3,073 research outputs found

    Implementation of hierarchical design for manufacture rules in manufacturing processes

    Get PDF
    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. In all engineering fields geometric modelling wluch accurately represents the shape of a whole engineering component has become accepted for a wide range of applications. To apply DFM rules or guidelines in manufacturing processes, they have to be systematised and organised into a hierarchical rule system. Rules at the higher level of the hierarchical system are applied to more generic manufacturing features, and specific rules are applied to more detailed features. This enables the number of rules and amount of repetition to be minimsed. Violation of the design for manufacture rules in the features, their characteristics and manufacturing capabilities are further examined in this hierarchical system. Manufacturabillty analysis, such as production type, materials, tolerances, surface finish, feature characteristics and accessibility, are also taken into consideration. Consideration of process capabilities and limitations during the design process is necessary in order to minimise production time and as a result, rnanufactunng cost. The correct selection of manufacturing processes is also important as it is related to the overal cost. As a result of this research, a hierarchical design for manufacture rule system is proposed which would aid designers in avoiding designs that would lead to costly manufacturing processes

    Octree-based production of near net shape components

    Get PDF
    Near net shape (NNS) manufacturing refers to the production of products that require a finishing operation of some kind. NNS manufacturing is important because it enables a significant reduction in: machining work, raw material usage, production time, and energy consumption. This paper presents an integrated system for the production of near net shape components based on the Octree decomposition of 3-D models. The Octree representation is used to automatically decompose and approximate the 3-D models, and to generate the robot instructions required to create assemblies of blocks secured by adhesive. Not only is the system capable of producing shapes of variable precision and complexity (including overhanging or reentrant shapes) from a variety of materials, but it also requires no production tooling (e.g., molds, dies, jigs, or fixtures). This paper details how a number of well-known Octree algorithms for subdivision, neighbor findings, and tree traversal have been modified to support this novel application. This paper ends by reporting the construction of two mechanical components in the prototype cell, and discussing the overall feasibility of the system

    The development and implementation of a reverse engineering method for near net shape parts

    Get PDF
    This research presents a new method for the reverse engineering of Near Net Shape (NNS) parts that bridge the current 3D scanning and Rapid Prototyping technologies. Near Net Shape is a group of manufacturing technologies that includes forging, casting, hot isostatic pressing, and additive manufacturing. This research focuses on casting process and provides a software tool along with the new method for reverse engineering a legacy casting design to the “as was” casted state instead of the “as is” current state, and at the same time, reducing the cost and time for repairing a legacy casting part. The three main objective for this research is to 1.Create a new reverse engineering method 2.Develop a software tool that is designed for feature free model editing 3.Validate the process through metal casting. The Point Cloud Library is applied for assisting point cloud processing and feature free model editing. A series of algorithms is developed for draft adding and pattern generation for the process of casting. The Rapid Pattern Manufacturing system developed in Iowa State University, Rapid Manufacturing and Prototyping Lab is applied for pattern manufacturing. This method is validated to be correct and able to reverse engineer legacy casting parts rapidly and economically through a metal casting process. The layout of this thesis is as follows: Chapter 1: provides introduction, background, research problem statement and objective of this research. Chapter 2: a literature review for the current reverse engineering method and introduces the modules of point cloud library that are used in this research. Chapter 3: presents the overview of method and algorithms that developed for this method in detail. Chapter 4: presents the implementation of this method and gives the analysis of the demo metal casting process. Chapter 5: provides future work and conclusions

    Advanced Manufacturing Using Linked Processes: Hybrid Manufacturing

    Get PDF
    Hybrid Manufacturing Processes (HMP) can significantly reduce time to customer, waste, and tooling costs per part, while increasing possible part geometric complexity for small batch parts. In the following chapter, HMP is defined by the production of parts produced first with a near-net shape process using methods including: additive manufacturing, casting, injection molding, etc., which is then coupled with multi-axis computer numerical control (CNC) subtractive machining or some other secondary material removal process. Creating process plans for such hybrid manufacturing processes typically takes weeks rather than hours or days. This chapter outlines several hybrid manufacturing processes and the intricacies required to develop process plans for these complex linked processes. A feature-based advanced hybrid manufacturing process planning system (FAH-PS) uses feature-specific geometric, tolerance, and material data inputs to generate automated process plans based on user-specified feature precedence for additive-subtractive hybrid manufacturing. Plans generated by FAH-PS can optimize process plans to minimize tool changes, orientation changes, etc., to improve process times. A case study of additive-subtractive methods for a patient-specific bone plate, demonstrates system capabilities and processing time reductions as compared to the current manual process planning for hybrid manufacturing methodologies. Using the generated FAH-PS process plan resulted in a 35% reduction in machining time from the current hybrid manufacturing strategy

    Cost analysis of advanced turbine blade manufacturing processes

    Get PDF
    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility
    • 

    corecore