , ȳn)T . Let fi(yi) := f(Qy). Let a = li, b = ri. If s > S, go to Step 8;

otherwise, partition [a, b] into s equally spaced subintervals. Let [a, b]1 = [a, a + b−a
s

],
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[a, b]2 = [a+ b−a
s
, a+ 2(b−a)

s
], · · · , [a, b]s = [b− b−a

s
, b]. Let w = 1 and [a, b] := [a, b]w. Go

to Step 2.

Step 2. Let Li,N(fi(yi)) :=
N∑
d=0

fi(zd)
∏
j 6=d

yi−zj
zd−zj

, where zd = b−a
2
cos
(

(2d+1)π
2(N+1)

)
+ a+b

2
, for

d = 0, · · · , N , are Chebyshev nodes, go to Step 3.

Step 3. Let p := Li,N(fi)(yi) − Li,N(fi)(ȳi) and K = Ki defined in (4.1). Check whether

the condition holds: p(a) > 0 and the following equations hold:

Vp2k(a)− Vp2k(b) = Vp2k+1(a)− Vp2k+1(b),

k = 0, 1, 2, · · · ,
[K − 1

2

]
by using the Algorithm 8. If the condition holds, go to Step 5, otherwise go to Step 4.

Step 4. Let ȳ∗i := argmin{Li,N(fi)(yi)|yi ∈ [a, b]} and ȳ∗ = (ȳ1, · · · , ȳi−1, ȳ
∗
i , ȳi+1 · · · , ȳn)

and x̄∗ = Qȳ∗. Let x∗ = (x∗1, · · · , x∗n) be a local minimizer or KKT point of f(x) on
n∏
i=1

[ui, vi] starting from x̄∗. If f(x∗) < f(x̄) − ε, let x̄ := x∗, i := 1, N := N , s := 1 and

t := 1, go to Step 1, otherwise, go to Step 5.

Step 5. Let w := w+1. If w > s, let i := i+1 and go to Step 6, otherwise let [a, b] := [a, b]w

and go to Step 2.

Step 6. If i ≤ n, go to Step 1; else go to Step 7.

Step 7. Let N := N +M . If N > N̄ , go to Step 8; otherwise, let i := 1 and go to Step 1.

Step 8. Let s := 2s. If s > S, go to Step 9; otherwise, let i := 1, N := N and go to Step 1.

Step 9. Let t := t + 1. If t > T , go to Step 10; otherwise, let Q := Qt, i := 1, N := N and

s := 1, go to Step 1.

Step 10. Stop. x̄ is an ε−strongly local minimizer with respect to all the chosen Qt, t =

1, · · · , T .
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Note that, by Theorem 14, for a given ε > 0, when N and S are large enough, for any

i = 1, . . . , n and Q = Qt, t = 1, . . . , T ,

|fi(yi)− Li,N(fi)(yi)| ≤
ε

2
for any yi ∈ [a, b]ω, ω = 1, . . . , S. (6.15)

Theorem 16. For a given ε > 0, suppose that N and S are large enough, such that (6.15)

is true. For a given initial point x0 ∈ X , we can obtain an ε−strongly local minimizer x̄ of

the problem (NLP ) in finite iteration times by the given strongly local optimization method

SLOM.

Proof: First, we can prove that this algorithm must stop in finite iteration times.

Let W := max{f(x) | x ∈ X} and m := min{f(x) | x ∈ X}. For the given Qt, given

[a, b]ω and given N , there are at most n[W−m
ε

] iteration times from step 1 to step 5. In fact,

for the given Qt, given [a, b]ω, given N and given i, if the condition in step 3 holds or if

f(x∗) ≥ f(x̄) − ε, then we will change the i into i + 1; only when the condition in step 3

does not hold and f(x∗) < f(x̄)− ε, we will change i to 1 in step 5 and go to step 1. For the

same Qt, same [a, b]ω and same N , when we change i to 1, the objection function value will

decrease at least ε. Hence, there are at most [W−m
ε

] times to change i to 1 in step 5, where [a]

is the largest integer number which is less and equal to a. The total iteration time from step 1

to step 5 is at most n[W−m
ε

]. For the givenQt and given [a, b]ω, since we haveN = [ N̄−N
M

]+1

numbers Lagrange interpolation polynomials, the total iteration time from step 1 to step 6 is

at most ([ N̄−N
M

] + 1)n[W−m
ε

]. Let S̃ = {1, 2, 4, · · · , S}. For the given Qt and given s ∈ S̃,

we have s intervals, and the total intervals for all s ∈ S̃ are
∑
s∈S̃

s. Hence, for the given Qt,

the total iteration time from step 1 to step 7 is at most (
∑
s∈S̃

s)([ N̄−N
M

] + 1)n[W−m
ε

]. Since

we have T numbers of Qt , this algorithm must stop at most T (
∑
s∈S̃

s)([ N̄−N
M

] + 1)n[W−m
ε

]

iteration times.

Second, we can prove that we can obtain an ε−strongly local minimizer in finite iteration
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times. Since this algorithm must stop in finite steps, we will stop at point x̄, such that

(i) for any i = 1, . . . , n, ȳi = (Q−1)ix̄ satisfies the condition [LC]i, then x̄ is an ε−strongly

local minimizer of the problem (NLP ) since condition [LC]i implies that Li,N(fi)(yi) ≥

Li,N(fi) (ȳi) for any yi ∈ [li, ri] and since |fi(yi) − Li,N(fi)(yi)| ≤ ε
2

for any yi ∈ [li, ri],

which implies that fi(ȳi) ≤ Li,N(fi)(ȳi) + ε
2
≤ Li,N(fi)(yi) + ε

2
≤ fi(yi) + ε for any

yi ∈ [li, ri].

(ii) for any i = 1, · · · , n, either ȳi = (Q−1)ix̄ satisfies the condition [LC]i which implies that

fi(ȳi) ≤ fi(yi) + ε for any yi ∈ [li, ri]; or there exists y∗i ∈ [li, ri], such that y∗i satisfies the

condition [LC]i at y∗i which implies that Li,N(fi)(yi) ≥ Li,N(fi)(y
∗
i ) for any yi ∈ [li, ri], and

fi(ȳi)− fi(y∗i ) ≤ ε. Hence, fi(ȳi) ≤ fi(y
∗
i ) + ε ≤ Li,N(fi)(y

∗
i ) + 3ε

2
≤ Li,N(fi)(yi) + 3ε

2
≤

fi(yi)+2ε for any yi ∈ [li, ri]. Therefore, x̄ is a 2ε− strongly local minimizer of the problem

(NLP ).

Remark 23. In Algorithm SLOM, from step 2 to step 5, we can also apply Parallel Algo-

rithm to check the necessary global optimality condition and calculate the global minimizer

in s subintervals.

Algorithm 16. Parallel Algorithm

Step 1. Let [a, b] := [a, b]w. Let Li,N(fi(yi)) :=
N∑
d=0

fi(zd)
∏
j 6=d

yi−zj
zd−zj

, where zd = b−a
2

cos
(

(2d+1)π
2(N+1)

)
+ a+b

2
, for d = 0, · · · , N , are Chebyshev nodes, go to Step 2.

Step 2. Let p := Li,N(fi)(yi) − Li,N(fi)(ȳi) and K := Ki, where Ki is defined in (4.1).

Check whether the condition holds: p(a) > 0 and the following equations hold:

Vp2k(a)− Vp2k(b) = Vp2k+1(a)− Vp2k+1(b),

k = 0, 1, 2, · · · ,
[K − 1

2

]
by using the Algorithm 8 in Chapter 4. If the condition holds, go to Step 3, otherwise, go to
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Step 4.

Step 3. let ȳ∗i,w := ȳi, ȳ∗w = (ȳ1, · · · , ȳi−1, ȳ
∗
i,w, ȳi+1 · · · , ȳn) and x̄∗w = Qȳ∗w. Then stop.

Step 4. Let ȳ∗i,w := argmin{Li,N(fi)(yi)|yi ∈ [a, b]}, ȳ∗w = (ȳ1, · · · , ȳi−1, ȳ
∗
i,w, ȳi+1 · · · , ȳn)

and x̄∗w = Qȳ∗w. Then stop.

Algorithm 17. Applying Parallel Algorithm

Step 0. Take an initial point x0 ∈ X . Let Q1 = I , Q2, · · · , Qt, · · · , QT be any invertible

matrices given randomly, where I is the identity matrix. Let ε be a small positive number. N̄ ,

N , M and S are fixed integers. Set t := 1, Q := Qt, i := 1, w = 1, s = 1 and N := N . Let

x̄ := (x∗1, · · · , x∗n) be a local minimizer or KKT point of f(x) on
n∏
i=1

[ui, vi] starting from x0

and go to Step 1.

Step 1. Let ȳ = Q−1x̄ = (ȳ1, . . . , ȳi, . . . , ȳn)T and y = (ȳ1, . . . , ȳi−1, yi, ȳi+1, . . . , ȳn)T . Let

fi(yi) := f(Qy). Let a = li, b = ri. Partition [a, b] into s equally spaced subintervals. Let

[a, b]1 = [a, a+ b−a
s

], [a, b]2 = [a+ b−a
s
, a+ 2(b−a)

s
], · · · , [a, b]s = [b− b−a

s
, b]. Go to Step 2.

Step 2. Call Parallel Algorithm.

Step 3. Let x̄∗ := argmin{f(x̄∗w)|w = 1, · · · , s}. Let x∗ = (x∗1, · · · , x∗n)T be a local

minimizer or KKT point of f(x) on
n∏
i=1

[ui, vi] starting from x̄∗. If f(x∗) < f(x̄) − ε, let

x̄ := x∗, i := 1, N := N , s := 1 and t := 1, go to Step 1. Otherwise, if i := n, go to Step 4,

else let i := i+ 1 and go to Step 1.

Step 4. Let N := N +M . If N > N̄ , go to Step 5; otherwise, let i := 1 and go to Step 1.

Step 5. Let s := 2s. If s > S, go to Step 6; otherwise, let i := 1, N := N and go to Step 1.

Step 6. Let t := t + 1. If t > T , go to Step 7; otherwise, let Q := Qt, i := 1, N := N and

s := 1, go to Step 1.

Step 7. Stop. x̄ is an ε−strongly local minimizer with respect to all the chosen Qt, t =

1, · · · , T .
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Remark 24. In Algorithm 15, in the Step 3, we need to check the following optimality con-

dition:

p(a) > 0 and the following equations hold:

Vp2k(a)− Vp2k(b) = Vp2k+1(a)− Vp2k+1(b),

k = 0, 1, 2, · · · ,
[K − 1

2

]
.

From Remark 22, we know that when N = 2, 3, 4, respectively, the condition above is equiv-

alent to the condition [GNC]i defined in (6.14) which is easy to check.

If the optimality condition is not satisfied, then in Step 4, we need to calculate

ȳ∗i := argmin{Li,N(fi)(yi)|yi ∈ [a, b]}. (6.16)

From (6.16), we can see ȳ∗i is a global minimizer of the univariate polynomial function

Li,N(fi)(yi) over [a, b]. Actually, it is not necessarily to obtain a global minimizer here.

We just want a point which can improve the current local minimizer ȳi for the function

Li,N(fi)(yi), ∀yi ∈ [a, b]. When N = 2, 3, 4, the literature [45], Chapter 2 and Chapter

3 did just this procedure.

When N = 2, 3, 4, ȳ∗i is calculated according to the following formulas to improve ȳi:

When N = 2,

ȳ∗i := argmin{Li,N(fi)(yi)|yi ∈ {a, b}}. (6.17)

When N = 3,

ȳ∗i := argmin{Li,N(fi)(yi)|yi ∈ {a, b}
⋃

Zi}. (6.18)
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where Zi = {yi,x̄}
⋂

(a, b) and yi,x̄ is defined by (2.8) in Chapter 2.

When N = 4,

ȳ∗i := argmin{Li,N(fi)(yi)|yi ∈ {a, b}
⋃

Zi}. (6.19)

where Zi = Pi
⋂

(a, b) and Pi is defined by (3.12) in Chapter 3.

We need to notice the ȳ∗i in (6.17)-(6.19), respectively, is not a global minimizer ofLi,N(fi)(yi)

over [a, b], but we know that ȳ∗i can improve the current local minimizer ȳi through the anal-

ysis in [45], Chapter 2 and Chapter 3. ȳ∗i in (6.17)-(6.19) , respectively, is easy to calculate.

When N > 4, please refer to the methods mentioned by Remark 16 in Chapter 4.

Remark 25. From Remark 21, we know ifN is big enough or b−a is small enough, then there

must exist a polynomial which is arbitrarily close to original nonlinear function. However,

in practice, N is not necessary to be very big and b− a is not necessary to be very small.

The Weierstrass Theorem states that if the function f(x) is continuous on [a, b] and ε >

0, then there exists a polynomial p(x) such that ‖f(x) − p(x)‖ < ε, where ‖ · ‖ is the

uniform norm over the interval [a, b], that is, where ‖g‖ := max
a≤x≤b |g(x)| [122]. This mean ‘a

polynomial which is a good fit always exists, but how do we find it, and just how big does N

have to be? For practical reasons, however, it is often better to constraint N to remain small

(or modest)’ [24].

From the analysis in Remark 24, we know when N = 2, 3, 4, respectively, the optimality

condition in Step 3 is easy to check and ȳ∗i in Step 4 is easy to calculate in the Algorithm 15

(SLOM). Hence, we have the following two algorithms in which we mainly keepN = 2, 3, 4.

In Algorithm SLOM, if we take the values N = 2, N̄ = 4, M = 1 and S = 4, then

the algorithm is denoted as Algorithm SLOM1; if we take the values N = 2, N̄ = 10,

N = 2, 3, 4, 10, M is not fixed here, and S = 1, then the algorithm is denoted as Algorithm

SLOM2.

In SLOM1, we take the values N = 2, 3, 4 first. If the results are not good enough, we will
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partition interval into two, even further into four equally spaced subintervals in order to

reduce the interpolation error. We can apply parallel algorithm to achieve this.

In SLOM2, we also take the values N = 2, 3, 4 first. If the results are not good enough, we

will increase the degree of Lagrange interpolation polynomial to N = 10.

The numerical results in section 6.3.5 show that both SLOM1 and SLOM2 are efficient.

Although the numerical results in section 6.3.5 show that both SLOM1 and SLOM2 are

efficient, they are still ε−strongly local optimization methods. It is necessary to design a

global optimization method in the next section.

Global optimization method for (NLP )

In this section, we will design a global optimization method for the problem (NLP ) by com-

bining the ε−strongly local optimization method and an auxiliary function. In this chapter,

we still use the auxiliary function which was presented by (1.2) in Chapter 1. For the prop-

erties of this auxiliary function, see Chapter 1.

Algorithm 18. Global optimization method for (NLP ):(GOM)

Step 0. Set M := 1010, µ := 10−10 and k0 := 2n. Set An×n := In×n and Bn×2n := [A,−A].

Let r0 := 1, c0 := 1, q0 := 105 and δ0 := 1
2
. Let k := 1, i := 1 and r := r0. Let x0

1 be an

initial point and x∗0 := x0
1, then go to Step 1.

Step 1. Use the ε−strongly local optimization method (SLOM) to solve the problem (NLP )

starting from x0
k. Let x∗k be the obtained ε−strongly local minimizer of the problem (NLP ).

If f(x∗k) ≥ f(x∗0), then go to Step 5; otherwise let q := q0, c := c0, r := r0, δ := δ0, i := 1

and x∗0 = x∗k, k := k + 1, then go to Step 2.

Step 2. Let Bi indicate the ith column of B and x̄∗k := x∗0 + δBi. If x̄∗k /∈ S, go to Step 3.

Otherwise, if f(x̄∗k) < f(x∗0), then set x0
k+1 = x̄∗k and x∗0 := x̄∗k, k := k + 1 and go to Step 1;

otherwise go to Step 4.
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Step 3. If δ < µ, go to Step 8; otherwise, let δ = δ
2

and go to Step 2.

Step 4. If f(x∗0) ≤ f(x̄∗k) ≤ f(x∗0) + 1, then go to Step 5; otherwise let δ = δ
2

go to Step 2.

Step 5. Let

Fq,r,c,x∗0(x) = q

(
exp(−‖x− x

∗
0‖2

q
)gr,c

(
f(x)− f(x∗0)

)
+ hr,c

(
f(x)− f(x∗0)

))
.

Solve the problem:

min Fq,r,c,x∗0(x) (6.20)

s.t. x ∈ X.

by a local search method starting from the initial point x̄∗k. Let x̄q,r,c,x∗k be the local minimizer

obtained. Then set x0
k+1 = x̄q,r,c,x∗k , k := k + 1 and go to Step 1.

Step 6. If q < M , then increase q (in the following examples, let q := 10q), then go to Step

5; otherwise go to Step 7.

Step 7. If c < M , then increase c (in the following examples, let c := 10c), and let q := q0,

then go to Step 5; otherwise go to Step 8.

Step 8. If i < k0, then let i := i + 1, q := q0, c := c0, δ = δ0, go to Step 2; otherwise go to

Step 9.

Step 9. If r > µ, then decrease r (in the following examples, let r := r
10

). Randomly select

an orthogonal matrix An×n and set Bn×2n := [A,−A]. Let i := 1, q := q0, c := c0, δ = δ0

and go to Step 2; otherwise, stop and x∗0 is the obtained global minimizer or approximate

global minimizer of the problem (NLP ).

Here, if SLOM is replaced by SLMO1 and SLMO2, then we denote the corresponding global

optimization methods as GOM1 and GOM2, respectively.
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6.3.5. Numerical examples

In order to test the performance of our algorithms: strongly local optimization methods

(SLOM1 and SLOM2) and global optimization methods (GOM1 and GOM2), twenty com-

mon benchmark functions from [97] are selected for the experiment. Table 6.2 shows sum-

mary information of these test problems. Although we can apply parallel algorithm in the

SLOM1, we did not use it. The computation was implemented on a Microsoft Windows XP

Desktop of 3.46GB memory and 2.99GHz CPU frequency in our chapter.

Table 6.2.: Test problems for (NLP)

Problem Name and Global minimizer Optimal value

number parameter values x∗ f(x∗)

6.1 Branin (9.42478, 2.475)† 0.397887

6.2 Bohachevsky1 (0, 0) 0

6.3 Bohachevsky2 (0, 0) 0

6.4 Bohachevsky3 (0, 0) 0

6.5 Easom (π, π) −1

6.6 Michalewics(2) (2.2029, 1.5708) −1.8013

6.7 Shubert (0.0217,−0.9527)† −186.7309

6.8 Schwefel(2) (420.9687, 420.9687) 0

6.9 Hartmann(3,4) (0.114614, 0.555649, 0.852547) −3.8600

6.10 Shekel(5) (4, 4, 4, 4) −10.1532

6.11 Shekel(10) (4, 4, 4, 4) −10.5364

6.12 Hartmann(6,4) (0.20169, 0.150011, 0.47687, −3.3224

0.275332, 0.311652, 0.6573)

continue goes here. . .
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Problem Name and Global minimizer Optimal value

number parameter values x∗ f(x∗)

6.13 Schwefel(6) (420.9687, · · · , 420.9687) 0

6.14 Michalewics(10) (2.2029, 1.5708, 1.2850, 1.9231, 1.7205 −9.66015

1.5708, 1.4544, 1.7561, 1.6557, 1.5708)

6.15 Rastrigin(10) (0, · · · , 0) 0

6.16 Griewank(10) (0, · · · , 0) 0

6.17 Rastrigin(20) (0, · · · , 0) 0

6.18 Griewank(20) (0, · · · , 0) 0

6.19 Levy(30) (1, · · · , 1) 0

6.20 Ackley(30) (0, · · · , 0) 0

† This is one of several multiple optimal solutions.

For our experiments, we use the optimality gap mentioned in [97] is:

GAP = |f(x)− f(x∗)|

where x is a heuristic solution obtained by our method and x∗ is the optimal solution. We

then say that a heuristic solution x is optimal if:

GAP ≤

 ε f(x∗) = 0

ε× |f(x∗)| f(x∗) 6= 0

In our experimentation we set ε = 0.001 as the same of that in [97].

For comparison, some common statistics are included. We randomly select 30 initial points

for every problem. The suc.rate(success rate) means the success times out of 30. The best

is the minimum of the results, the worst indicates the maximum of the results, and then it
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follows the mean, median and st.dev.(standard deviation). In some way, these statistics are

able to evaluate the search ability and solution accuracy, reliability and convergence as well

as stability.

In the below table, we record the results of algorithms SLOMs and GOMs.

Table 6.3.: Results of algorithms SLOMs and GOMs for (NLP)

Problem statistic SLOM1 GOM1 SLOM2 GOM2

6.1 suc.rate 30/30 30/30 30/30 30/30

best 0.3979 0.3979 0.3979 0.3979

worst 0.3979 0.3979 0.3979 0.3979

mean 0.3979 0.3979 0.3979 0.3979

median 0.3979 0.3979 0.3979 0.3979

st.dev 7.8971e− 014 7.8971e− 014 4.7145e− 014 4.7145e− 014

6.2 suc.rate 30/30 30/30 30/30 30/30

best 0 0 0 0

worst 2.7756e− 015 2.7756e− 015 3.7748e− 015 3.7748e− 015

mean 6.5873e− 016 6.5873e− 016 7.9566e− 016 7.9566e− 016

median 0 0 0 0

st.dev 8.7949e− 016 8.7949e− 016 1.0705e− 015 1.0705e− 015

6.3 suc.rate 30/30 30/30 30/30 30/30

best 0 0 0 0

worst 4.3854e− 015 4.3854e− 015 7.8826e− 015 7.8826e− 015

mean 1.9725e− 015 1.9725e− 015 1.7967e− 015 1.7967e− 015

median 2.2760e− 015 2.2760e− 015 1.7208e− 015 1.7208e− 015

continue goes here. . .
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Problem statistic SLOM1 GOM1 SLOM2 GOM2

st.dev 8.6536e− 016 8.6536e− 016 1.5724e− 015 1.5724e− 015

6.4 suc.rate 30/30 30/30 30/30 30/30

best 5.5511e− 017 5.5511e− 017 0 0

worst 4.0190e− 014 4.0190e− 014 5.5456e− 014 5.5456e− 014

mean 2.5152e− 014 2.5152e− 014 1.3961e− 014 1.3961e− 014

median 3.0836e− 014 3.0836e− 014 1.6875e− 014 1.6875e− 014

st.dev 1.0495e− 014 1.0495e− 014 1.4312e− 014 1.4312e− 014

6.5 suc.rate 10/30 30/30 8/30 27/30

best −1.0000 −1 −1.0000 −1.0000

worst 0 −1.0000 0 0

mean −0.2273 −1.0000 −0.2667 −0.9000

median −4.9193e− 009 −1.0000 0 −1.0000

st.dev 0.4289 2.4737e− 014 0.4498 0.3051

6.6 suc.rate 30/30 30/30 30/30 30/30

best −1.8013 −1.8013 −1.8013 −1.8013

worst −1.8013 −1.8013 −1.8013 −1.8013

mean −1.8013 −1.8013 −1.8013 −1.8013

median −1.8013 −1.8013 −1.8013 −1.8013

st.dev 2.8223e− 015 2.8223e− 015 4.4042e− 015 4.4042e− 015

6.7 suc.rate 30/30 30/30 30/30 30/30

best −186.7309 −186.7309 −186.7309 −186.7309

worst −79.4109 −186.7309 −186.7309 −186.7309

mean −183.1536 −186.7309 −186.7309 −186.7309

median −186.7309 −186.7309 −186.7309 −186.7309

continue goes here. . .
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Problem statistic SLOM1 GOM1 SLOM2 GOM2

st.dev 1.4530e− 012 1.4530e− 012 1.4427e− 012 1.4427e− 012

6.8 suc.rate 30/30 30/30 30/30 30/30

best 2.5455e− 005 2.5455e− 005 2.5455e− 005 2.5455e− 005

worst 2.5455e− 005 2.5455e− 005 2.5455e− 005 2.5455e− 005

mean 2.5455e− 005 2.5455e− 005 2.5455e− 005 2.5455e− 005

median 2.5455e− 005 2.5455e− 005 2.5455e− 005 2.5455e− 005

st.dev 1.8569e− 013 1.8569e− 013 7.7183e− 014 7.7183e− 014

6.9 suc.rate 30/30 30/30 30/30 30/30

best −3.8600 −3.8600 −3.8600 −3.8600

worst −3.8600 −3.8600 −3.8600 −3.8600

mean −3.8600 −3.8600 −3.8600 −3.8600

median −3.8600 −3.8600 −3.8600 −3.8600

st.dev 1.7965e− 012 1.7965e− 012 2.0214e− 012 2.0214e− 012

6.10 suc.rate 30/30 30/30 30/30 30/30

best −10.1532 −10.1532 −10.1532 −10.1532

worst −10.1532 −10.1532 −10.1532 −10.1532

mean −10.1532 −10.1532 −10.1532 −10.1532

median −10.1532 −10.1532 −10.1532 −10.1532

st.dev 1.3087e− 013 1.3087e− 013 1.3098e− 013 1.3098e− 013

6.11 suc.rate 30/30 30/30 30/30 30/30

best −10.5321 −10.5321 −10.5321 −10.5321

worst −10.5321 −10.5321 −10.5321 −10.5321

mean −10.5321 −10.3520 −10.5321 −10.5321

median −10.5321 −10.5321 −10.5321 −10.5321

continue goes here. . .

186



Problem statistic SLOM1 GOM1 SLOM2 GOM2

st.dev 1.2280e− 013 1.2280e− 013 1.2172e− 013 1.2172e− 013

6.12 suc.rate 30/30 30/30 30/30 30/30

best −3.3224 −3.3224 −3.3224 −3.3224

worst −3.3224 −3.3224 −3.3224 −3.3224

mean −3.3224 −3.3224 −3.3224 −3.3224

median −3.3224 −3.3224 −3.3224 −3.3224

st.dev 5.6529e− 014 5.6529e− 014 6.2499e− 014 6.2499e− 014

6.13 suc.rate 30/30 30/30 30/30 30/30

best 7.6365e− 005 7.6365e− 005 7.6365e− 005 7.6365e− 005

worst 7.6365e− 005 7.6365e− 005 7.6365e− 005 7.6365e− 005

mean 7.6365e− 005 7.6365e− 005 7.6365e− 005 7.6365e− 005

median 7.6365e− 005 7.6365e− 005 7.6365e− 005 7.6365e− 005

st.dev 4.0204e− 013 4.0204e− 013 6.1747e− 013 6.1747e− 013

6.14 suc.rate 14/30 30/30 10/30 30/30

best −9.6602 −9.6602 −9.6602 −9.6602

worst −9.4974 −9.6602 −9.4684 −9.6602

mean −9.6399 −9.6602 −9.6126 −9.6602

median −9.6552 −9.6602 −9.6184 −9.6602

st.dev 0.0332 6.8798e− 015 0.0490 2.6735e− 014

6.15 suc.rate 30/30 30/30 30/30 30/30

best 0 0 0 0

worst 0 0 0 0

mean 0 0 0 0

median 0 0 0 0

continue goes here. . .
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Problem statistic SLOM1 GOM1 SLOM2 GOM2

st.dev 0 0 0 0

6.16 suc.rate 30/30 30/30 30/30 30/30

best 5.7288e− 014 5.7288e− 014 2.9943e− 013 2.9943e− 013

worst 9.7844e− 012 9.7844e− 012 8.7973e− 012 8.7973e− 012

mean 2.7571e− 012 2.7571e− 012 3.0619e− 012 3.0619e− 012

median 2.1166e− 012 2.1166e− 012 2.2805e− 012 2.2805e− 012

st.dev 2.6216e− 012 2.6216e− 012 2.3935e− 012 2.3935e− 012

6.17 suc.rate 30/30 30/30 30/30 30/30

best 0 0 0 0

worst 0 0 0 0

mean 0 0 0 0

median 0 0 0 0

st.dev 0 0 0 0

6.18 suc.rate 30/30 30/30 30/30 30/30

best 1.7958e− 012 1.7958e− 012 1.5604e− 012 1.5604e− 012

worst 1.8837e− 011 1.8837e− 011 1.9730e− 011 1.9730e− 011

mean 6.4374e− 012 6.4374e− 012 6.6825e− 012 6.6825e− 012

median 4.8330e− 012 4.8330e− 012 4.5881e− 012 4.5881e− 012

st.dev 4.3478e− 012 4.3478e− 012 5.2359e− 012 5.2359e− 012

6.19 suc.rate 30/30 30/30 30/30 30/30

best 1.0660e− 015 1.0660e− 015 2.7355e− 015 2.7355e− 015

worst 5.1639e− 013 5.1639e− 013 1.8216e− 012 1.8216e− 012

mean 6.9774e− 014 6.9774e− 014 3.0685e− 013 3.0685e− 013

median 1.0666e− 015 1.0666e− 015 8.4956e− 014 8.4956e− 014

continue goes here. . .
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Problem statistic SLOM1 GOM1 SLOM2 GOM2

st.dev 1.7817e− 013 1.7817e− 013 4.5055e− 013 4.5055e− 013

6.20 suc.rate 30/30 30/30 30/30 30/30

best 1.5253e− 010 1.5253e− 010 7.0455e− 011 7.0455e− 011

worst 5.6948e− 010 5.6948e− 010 1.6898e− 010 1.6898e− 010

mean 1.3298e− 010 1.3298e− 010 1.3298e− 010 1.3298e− 010

median 2.9937e− 010 2.9937e− 010 1.5952e− 010 1.5952e− 010

st.dev 1.5074e− 010 1.5074e− 010 5.4358e− 011 5.4358e− 011

From table 6.3, we can see SLOM1 and SLOM2 behave similarly. As local optimization

methods, SLOM1 and SLOM2 can also be considered as competitive algorithms with pro-

ducing impressive results.

Actually, it did not need to partition the interval or increase the degree to 10 for most of the

above problems in SLOM1 or SLOM2. For example, for Problem 6.1-6.4, 6.6-6.9, 6.11-

6.13, 6.15-6.20, we can obtain the global minimizer by taking N = 2, 3, 4 for 30 randomly

selected starting points. For Problem 6.10, from some starting points of 30, we can obtain

the global minimizer by taking N = 2, 3, 4 only and for the rest starting points of 30, we

can obtain the global minimizer by taking S = 2 or taking N = 10. For Problem 6.5 and

6.14, SLOM1 and SLOM2 failed from some starting points even by taking S = 4 or taking

N = 10.

Next, we will compare GOM1 and GOM2 with two other heuristic methods: simulated

annealing heuristic pattern search (SAHPS) [12] and quasi-filled function method (QFFM)

[149].
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Table 6.4.: Comparisons among various algorithms for (NLP)

Problem statistic SAHPS QFFM GOM1 GOM2

6.1 suc.rate 30/30 30/30 30/30 30/30

best 0.3979 0.3979 0.3979 0.3979

worst 0.3979 0.3979 0.3979 0.3979

mean 0.3979 0.3979 0.3979 0.3979

median 0.3979 0.3979 0.3979 0.3979

st.dev 3.7326e− 009 5.1121e− 014 7.8971e− 014 4.7145e− 014

6.2 suc.rate 21/30 30/30 30/30 30/30

best 8.9346e− 011 0 0 0

worst 0.4699 2.5535e− 015 2.7756e− 015 3.7748e− 015

mean 0.1296 1.0399e− 015 6.5873e− 016 7.9566e− 016

median 3.6152e− 009 1.1102e− 015 0 0

st.dev 0.2019 9.6368e− 016 8.7949e− 016 1.0705e− 015

6.3 suc.rate 26/30 30/30 30/30 30/30

best 6.4645e− 010 2.2760e− 015 0 0

worst 0.2183 7.8826e− 015 4.3854e− 015 7.8826e− 015

mean 0.0291 2.6627e− 015 1.9725e− 015 1.7967e− 015

median 3.7839e− 009 2.3870e− 015 2.2760e− 015 1.7208e− 015

st.dev 0.0755 1.0336e− 015 8.6536e− 016 1.5724e− 015

6.4 suc.rate 20/30 30/30 30/30 30/30

best 6.0262e− 010 0 5.5511e− 017 0

worst 0.2263 4.2688e− 014 4.0190e− 014 5.5456e− 014

continue goes here. . .
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Problem statistic SAHPS QFFM GOM1 GOM2

mean 0.0754 2.2005e− 014 2.5152e− 014 1.3961e− 014

median 5.2473e− 009 2.4092e− 014 3.0836e− 014 1.6875e− 014

st.dev 0.1085 1.0517e− 014 1.0495e− 014 1.4312e− 014

6.5 suc.rate 0/30 9/30 30/30 27/30

best −9.9396e− 021 −1.0000 −1 −1.0000

worst 0 0 −1.0000 −0

mean −3.3132e− 022 −0.3000 −1.0000 −0.9000

median 0 0 −1.0000 −1.0000

st.dev 1.8147e− 021 0.4661 2.4737e− 014 0.3051

6.6 suc.rate 20/30 30/30 30/30 30/30

best −1.8013 −1.8013 −1.8013 −1.8013

worst −1.0000 −1.8013 −1.8013 −1.8013

mean −1.6144 −1.8013 −1.8013 −1.8013

median −1.8013 −1.8013 −1.8013 −1.8013

st.dev 0.3003 3.4456e− 015 2.8223e− 015 4.4042e− 015

6.7 suc.rate 19/30 30/30 30/30 30/30

best −186.7309 −186.7309 −186.7309 −186.7309

worst −54.4049 −186.7309 −186.7309 −186.7309

mean −157.4907 −186.7309 −186.7309 −186.7309

median −186.7309 −186.7309 −186.7309 −186.7309

st.dev 42.6679 1.4074e− 012 1.4530e− 012 1.3429e− 012

6.8 suc.rate - 30/30 30/30 30/30

best - 2.5455e− 005 2.5455e− 005 2.5455e− 005

worst - 2.5455e− 005 2.5455e− 005 2.5455e− 005

continue goes here. . .
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Problem statistic SAHPS QFFM GOM1 GOM2

mean - 2.5455e− 005 2.5455e− 005 2.5455e− 005

median - 2.5455e− 005 2.5455e− 005 2.5455e− 005

st.dev - 6.6425e− 013 1.8569e− 013 7.7183e− 014

6.9 suc.rate 28/30 30/30 30/30 30/30

best −3.8600 −3.8600 −3.8600 −3.8600

worst −3.0859 −3.8600 −3.8600 −3.8600

mean −3.8084 −3.8600 −3.8600 −3.8600

median −3.8600 −3.8600 −3.8600 −3.8600

st.dev 0.1964 1.9807e− 012 1.7965e− 012 2.0214e− 012

6.10 suc.rate 9/30 30/30 30/30 30/30

best −10.1532 −10.1532 −10.1532 −10.1532

worst −2.6305 −10.1532 −10.1532 −10.1532

mean −5.3973 −10.1532 −10.1532 −10.1532

median −3.8690 −10.1532 −10.1532 −10.1532

st.dev 3.3014 1.3346e− 013 1.3087e− 013 1.3098e− 013

6.11 suc.rate 10/30 24/30 30/30 30/30

best −10.5321 −10.5321 −10.5321 −10.5321

worst −1.8535 −4.0790 −10.5321 −10.5321

mean −5.6426 −9.2415 −10.5321 −10.3520

median −4.0790 −10.5321 −10.5321 −10.5321

st.dev 3.5815 2.6253 1.2280e− 013 1.2172e− 013

6.12 suc.rate 21/30 30/30 30/30 30/30

best −3.3224 −3.3224 −3.3224 −3.3224

worst −3.2032 −3.3224 −3.3224 −3.3224

continue goes here. . .
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Problem statistic SAHPS QFFM GOM1 GOM2

mean −3.2866 −3.3224 −3.3224 −3.3224

median −3.3224 −3.3224 −3.3224 −3.3224

st.dev 0.0556 5.4112e− 014 5.6529e− 014 6.2499e− 014

6.13 suc.rate - 4/30 30/30 30/30

best - 7.6365e− 005 7.6365e− 005 7.6365e− 005

worst - 473.7534 7.6365e− 005 7.6365e− 005

mean - 185.5535 7.6365e− 005 7.6365e− 005

median - 236.8767 7.6365e− 005 7.6365e− 005

st.dev - 115.0547 4.0204e− 013 6.1747e− 013

6.14 suc.rate 0/30 30/30 30/30 30/30

best −8.9839 −9.6602 −9.6602 −9.6602

worst −3.0081 −9.6602 −9.6602 −9.6602

mean −5.2334 −9.6602 −9.6602 −9.6602

median −4.9169 −9.6602 −9.6602 −9.6602

st.dev 1.4494 2.6645e− 014 6.8798e− 015 2.6735e− 014

6.15 suc.rate 4/30 30/30 30/30 30/30

best 1.1045e− 008 0 0 0

worst 136.3081 0 0 0

mean 49.6813 0 0 0

median 58.2048 0 0 0

st.dev 38.8843 0 0 0

6.16 suc.rate 0/30 30/30 30/30 30/30

best 0.1895 5.5511e− 016 5.7288e− 014 2.9943e− 013

worst 6.3315 9.9787e− 012 9.7844e− 012 8.7973e− 012

continue goes here. . .
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Problem statistic SAHPS QFFM GOM1 GOM2

mean 2.0503 2.2377e− 012 2.7571e− 012 3.0619e− 012

median 1.6968 1.2696e− 012 2.1166e− 012 2.2805e− 012

st.dev 1.4573 2.6958e− 012 2.6216e− 012 2.3935e− 012

6.17 suc.rate 0/30 30/30 30/30 30/30

best 0.0076 0 0 0

worst 272.6164 0 0 0

mean 139.0301 0 0 0

median 138.7959 0 0 0

st.dev 64.8933 0 0 0

6.18 suc.rate 0/30 30/30 30/30 30/30

best 0.0099 9.9920e− 016 1.7958e− 012 1.5604e− 012

worst 1.5758 5.2655e− 011 1.8837e− 011 1.9730e− 011

mean 0.3955 8.9460e− 012 6.4374e− 012 6.6825e− 012

median 0.2882 6.4375e− 012 4.8330e− 012 4.5881e− 012

st.dev 0.4084 1.0764e− 011 4.3478e− 012 5.2359e− 012

6.19 suc.rate 0/30 30/30 30/30 30/30

best 46.4558 8.7599e− 016 1.0660e− 015 2.7355e− 015

worst 205.5195 2.7737e− 012 5.1639e− 013 1.8216e− 012

mean 86.6739 3.1436e− 013 6.9774e− 014 3.0685e− 013

median 77.5467 4.0304e− 014 1.0666e− 015 8.4956e− 014

st.dev 36.0563 7.1156e− 013 1.7817e− 013 4.5055e− 013

6.20 suc.rate 0/30 30/30 30/30 30/30

best 17.4409 3.7834e− 011 1.5253e− 010 7.0455e− 011

worst 19.9983 5.3527e− 010 5.6948e− 010 1.6898e− 010

continue goes here. . .
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Problem statistic SAHPS QFFM GOM1 GOM2

mean 19.0563 1.9748e− 010 1.3298e− 010 1.3298e− 010

median 19.0168 1.9176e− 010 2.9937e− 010 1.5952e− 010

st.dev 0.6045 9.5080e− 011 1.5074e− 010 5.4358e− 011

It is shown from table 6.4 that SAHPS is not successful for many test problems. QFFM

exhibits the robustness on most test problems. GOMs can successfully solve almost all the

test problems except that GOM2 can only successfully solve Problem 6.5 (Easom function

problem) 27 out of 30 times. Hence, GOMs are the most efficient and stable, which combine

the new local optimization methods SLOMs and the QFFM.

6.3.6. Conclusion

An optimality condition for the problem (NLP ) is provided by using linear transportations

and Lagrange interpolating polynomial. Two new local optimization methods SLOM1 and

SLOM2 are designed according to this condition. The significance of the new local optimiza-

tion methods is that instead of solving a complex nonlinear programming problem, we solve

some simple univariate polynomial programming problems. Global optimization methods

GOM1 and GOM2 are designed by combining the new local optimization methods and an

auxiliary function.

We evaluate the performance of the proposed SLOMs and GOMs by using 20 benchmark

functions for testing and comparing GOMs with two other heuristic methods: SAHPS and

QFFM. The results demonstrate that GOMs are very robust and efficient optimization algo-

rithms. In all cases of numerical experiments, they can almost successfully solve all the test

problems except that GOM2 can only successfully solve Problem 6.5 (Easom function prob-

lem) 27 out of 30 times. Although SLOMs are local optimization methods, they perform a lot

better in terms of computational efficiency compared to the SAHPS method. Since QFFM
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have fine performance relating to global search ability and convergence accuracy, it confirms

the effectiveness of GOMs which combine SLOMs and the QFFM.

6.4. Conclusion

In this chapter, we apply our strongly or ε−strongly local optimization methods and global

optimization methods to solve the sensor network localization problems and the systems of

polynomial equations. The results illustrate that our methods are very efficient and stable. It

is worth mentioning that we apply our idea - presenting optimality conditions, designing new

local optimization methods according to these optimality conditions and designing global

optimization methods by combining new local methods and some auxiliary functions - to

nonlinear programming problems. The numerical results demonstrate that our methodology

to solve nonlinear programming problems is comparable and promising.
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Conclusions and future work

For global optimization, much attention has been paid on two aspects: one is global opti-

mality conditions; the other is global optimization methods. This thesis focuses on both the

global optimality conditions and optimization methods for some polynomial programming

problems.

At the early stage, we considered cubic programming problems with mixed variables and

quartic programming problems with box constraints, which have a wide range of practi-

cal applications as well. For these two problems, we proposed necessary global optimality

conditions. Based on these conditions, we designed strongly local minimization methods.

Global minimization methods were established by combining the local minimization meth-

ods and auxiliary functions.

Then, we developed the global necessary optimality conditions for general unconstrained and

constrained polynomial programming problems. We designed strongly local minimization

methods according to these necessary conditions and global minimization methods combin-

ing the local minimization methods and an auxiliary function.

Finally, we discussed some applications for solving some sensor network localization prob-

lems and systems of polynomial equations. The results showed our methods are efficient. It

was worth mentioning that we applied the idea and the results for polynomial programming

problems to nonlinear programming problems (NLP). We provided an optimality condition

and designed new local optimization methods according to the optimality condition and

global optimization methods for (NLP). The numerical results demonstrate that our method-
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ology to solve nonlinear programming problems is comparable and promising.

Our contribution

Global optimality conditions are very important topics. Various necessary global optimality

conditions and sufficient global optimality conditions for quadratic programming problems

and some special polynomial programming problems have been developed recently. To the

authors’ best knowledge, there are few checkable global optimality conditions for general

polynomial programming problems. The significance of the thesis is due to several aspects.

First of all, we propose easily checkable necessary global optimality conditions for some

polynomial programming problems which are generally stronger than KKT conditions. Sec-

ondly, as traditional local optimization methods are designed based on KKT local conditions,

we establish strongly local optimization methods based on the necessary global optimality

conditions which may improve some KKT points. Thirdly, we provide global optimization

methods by combining the strongly local methods and some auxiliary functions. Finally,

we extend the similar idea for polynomial programming problems to nonlinear program-

ming problems and give an optimality condition and design ε−strongly local optimization

methods and global optimization methods. The numerical results showed the methods are

efficient and stable.

Future work

1. Checkable sufficient global optimality conditions

We proposed checkable necessary global optimality conditions for some polynomial

programming problems. Our future work will concentrate on checkable sufficient

global conditions for these polynomial programming problems.

2. New auxiliary functions
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In this thesis, we used different auxiliary functions for different programming prob-

lems. We know the behavior of an auxiliary function directly depends on the construc-

tion of the auxiliary function. We will try to construct some new auxiliary functions

which are tailor-made for polynomial programming problems.

3. Difference of Convex functions (DC) programming problems

In this thesis, we considered some polynomial programming problems and nonlinear

programming problems. This study could go further to DC programming problems if

we have more time in the future.

4. Large scale problems

We have tested our algorithms on some large scale problems. However the methods

presented in this thesis are not designed for very large scale problems and at this stage,

they are time-consuming. These methods will aim at developing the solvability of very

large scale polynomial programming problems in the future.
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Appendix A.

Test problems for general polynomial

programming problems

Problem 4.1: Beale Function

min f(x) := (1.5− x1 + x1x2)2 + (2.25− x1 + x1x
2
2)2 + (2.625− x1 + x1x

3
2)2

s.t. −4.5 ≤ xi ≤ 4.5, i = 1, 2.

Problem 4.2: Booth Function

min f(x) := (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

s.t. −10 ≤ xi ≤ 10, i = 1, 2.

Problem 4.3: Matyas Function

min f(x) := 0.26(x2
1 + x2

2)− 0.48x1x2

s.t. −10 ≤ xi ≤ 10, i = 1, 2.
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Problem 4.4: Goldstein and Price Function

min f(x) := [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

s.t. −2 ≤ xi ≤ 2, i = 1, 2.

Problem 4.5: Six-hump Camelback Function

min f(x) := (4− 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (−4 + 4x2

2)x2
2

s.t. −3 ≤ x1 ≤ 3,−2 ≤ x2 ≤ 3.

Problem 4.6: Perm(3, 0.5) Function

min f(x) :=
n∑
i=1

[
n∑
j=1

(ji + 0.5)((xj/j)
i − 1)]2

s.t. xi ∈ [−n, n], i = 1, 2, · · · , n

where n = 3.

Problem 4.7: Perm0(3, 10) Function

min f(x) :=
n∑
k=1

[
n∑
i=1

(i+ 10)(xki − (1/i)k)]2

s.t. xi ∈ [−n, n], i = 1, 2, · · · , n

where n = 3.
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Problem 4.8: Perm(4, 0.5) Function

min f(x) :=
n∑
i=1

[
n∑
j=1

(ji + 0.5)((xj/j)
i − 1)]2

s.t. xi ∈ [−n, n], i = 1, 2, · · · , n

where n = 4.

Problem 4.9: Perm0(4, 10) Function

min f(x) :=
n∑
k=1

[
n∑
i=1

(i+ 10)(xki − (1/i)k)]2

s.t. xi ∈ [−n, n], i = 1, 2, · · · , n

where n = 4.

Problem 4.10: Colville Function

min f(x) := 100(x2
1 − x2

2)2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

s.t. −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.

Problem 4.11: Powersum Function

min f(x) :=
4∑
i=1

[(
4∑
i=1

xij)− bi]2

s.t. 0 ≤ xi ≤ n, i = 1, · · · , 4.

where b = (8, 18, 44, 114).
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Problem 4.12: Dixon and Price Function

min f(x) := (x1 − 1)2 +
n∑
i=2

i(2x2
i − xi−1)2

s.t. xi ∈ [−10, 10], i = 1, 2, · · · , n.

where n = 5.

Problem 4.13: Dixon and Price Function

min f(x) := (x1 − 1)2 +
n∑
i=2

i(2x2
i − xi−1)2

s.t. xi ∈ [−10, 10], i = 1, 2, · · · , n.

where n = 10.

Problem 4.14: Trid Function

min f(x) :=
n∑
i=1

(xi − 1)2 −
n∑
i=2

xixi−1

s.t. −n2 ≤ xi ≤ n2, i = 1, 2, · · · , n.

where n = 10.

Problem 4.15: Rosenbrock Function

min f(x) :=
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2]

s.t. −5 ≤ xi ≤ 10, i = 1, 2, · · · , n.

where n = 20.
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Problem 4.16: Sum Squares Function

min f(x) :=
n∑
i=1

ix2
i

s.t. −10 ≤ xi ≤ 10, i = 1, 2, · · · , n.

where n = 20.

Problem 4.17: Zakharov Function

min f(x) :=
n∑
i=1

x2
i + (

n∑
i=1

0.5ixi)
2 + (

n∑
i=1

0.5ixi)
4

s.t. −5 ≤ xi ≤ 10, i = 1, 2, · · · , n.

where n = 20.

Problem 4.18: Powell Function

min f(x) :=

n/4∑
i=1

[(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)
2

+(x4i−2 − 2x4i−1)4 + 10(x4i−3 − x4i)
4]

s.t. −4 ≤ xi ≤ 5, i = 1, 2, · · · , n.

where n = 24.

Problem 4.19: Sphere Function

min f(x) :=
n∑
i=1

x2
i

s.t. −5.12 ≤ xi ≤ 5.12, i = 1, 2, · · · , n.

where n = 30.
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Problem 4.20

min f(x) :=
3∑

k=1

(
n∑
i=1

xki − 1)2 +
n∑
i=1

(x2
i−1 + x2

i + x2
i+1 − x3

i − 1)2

s.t. xi ∈ [−500, 500], i = 1, · · · , n.

where x0 = xn+1 = 0, n = 16.

Problem 4.21

min f(x) :=
m∑
i=1

f 2
i (x)s.t. xi ∈ [−500, 500], i = 1, · · · , n.

n = 30 and the polynomials fi are defined as follows:

fi(x) :=
n∑
j=2

(j − 1)xjt
j−2
i − (

n∑
j=1

xjt
j−1
i )2 − 1, ti =

i

29
, 1 ≤ i ≤ 29,

and f30 = x1, f31 = x2 − x2
1 − 1.
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Appendix B.

Test problems for general polynomial

programming problems with

polynomial constraints

Problem 5.1

min f(x) := −2x1 + x2 − x3

s.t. x1 + x2 + x3 ≤ 4

x1 ≤ 2

x3 ≤ 3

3x2 + x3 ≤ 6

x1, x2, x3 ≥ 0

xTBTBx− 2rTBx+ ‖r‖2 − 0.25‖b− v‖2 ≥ 0
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where

B =


0 0 1

0 −1 0

−2 1 −1


b = [3, 0,−4]

v = [0,−1,−6]

r = [1.5,−0.5,−5]

Problem 5.2

min f(x) := 5
4∑
i=1

xi − 5
4∑
i=1

x2
i −

13∑
i=5

xi

s.t. 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

2x1 + 2x3 + x10 + x12 − 10 ≤ 0

2x2 + 2x3 + x11 + x12 − 10 ≤ 0

−8x1 + x10 ≤ 0

−8x2 + x11 ≤ 0

−8x3 + x12 ≤ 0

−2x4 − x5 + x10 ≤ 0

−2x6 − x7 + x11 ≤ 0

−2x8 − x9 + x12 ≤ 0

xi ≥ 0, i = 1, · · · , 13

xi ≤ 1, i = 1, · · · , 9, 13

xi ≤ 100, i = 10, · · · , 12.
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Problem 5.3

min f(x) := x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + ...

4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7 + ...

7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45;

s.t. 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

10x1 − 8x2 − 17x7 + 2x8 ≤ 0

−8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

−3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

−10 ≤ xi ≤ 10, i = 1, · · · , 10.

Problem 5.4

min f(x) := (x1 − 10)3 + (x2 − 20)3

s.t. −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

(x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.
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Problem 5.5

min f(x) := (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + ...

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7;

s.t. v1 + 3v22 + x3 + 4x2
4 + 5x5 − 127 ≤ 0

7x1 + 3x2 + 10x2
3 + x4 − x5 − 282 ≤ 0

23x1 + v2 + 6x2
6 − 8x7 − 196 ≤ 0

2v1 + v2− 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

−10 ≤ xi ≤ 10, i = 1, · · · , 7

where v1 = 2x2
1, v2 = x2

2.
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Problem 5.6

min f(x) := −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2

−(x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2

s.t. (x3 − 3)2 + x4 ≥ 4

(x5 − 3)2 + x6 ≥ 4

x1 − 3x2 ≤ 2

−x1 + x2 ≤ 2

x1 + x2 ≤ 6

x1 + x2 ≥ 2

0 ≤ x1 ≤ 6

0 ≤ x2 ≤ 8

1 ≤ x3 ≤ 5

0 ≤ x4 ≤ 6

1 ≤ x5 ≤ 5

0 ≤ x6 ≤ 10.

227



Problem 5.7

min f(x) := 37.293239x1 + 0.8356891x1x5 + 5.3578547x2
3 − 40792.141

s.t. −0.0022053x3x5 + 0.0056858x2x5 + 0.0006262x1x4 − 6.665593 ≤ 0

0.0022053x3x5 − 0.0056858x2x5 − 0.0006262x1x4 − 85.334407 ≤ 0

0.0071317x2x5 + 0.0021813x2
3 + 0.0029955x1x2 − 29.48751 ≤ 0

−0.0071317x2x5 − 0.0021813x2
3 − 0.0029955x1x2 + 9.48751 ≤ 0

0.0047026x3x5 + 0.0019085x3x4 + 0.0012547x1x3 − 15.699039 ≤ 0

−0.0047026x3x5 − 0.0019085x3x4 − 0.0012547x1x3 + 10.699039 ≤ 0

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

27 ≤ x3 ≤ 45

27 ≤ x4 ≤ 45

27 ≤ x5 ≤ 45.

Problem 5.8

min f(x) := −x− y

s.t. y ≤ 2x4 − 8x3 + 8x2 + 2

y ≤ 4x4 − 32x3 + 88x2 − 96x+ 36

0 ≤ x ≤ 3

0 ≤ y ≤ 4.
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Problem 5.9

min f(x) := x1 + x2 + x3

s.t. −1 + 0.0025(x4 + x6) ≤ 0

−1 + 0.0025(−x4 + x5 + x7) ≤ 0

−1 + 0.01(−x5 + x8) ≤ 0

100x1 − x1x6 + 833.33252x4 − 83333.333 ≤ 0

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

x3x5 − x3x8 − 2500x5 + 1250000 ≤ 0

li ≤ xi ≤ ui, i = 1, · · · , 8

where l = 10× (10, 100, 100, 1, 1, 1, 1, 1)

u = 1000× (10, 10, 10, 1, 1, 1, 1, 1).

Problem 5.10

min
∑

1≤i<j<k≤n

(i+ j)xixjxk + (j + k)x2
ix

2
jx

2
k

s.t. x4
1 + · · ·+ x4

n ≤ 1

where n = 15.

Problem 5.11

min
∑

1≤i<j<k≤n

xixjxk(1 + xi + xj + xk) + ix6
i + jx6

j + kx6
k

s.t. x4
1 + · · ·+ x4

n
2
≤ 1

s.t. x4
n
2

+1 + · · ·+ x4
n ≤ 1

where n = 16.
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Problem 5.12

min
∑

1≤i<j<k≤n
2

ixixjxk + jxn
2

+ixn
2

+jxn
2

+k + kxixjxkxn
2

+ixn
2

+jxn
2

+k

s.t. x4
1 + · · ·+ x4

n
2
≤ 1

x4
n
2

+1 + · · ·+ x4
n ≤ 1

where n = 20.

Problem 5.13

min f(x) := x2
1 + (x2 − 1)2

s.t. x2 − x2
1 = 0

−1 ≤ xi ≤ 1, i = 1, 2.

Problem 5.14

min f(x) := −12x1 − 7x2 + x2
2

s.t. −2x4
1 + 2− x2 = 0

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

Problem 5.15

min f(x) := (
√
n)n

n∏
i=1

xi

s.t.
n∑
i=1

x2
i − 1 = 0

0 ≤ xi ≤ 1, i = 1, · · · , n

where n = 20.
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Appendix C.

Nonlinear systems of polynomial

equations

Problem EQ6.1: Himmelblau function

4x3
1 + 4x1x2 + 2x2

2 − 42x1 = 14

4x3
2 + 2x2

1 + 4x1x2 − 26x2 = 22

−5 ≤ x1, x2 ≤ 5
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Problem EQ6.2: Equilibrium Combustion

x1x2 + x1 − 3x5 = 0

2x1x2 + x1 + 3R10x
2
2 + x2x

2
3 +R7x2x3 +

R9x2x4 +R8x2 −Rx5 = 0

2x2x
2
3 +R7x2x3 + 2R5x

2
3 +R6x3 − 8x5 = 0

R9x2x4 + 2x2
4 − 4Rx5 = 0

x1x2 + x1 +R10x
2
2 + x2x

2
3 +R7x2x3 +R9x2x4 +

R8x2 +R5x
2
3 +R6x3 + x2

4 = 1

0.0001 ≤ xi ≤ 100, i = 1, · · · , 5

Where R = 10, R5 = 0.193, R6 = 4.10622 10−4, R7 = 5.45177 10−4, R8 =

4.4975 10−7, R9 = 3.40735 10−5, R10 = 9.615 10−7.

Problem EQ6.3

2x1 + x2 + x3 + x4 + x5 = 6

x1 + 2x2 + x3 + x4 + x5 = 6

x1 + x2 + 2x3 + x4 + x5 = 6

x1 + x2 + x3 + 2x4 + x5 = 6

x1x2x3x4x5 = 1

−2 ≤ xi ≤ 2, i = 1, · · · , 5
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Problem EQ6.4

4.731 10−3x1x3 − 0.3578x2x3 − 0.1238x1 + x7 −

1.637 10−3x2 − 0.9338x4 − 0.3571 = 0

0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − x7 −

0.07745x2 − 0.6734x4 − 0.6022 = 0

x6x8 + 0.3578x1 + 4.731 10−3x2 = 0

−0.7623x1 + 0.2238x2 + 0.3461 = 0

x2
1 + x2

2 − 1 = 0

x2
3 + x2

4 − 1 = 0

x2
5 + x2

6 − 1 = 0

x2
7 + x2

8 − 1 = 0

−1 ≤ xi ≤ 1, i = 1, · · · , 8
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Appendix D.

Test problems for nonlinear

programming problems

Problem 6.1: Branin Function

min f(x) := (x2 −
5

4π2x2
1

+
5

π
x1 − 6)2 + 10(1− 1

8π
)cos(x1) + 10

s.t. −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

Problem 6.2: Bohachevsky Function 1

min f(x) := x2
1 + 2x2

2 − 0.3cos(3πx1)− 0.4cos(4πx2) + 0.7

s.t. −100 ≤ xi ≤ 100, i = 1, 2.

Problem 6.3: Bohachevsky Function 2

min f(x) := x2
1 + 2x2

2 − 0.3cos(3πx1)cos(4πx2) + 0.3

s.t. −100 ≤ xi ≤ 100, i = 1, 2.
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Problem 6.4: Bohachevsky Function 3

min f(x) := x2
1 + 2x2

2 − 0.3cos(3πx1 + 4πx2) + 0.3

s.t. −100 ≤ xi ≤ 100, i = 1, 2.

Problem 6.5: Easom Function

min f(x) := −cos(x1)cos(x2)exp(−(x1 − π)2 − (x2 − π)2)

s.t. −100 ≤ xi ≤ 100, i = 1, 2.

Problem 6.6: Michalewics Function

min f(x) := −
n∑
i=1

sin(xi)sin
2m(

ix2
i

π
)

s.t. 0 ≤ xi ≤ π, i = 1, 2.

where m = 10.

Problem 6.7: Shubert Function

min f(x) := (
5∑
i=1

icos((i+ 1)x1 + i))(
5∑
i=1

icos((i+ 1)x2 + i)

s.t. −5.12 ≤ xi ≤ 5.12, i = 1, 2.

Problem 6.8: Schwefel Function

min f(x) := 418.9829n−
n∑
i=1

xisin(
√
|xi|)

s.t. −500 ≤ xi ≤ 500, i = 1, 2.
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Problem 6.9: Hartmann(3,4) Function

min f(x) := −
4∑
i=1

αiexp(−
3∑
j=1

Aij(xj − Pij)2)

s.t. 0 < xi < 1, i = 1, 2, 3.

where α = [1.0, 1.2, 3.0, 3.2]T

A =



3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 36


,

P = 10−4



3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828



Problem 6.10: Shekel Function

min f(x) := −
m∑
i=1

(
4∑
j=1

(xj − Cji)2 + βi)
−1

s.t. 0 ≤ xi ≤ 10, i = 1, 2, 3, 4.

where β =
1

10
[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , m = 5
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C =



4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0



Problem 6.11: Shekel Function

min f(x) := −
m∑
i=1

(
4∑
j=1

(xj − Cji)2 + βi)
−1

s.t. 0 ≤ xi ≤ 10, i = 1, 2, 3, 4.

where β =
1

10
[1, 2, 2, 4, 4, 6, 3, 7, 5, 5]T , m = 10

C =



4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0

4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.0



Problem 6.12: Hartmann(6,4) Function

min f(x) := −
4∑
i=1

αiexp(−
6∑
j=1

Aij(xj − Pij)2)

s.t. 0 < xi < 1, i = 1, 2, · · · , 6.

where α = [1.0, 1.2, 3.0, 3.2]T
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A =



10 3 17 3.50 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14



P = 10−4



1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381



Problem 6.13: Schwefel Function

min f(x) := 418.9829n−
n∑
i=1

xisin(
√
|xi|)

s.t. −500 ≤ xi ≤ 500, i = 1, · · · , 6.

Problem 6.14: Michalewics Function

min f(x) := −
n∑
i=1

sin(xi)sin
2m(

ix2
i

π
)

s.t. 0 ≤ xi ≤ π, i = 1, · · · , 10.

where m = 10.

Problem 6.15: Rastrigin Function

min f(x) := 10n+
n∑
i=1

(x2
i − 10cos(2πxi))

s.t. −5.12 ≤ xi ≤ 5.12, i = 1, · · · , 10.
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Problem 6.16: Griewank Function

min f(x) :=
n∑
i=1

x2
i

4000
−

n∑
i=1

cos(
xi√
i
) + 1

s.t. −600 ≤ xi ≤ 600, i = 1, 2, · · · , 10.

Problem 6.17: Rastrigin Function

min f(x) := 10n+
n∑
i=1

(x2
i − 10cos(2πxi))

s.t. −5.12 ≤ xi ≤ 5.12, i = 1, · · · , 20.

Problem 6.18: Griewank Function

min f(x) :=
n∑
i=1

x2
i

4000
−

n∑
i=1

cos(
xi√
i
) + 1

s.t. −600 ≤ xi ≤ 600, i = 1, 2, · · · , 20.

Problem 6.19: Levy Function

min f(x) := sin2(πy1) +
k−1∑
i=1

(yi − 1)2(1 + 10sin2(πyi + 1))

+(yk − 1)2(1 + sin2(2πxk))

s.t. yi = 1 +
xi − 1

4
, i = 1, 2, · · · , 30,

−10 ≤ xi ≤ 10, i = 1, 2, · · · , 30.

Problem 6.20: Ackley Function

min f(x) := 20 + e− 20e
−0.2

√
1
n

n∑
i=1

x2
i

− e
1
n

n∑
i=1

cos(2πxi)

s.t. −15 ≤ xi ≤ 30, i = 1, 2, · · · , 30.
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