1,643 research outputs found

    Software defect prediction using maximal information coefficient and fast correlation-based filter feature selection

    Get PDF
    Software quality ensures that applications that are developed are failure free. Some modern systems are intricate, due to the complexity of their information processes. Software fault prediction is an important quality assurance activity, since it is a mechanism that correctly predicts the defect proneness of modules and classifies modules that saves resources, time and developers’ efforts. In this study, a model that selects relevant features that can be used in defect prediction was proposed. The literature was reviewed and it revealed that process metrics are better predictors of defects in version systems and are based on historic source code over time. These metrics are extracted from the source-code module and include, for example, the number of additions and deletions from the source code, the number of distinct committers and the number of modified lines. In this research, defect prediction was conducted using open source software (OSS) of software product line(s) (SPL), hence process metrics were chosen. Data sets that are used in defect prediction may contain non-significant and redundant attributes that may affect the accuracy of machine-learning algorithms. In order to improve the prediction accuracy of classification models, features that are significant in the defect prediction process are utilised. In machine learning, feature selection techniques are applied in the identification of the relevant data. Feature selection is a pre-processing step that helps to reduce the dimensionality of data in machine learning. Feature selection techniques include information theoretic methods that are based on the entropy concept. This study experimented the efficiency of the feature selection techniques. It was realised that software defect prediction using significant attributes improves the prediction accuracy. A novel MICFastCR model, which is based on the Maximal Information Coefficient (MIC) was developed to select significant attributes and Fast Correlation Based Filter (FCBF) to eliminate redundant attributes. Machine learning algorithms were then run to predict software defects. The MICFastCR achieved the highest prediction accuracy as reported by various performance measures.School of ComputingPh. D. (Computer Science

    Analyze the Performance of Software by Machine Learning Methods for Fault Prediction Techniques

    Get PDF
    Trend of using the software in daily life is increasing day by day. Software system development is growing more difficult as these technologies are integrated into daily life. Therefore, creating highly effective software is a significant difficulty. The quality of any software system continues to be the most important element among all the required characteristics. Nearly one-third of the total cost of software development goes toward testing. Therefore, it is always advantageous to find a software bug early in the software development process because if it is not found early, it will drive up the cost of the software development. This type of issue is intended to be resolved via software fault prediction. There is always a need for a better and enhanced prediction model in order to forecast the fault before the real testing and so reduce the flaws in the time and expense of software projects. The various machine learning techniques for classifying software bugs are discussed in this paper

    Statistical Analysis for Revealing Defects in Software Projects

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementDefect detection in software is the procedure to identify parts of software that may comprise defects. Software companies always seek to improve the performance of software projects in terms of quality and efficiency. They also seek to deliver the soft-ware projects without any defects to the communities and just in time. The early revelation of defects in software projects is also tried to avoid failure of those projects, save costs, team effort, and time. Therefore, these companies need to build an intelligent model capable of detecting software defects accurately and efficiently. This study seeks to achieve two main objectives. The first goal is to build a statistical model to identify the critical defect factors that influence software projects. The second objective is to build a statistical model to reveal defects early in software pro-jects as reasonable accurately. A bibliometric map (VOSviewer) was used to find the relationships between the common terms in those domains. The results of this study are divided into three parts: In the first part The term "software engineering" is connected to "cluster," "regression," and "neural network." Moreover, the terms "random forest" and "feature selection" are connected to "neural network," "recall," and "software engineering," "cluster," "regression," and "fault prediction model" and "software defect prediction" and "defect density." In the second part We have checked and analyzed 29 manuscripts in detail, summarized their major contributions, and identified a few research gaps. In the third part Finally, software companies try to find the critical factors that affect the detection of software defects and find any of the intelligent or statistical methods that help to build a model capable of detecting those defects with high accuracy. Two statistical models (Multiple linear regression (MLR) and logistic regression (LR)) were used to find the critical factors and through them to detect software defects accurately. MLR is executed by using two methods which are critical defect factors (CDF) and premier list of software defect factors (PLSDF). The accuracy of MLR-CDF and MLR-PLSDF is 82.3 and 79.9 respectively. The standard error of MLR-CDF and MLR-PLSDF is 26% and 28% respectively. In addition, LR is executed by using two methods which are CDF and PLSDF. The accuracy of LR-CDF and LR-PLSDF is 86.4 and 83.8 respectively. The standard error of LR-CDF and LR-PLSDF is 22% and 25% respectively. Therefore, LRCDF outperforms on all the proposed models and state-of-the-art methods in terms of accuracy and standard error

    Towards Effective Bug Triage with Software Data Reduction Techniques

    Get PDF
    International audienceSoftware companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce the scale and improve the quality of bug data. We combine instance selection with feature selection to simultaneously reduce data scale on the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract attributes from historical bug data sets and build a predictive model for a new bug data set. We empirically investigate the performance of data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse and Mozilla. The results show that our data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work provides an approach to leveraging techniques on data processing to form reduced and high-quality bug data in software development and maintenance
    • …
    corecore