
i

Statistical Analysis for Revealing Defects in

Software Projects.

Alia Nabil Mahmoud Faried Elsayed

Dissertation presented as partial requirement for obtaining

the Master’s degree in Information Management

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

STATISTICAL ANALYSIS FOR REVEALING DEFECTS IN SOFTWARE

PROJECTS

by

Alia Nabil Mahmoud Faried Elsayed

Dissertation presented as partial requirement for obtaining the Master’s degree in Information

Management/ Master’s degree in Statistics and Information Management , with a specialization in

Systems Management and Information Technologies.

Advisor :Prof. Vítor Manuel Pereira Duarte dos Santos

iii

ACKNOWLEDGEMENTS

First, I would like to thank Prof. Vitor Santos of the Information Management School at Nova

University.

He was always available to help whenever I faced any trouble or had a questions about my research.

He leaded me in the right the way whenever he thought I needed it.

Finally, I must express my very deep acknowledge to my parents, my husband, my sisters, my

brothers and my work friends for providing me with constant support and continuous

encouragement throughout my years of study and through the process of researching and writing

this thesis.

This achievement would not have been possible without them.

Thank you.

iv

PUBLICATIONS RESULTING FROM THIS DISSERTATION

Mahmoud, A.; Santos, V. (2021) Statistical Analysis for Revealing Defects in Software Projects:

Systematic Literature Review. The International Journal of Advanced Computer Science and

Applications – vol.12, pp.

v

ABSTRACT

Defect detection in software is the procedure to identify parts of software that may comprise

defects. Software companies always seek to improve the performance of software projects in terms

of quality and efficiency. They also seek to deliver the soft-ware projects without any defects to the

communities and just in time. The early revelation of defects in software projects is also tried to

avoid failure of those projects, save costs, team effort, and time. Therefore, these companies need to

build an intelligent model capable of detecting software defects accurately and efficiently.

This study seeks to achieve two main objectives. The first goal is to build a statistical model to

identify the critical defect factors that influence software projects. The second objective is to build a

statistical model to reveal defects early in software pro-jects as reasonable accurately. A bibliometric

map (VOSviewer) was used to find the relationships between the common terms in those domains.

The results of this study are divided into three parts:

In the first part The term "software engineering" is connected to "cluster," "regression," and "neural

network." Moreover, the terms "random forest" and "feature selection" are connected to "neural

network," "recall," and "software engineering," "cluster," "regression," and "fault prediction model"

and "software defect prediction" and "defect density."

 In the second part We have checked and analyzed 29 manuscripts in detail, summarized their major

contributions, and identified a few research gaps.

In the third part Finally, software companies try to find the critical factors that affect the detection of

software defects and find any of the intelligent or statistical methods that help to build a model

capable of detecting those defects with high accuracy.

Two statistical models (Multiple linear regression (MLR) and logistic regression (LR)) were used to

find the critical factors and through them to detect software defects accurately. MLR is executed by

using two methods which are critical defect factors (CDF) and premier list of software defect factors

(PLSDF). The accuracy of MLR-CDF and MLR-PLSDF is 82.3 and 79.9 respectively. The standard error

of MLR-CDF and MLR-PLSDF is 26% and 28% respectively. In addition, LR is executed by using two

methods which are CDF and PLSDF. The accuracy of LR-CDF and LR-PLSDF is 86.4 and 83.8

respectively. The standard error of LR-CDF and LR-PLSDF is 22% and 25% respectively. Therefore, LR-

CDF outperforms on all the proposed models and state-of-the-art methods in terms of accuracy and

standard error.

vi

KEYWORDS

Defects; Software projects; Statistical model; Linear regression; Logistic regression.

vii

INDEX

1. Introduction .. 1

2. Literature review .. 3

2.1. Background .. 3

2.1.1. Software Defects: ... 3

2.1.2. Regression Analysis: ... 4

2.2. Materials and Methods ... 5

2.2.1. Research Questions .. 5

2.2.2. Search Strategy ... 6

2.3. Results, Analysis, and Discussion... 11

2.3.1. Visualizing Analysis ... 12

2.3.2. Analysis Per Topic: .. 13

3. Methodology .. 22

4. Results and discussion .. 24

4.1. Multiple Linear Regression: ... 24

4.2. Logistic Regression: ... 27

5. Conclusions ... 32

5.1. Main Contribution ... 32

5.2. Limitations To The Current Work .. 32

5.3. Future Work... 32

Bibliography... 33

viii

LIST OF FIGURES

Fig 1- search query for scientific manuscripts to extract the best studies in software

defects ... 6

Fig 2- scientific steps for analyzing the proposed manuscripts “PRISMA flow chart” 7

Fig 3 - The relationships between the common terms using the bibliometric map 12

Fig 4 - A Proposed Statistical Model for Software Defects Prediction 23

Fig 5 - Flow chart of the proposed algorithm for MLR model……………………………………...25

Fig 6-The comparison between model of MLR-CDF and model of MLR-PLSDF

 to accuracy ……………………………………………………………………………………………………..…26

Fig 7 - The comparison between model of MLR-CDF and model of MLR-PLSDF

 to stander error ratio …………………………………………………………………………………..………27

Fig 8 - The comparison between model of LR-CDF and model of LR-PLSDF

 to accuracy …………………………………………………………………………………………….……………29

Fig 9 - The comparison between model of LR-CDF and model of LR-PLSDF to stander error

ratio ……29

Fig 10 - The accuracy comparison of all proposed statistical model 30

Fig 11 - The standard error ratio comparison of all proposed statistical model 30

Fig 12 - The comparison between the proposed model and state of the art methods…31

ix

LIST OF TABLES

Table 1- CHAOS Report by Agile Versus Waterfall .. 2

Table 2- Software Metrics of McCabe and Halstead to reveal software defects 3

Table 3 - Regression analysis studies to reveal Software Defects 8

Table 4 - Studies of Software Defects Prediction .. 9

Table 5 - Major factors in software defect projects…………………………………………………….14

Table 6 - Intelligent and statistical techniques in software defect project…………………..19

Table 7 - Sample of performance metrics rate in previous work………………………………...20

Table 8 - Majority of performance metrics used in software defect projects ….20

Table 9 - Summary of critical factors that affect software projects in MLR ………….……..26

Table 10 - Summary of critical factors that affect software projects in LR…………………..28

x

LIST OF ABBREVIATIONS

MLR: MULTIPLE LINEAR REGRESSION;

LR: LOGISTIC REGRESSION;

CDF: CRITICAL DEFECT FACTORS;

PLSDF: PREMIER LIST OF SOFTWARE DEFECT FACTORS;

PRISMA : PREFERRED REPORTING ITEMS FOR SYSTEMATIC REVIEWS;

OLS : ORDINARY LEAST SQUARES;

SE: STANDARD ERROR;

ARS: ADJUSTED-R-SQUARED;

PV: P-VALUE;

SD: SOFTWARE DEFECTS;

OOP: OBJECT-ORIENTED PROGRAMMING;

RQ: RESEARCH QUESTION;

MCC: MATHEWS CORRELATION COEFFICIENT;

RF: RANDOM FOREST;

SVM: SUPPORT VECTOR MACHINE;

NN: NEURAL NETWORK;

RS: R-SQUARED;

1

1. INTRODUCTION

Software companies aim to improve the quality of software projects in terms of their accuracy and

efficiency. Software companies consume from 50% to 75% of the total budget of software projects in

finding and fixing defects in those projects (Koroglu,2016). In the CHAOS report, many software

projects vary in size (small, medium, and large projects) and, therefore, cost. These projects use

many software development methods such as waterfall and agile. Several software projects failed

due to the development and testing phase, as shown in table 1. A standard software development

cycle has six phases, namely, planning, analysis, design, implementation, testing, and maintenance.

In the development phase, developers modify source code that may lead to many defects in a

software project. In modifications, developers should be careful not to produce any new defects in

these projects. The testing phase is crucial to soft-ware projects. It is responsible for delivering the

final project or product efficiently to customers without any defects and in time. Many factors, such

as McCabe and Halstead, help developers find and fix defects in those projects, as shown in table 2.

Nevertheless, there is difficulty in using these factors in medium and large-scale pro-jects. Thus,

developers need a statistical or intelligent model capable of predicting defects in software projects

accurately and efficiently.

Many reasons lead to the failure of software development projects. These are the lack of experience

of the project team, lack of knowledge of the code language, insufficient experience in the field, etc.

Software defects in the development phase are among the most critical problems facing software

companies because the many defects lead to those projects' failure. The avoidance of software

defects is to gain clients' trust by providing a quality product. According to the CHAOS report, many

software projects still fail because of the many reasons that have been mentioned earlier (Abdelaziz

Mohamed et al., 2017). However, the direct reason for these projects' failure is the emergence of

many software defects, as shown in Table 1 (Abdelaziz Mohamed et al., 2017).

Therefore, this study looks to realize two main objectives. The primary objective is to construct a

statistical model to distinguish the critical defect factors that impact software projects. The second

objective is to construct a statistical model to reveal defects early in software projects with sensitivity

and accuracy.

We made a compressive study about the relevant related work using PRISMA methodology. The

PRISMA explanation gives the minimum set of items for detailing a precise audit. It comprises the

four-phase flow diagram, which permits us to utilize the Clarification and Elaboration document to go

through cases and clarifications and find the meaning and method of reasoning for each item on the

checklist. For a clear under-standing of PRISMA, perusing the Clarification and Elaboration document

is unequivocally recommended. The PRISMA Stream Graph delineates the stream of data through the

diverse stages of a Precise Audit. It maps out the number of records recognized, included, and

prohibited and the reasons for avoidances.

The contribution of our study has 4 dimensions:

1. Create a bibliometric map to determine statistical or intelligent techniques that have been

adopted for revealing defects in software projects.

2

2. Create a bibliometric map to determine performance metrics that have been adopted in the

literature in the detection of software defects.

3. Build a statistical model to determine critical factors that influence on reveal defects in

software projects.

4. Build a statistical model for revealing defects in software projects with reasonable accuracy.

Table 1. CHAOS Report by Agile Versus Waterfall (Abdelaziz Mohamed et al., 2017)

The study is organized as follows. Section 2 presents the materials and methods, PRISMA, search

questions, and search strategy. Section 3 presents the results with an analysis, and discussion,

visualizing analysis and analysis per topic. Section 4 presents the methodology. Finally, in section 5, we

discuss the conclusion.

Size Method Successful Challenged Failed

All Size

Projects

Agile (Scrum) 39% 52% 9%

Waterfall 11% 60% 20%

Large Size Projects Agile (Scrum) 18% 29% 53%

Waterfall 3% 55% 42%

Medium Size

Projects

Agile (Scrum) 27% 62% 11%

Waterfall 7% 68% 25%

Small Size Projects Agile (Scrum) 58% 38% 4%

Waterfall 44% 45% 11%

3

2. LITERATURE REVIEW

2.1. BACKGROUND

2.1.1. Software Defects:

Software Defect is a defect, error or bug in the Software which has an adverse effect on the occurrence,

operation, implementation, or performance of the Software.

Many researchers such as Sirshar, M. (2019) and others (Sharma, D., & Chandra, P. (2019); Sukanya,

V. S., & Saraswathy, S. (2017)) have suggested many factors to detect software defects . However,

to date, there is no formal study to determine the critical factors to help software companies detect

software defects with a reasonable degree of accuracy. Most researchers such as Rathore, S. S., &

Kumar, S. (2015) and others also used scientific methods and models to detect software defects, but

these models were weak in accuracy and results. Thus, software companies need a formal study to

determine the critical factors to build a statistical model capable of detecting soft-ware defects with

high results and accuracy.

Table 2. Software Metrics of McCabe and Halstead to reveal software defects (Yousef, 2015)

Factor ID Factor Description

1 Loc McCabe’s line count of code

2 v(g) McCabe ‘‘cyclomatic complexity’’

3 eV(g) McCabe ‘‘essential complexity’’

4 Iv(g) McCabe ‘‘design complexity’’

5 N Halstead total operators + operands

6 V Halstead ‘‘volume’’

7 L Halstead ‘‘program length’’

8 D Halstead ‘‘difficulty’’

9 I Halstead ‘‘intelligence’’

10 E Halstead ‘‘effort’’: effort to write program

11 B Halstead ‘‘Number of Delivered Bugs’’

12 T Halstead’s time estimator: time to write
program

13 LOCode Halstead’s line count

14 LOComment Halstead’s count of lines of comments

15 LOBlank Halstead’s count of blank line

16 LOCodeAndComment Halstead’s count of lines which contain
both code and comments

17 uniq_Op Unique operators

18 uniq_Opnd Unique operands

19 total_Op Total operators

20 total_Opnd Total operands

21 branchCount Of the flow graph

22 defects Module has/has not one or more reported
defects

4

2.1.2. Regression Analysis:

This section is composed of two parts which are multiple linear regression and logistic regression, as

follows:

2.1.2.1. Multiple Linear Regression:

Multiple regression analysis consists of one dependent variable and many independent variables, but

it is persistent such as the reveal of a software defect, number of hours, and etc [(T. Pushpavathi, V.

Suma, and V. Ramaswamy,2014),(A. Mohamed, N. Darwish and H. Hefny,2017)]. In linear regression,

the dependent variable (status of software defect (True and False)) has an indefinite number of

potential values. The degree of independent variables is unpretentious. It utilizes the ordinary least

squares (OLS) approach to decrease errors and achieve the best potential fit. It utilizes the generic

linear equation, as follows (T. Hovorushchenko and A. Krasiy,2015):

Y= B0+∑ (BiXi) + ϵ (1)

Where

Y: dependent variable

Xi: independent variables.

B0 : intercept (the value of y when x = 0).

Bi: the slope of the line.

ϵ: terminology of the distinction that isn't explained by the model and it's called "error".

2.1.2.2. Logistic Regression:

Logistic regression is a compilation algorithm used to portend a definite variable (True or False)

based on a set of separate variables or to portend the probability of an entity pertinence to one class

or another class. Logistic regression algorithm uses one or more predictor variables that may be

continuous or definite to portend the entity classes. This method helps to identify important factors

(Xi) affecting the target variable (Y) and the quality of the relationship between each of these factors

and the dependent variable [5,18].

 Logistic regression offers decile such as standard error (SE), Adjusted-R-squared (ARS), and P-value

(PV). SE measures the precision that represents a sample division of the population by using norm

variation. ARS is used to show the impose of the logistic regression model. It calculates the rate of

the impact of separate variables on the dependent variable. PV is a statistical rate that shows how

each separate variable affects the dependent variable and is a number between (zero, one), a large

P-value (> 0.05) indicates weak evidence against the null supposition; as an outcome, the model

rejects the supposition (N. Darwish, A. Mohamed, and A. Abdelghany,2016),(T. Chow and D.

Cao,2008). The main equation of logistic regression (T. Chow and D. Cao,2008). as follows:

g(E(y)) = α + βx1 + γx2 (2)

5

Where,

g() is the link function,

E(y) is the expectation of target variable

α + βx1 + γx2 is the linear predictor (α,β,γ to be predicted).

2.2. MATERIALS AND METHODS

 The systematic literature survey presents an evaluation of the scientific community’s contributions

to the topic of revealing software defects by using a rigorous and auditable methodology based on

the PRISMA approach.

The PRISMA method is composed of five phases, as follows:

1. Identification of relevant manuscripts of the domain or domains.

2. Screening of titles, abstracts, papers without experiments, and position papers.

3. Eligibility analysis.

4. Full-text screening exclusion.

5. Final papers to be analyzed in detail.

 We also adopted a bibliometric map; the bibliometric map is used to find the relationships between

common software defects domain terms (Moral-Muñoz et al., 2020). To this end, we followed three

phases, evaluating the following quantities:

1. Words frequency.

2. Most common words.

3. Frequency of these common words in the final manuscripts of the study.

By following PRISMA (Moher,2009), this section is structured in the following way: (1) our research

questions, (2) followed paper search strategy, (3) bibliometric map, (4) inclusion and exclusion

criteria, and (5) final paper selection.

2.2.1. Research Questions

 Our study aims to provide a state-of-the-art review of current research efforts in revealing software

projects. We start by introducing the reader to specific topics con-cerning research objectives and

employed methods. Particularly, the survey addresses the following research questions, aiming to

identify the adoption techniques that have been applied in the overall domain of revealing software

defects:

RQ1: What kinds of metrics have been adopted in software defects (SD)?

6

RQ2: Which statistical or intelligent techniques have been adopted for SD?

RQ3: What performance metrics have been adopted in the literature in the prediction of SD?

2.2.2. Search Strategy

 A literature survey generally recommends searching several available journal and conference paper

repositories to determine if similar work has already been per-formed, aiding in locating potentially

relevant studies. The papers counted were searched in two electronic repositories, Scopus and Web

of Science. This study's covered topics were multidisciplinary, including, Software, Computer Science,

Engineering, Mathematics, Environmental Science, Telecommunications, and Multidisciplinary

Sciences. However, both repositories were used. The analysis showed that most of the publications

from Web of Science were in Scopus as well. A repeated search process was performed to identify

publications that have in their titles, abstracts, or keywords the following expressions: "software-

defects" (or software defects, or defect or projects defects), and "machine learning" in Figure 1.

Fig. 1 search query for scientific manuscripts to extract the best studies in software defects

(software-defects OR defect OR projects) AND (OR “data mining ”

OR forecasting OR “machine learning” OR “neural network" OR “clustering" OR “artificial
intelligence” OR “prediction” OR “predictive” OR “statistical” OR analysis”)

7

Fig. 2. scientific steps for analyzing the proposed manuscripts “PRISMA flow chart”

In phase 1, we applied the search string to all electronic repositories looking for papers published

between 2015 to 2019, which resulted in 627 publications.

In Phase 2, followed a 5-step approach. In step 1, we excluded manuscripts based on titles (e.g.,

software defects, regression, and machine learning), which narrowed the set to 211 publications. In

step 2, we excluded manuscripts based on abstracts screening, which resulted in 117 publications. In

the following step 3, we excluded manuscripts reporting research without experiments, resulting in

83 publications.

Subsequently, in step 4 of phase 2, we excluded position manuscripts which gave us the final figure

of 29 publications.

In phase 3, manuscripts underwent a full-text reading and review, which lead to no exclusions (the

result of phase 4).

As a result of our paper selection approach, the final list included 29 manuscripts (phase 5), analyzed

in detail in this paper. These were further divided into the following four categories, as shown in

tables 3 and 4.

8

1. Regression analysis studies to reveal Software Defects.

2. Studies of Software Defects Prediction.

Table 3. Regression analysis studies to reveal Software Defects

No Ref Application Dimensions Method of Solution and

Performance Metrics

1 S.N. Umar Software testing defect

prediction model-a practical

approach

Total number of test

cases executed, test

team size, allocated

development effort,

test case execution

effort, and the total

number of components

delivered

Multiple linear

regression. R square and

standard error

2 (Dhiauddin &

Ibrahim, 2012)

A Prediction Model for

System Testing Defects

using

Regression Analysis

Software complexity,

test process, errors, the

severity of the defect,

and validity of defect

Multiple linear

regression. Adjusted R

square

3 E. A. FELIX and et

al

Integrated Approach to

Software

Defect Prediction

Defect acceleration,

namely, the defect

density, defect velocity,

and defect introduction

time

Statistical analysis.

Adjusted R square and

correlation coefficient

4 D. VERMA and et

al

Prediction of defect density

for open source software

using

repository metrics

software size, number

of developers, commits,

and the total number of

defects

Multiple linear

regression. R square

5 D. Sharma and et

al

Identification of latent

variables using factor

analysis

and multiple linear

regression for software

fault prediction

Coupling between

object classes, depth of

inheritance tree, lack of

cohesion of methods,

and weighted methods

per class

Multiple linear

regression. R square and

Adjusted R square

6 O. Sari and et al Use of Logistic Regression

Analysis for Bug Prediction

Weighted method

count, depth of

inheritance tree, lack of

cohesion in methods,

number of attributes,

and number of methods

Logistic regression.

Standard error

9

7 G. MAUSA and et

al

Software Metrics as

Identifiers of Defect

Occurrence

Severity

Software size, number

of code lines, and the

total number of defects.

Correlation coefficients

and logistic regression.

Error rate

8 Peng H. and et al presented a model for

predicting defects in

software projects

Software size, number

of code lines, and the

total number of defects.

Logistic regression.

Standard error

9 M. Dhillon and et

al

An empirical model for fault

prediction on the basis

of regression analysis

Weighted method

count, depth of

inheritance tree, lack of

cohesion in methods,

number of attributes,

and number of methods

Logistic regression.

Precision, recall, and f1

measure

10 X. Chen and et al Multi-Objective Effort-

Aware Just-in-Time

Software Defect

Prediction

diffusion [Number of

modified subsystems],

size [line of codes],

history [The number of

unique changes to the

modified files], and

finally, experience

[Developer experience].

Logistic regression.

Accuracy

Table 4. Studies of Software Defects Prediction

No Ref Application Dimensions Method of Solution

and Performance

Metrics

1 A. H. Yousef Extracting software static

defect models using

data mining

McCabe and Halstead

metrics

Data mining

techniques.

Accuracy, Precision,

Recall, and F1 score

2 Karuna P and et al Statistical analysis of metrics

for

software quality

improvement

Violation of programming

standards, error in data

representation, error in

design logic, and assorted

error type

Statistical analysis.

Mean and standard

deviation

3 Sukanya. V and et

al

An enhanced evolutionary

model for software defect

prediction

McCabe and Halstead

metrics

Enhanced genetic

algorithm, genetic

algorithm, and

10

neural network.

Precision

4 Y. Koroglu and et

al

Defect prediction on a legacy

industrial software: a case

study on software with few

defects

Product and process

metrics

Data mining

techniques. AUC

5 L. KUMAR and et al An effective fault prediction

model developed using an

extreme learning machine

with various kernel methods

Complexity, coupling,

cohesion, and inheritance

in the code

Extreme learning

machine with

various kernel

methods (e.g.,

Linear kernel,

Polynomial kernel,

and Sigmoid kernel).

Accuracy

6 F. Zhang and et al Towards building a universal

defect prediction model

The weighted method

programming language,

issue tracking, total lines

of code, total number of

files, the total number of

commits, and the total

number of developers

K-mean clustering.

AUC

7 A. Marandi and et

al

An approach of statistical

methods for improving

software quality

Post-delivery rework

effort, actual effort, cost

of the appraisal, cost of

prevention, and cost of

failure

Statistical analysis.

Standard error

8 G. RajBahadur and

et al

The impact of using

regression models to build

defect classifiers

Object-oriented metrics Linear regression,

logistic regression,

random forest,

support vector

machine, and neural

network. AUC

9 S. Rathore and et

al

Predicting the number of

faults in a software system

using genetic programming

Total number of

modules, number of lines

of code, and number of

faulty modules

Genetic

programming.

Recall and error rate

10 M. Sirshar and et

al

Comparative Analysis of

Software Defect Prediction

Product and process

metrics

Neural Network,

Naive Bayes, Deep

11

Techniques Forest technique.

Error rate

11 M. Rawat and et al Software defect prediction

models for quality

improvement:

a literature study

Object-oriented code,

product, and process

metrics

Regression models.

Accuracy

12 S. Feng and et al Complexity-based

Oversampling Technique to

alleviate the class

imbalance problem in

software defect prediction

Line of code, number of

children, and weighted

method per class

Complexity-based

Oversampling. Error

rate

13 S. Patil and et al Predicting software defect

type using concept-based

classification

Interface, syntax, and

standard [build-config-

install]

Concept-based

Classification. F1

score

14 J. Jiarpakdee and

et al

The impact of automated

feature selection techniques

on the interpretation of

defect models

inconsistent

and correlated

Automated

Spearman

correlation. Error

rate

15 A. Bangash and et

al

On the time-based

conclusion stability of cross-

project

defect prediction models

Time, types of the

projects, software

development

process

Mathews

Correlation

Coefficient. F-score

16 S. Morasca and et

al

On the assessment of

software defect prediction

models via ROC curves

Lines of code and

complexity

Receiver Operating

Characteristic. Error

rate

2.3. RESULTS, ANALYSIS, AND DISCUSSION

This section introduces two main parts, which are bibliometric analysis and analyzing previous works

in detail. The first part shows the relationships between common terms in intelligence, statistical

techniques, and performance metrics used in the previous study. The second part seeks to find the

scientific gap between proposed manuscripts in this study to build a novel model to overcome the

issues for revealing defects in software projects.

12

2.3.1. Visualizing Analysis

We used VOS viewer ("VOS viewer," n.d.), a Visualizing bibliometric network, to find common

terminology in two areas: software defects and statistical techniques, across the 29 manuscripts under

analysis. This tool supported our study, with visual information enabling us to explore the relations

between the domains of software defects and statistical techniques. Moreover, it helped us find the

most common dimensions, clustering, and variety techniques able to answer our research questions.

Figure 3 represents the visualization of a network map that displays the relations between the most

popular terminology, how it is linked. The larger node represents the popular terminology in

manuscripts, and the size of it represents the number of times these words appeared in manuscripts.

VOS viewer splits the terminology into clusters according to the relevance concerning each other.

Fig. 3. The relationships between the common terms using the bibliometric map.

We performed the analysis on the title and abstract using a binary counting method of 759 examined

keywords with a minimum threshold of 2 occurrences, resulting in 57 terminologies, as shown in the

figure. The largest nodes representing the important nodes of each cluster in the network map are

determined as" Regression" (red), "cluster" (yellow), "software engineering" (green), "neural network"

(blue), and finally "software defect prediction" (purple)

13

Looking closer at the network map in figure1, we can see that the 5 clusters are connected between

them; for instance, the "regression" term is connected to "fault prediction model" in the same red

cluster, it connected to "cluster" and "accuracy" in the yellow cluster, it is also connected to "software

engineering" and "recall" in the green cluster. Finally, it is also connected to "neural network" and

"feature selection" in the blue cluster; it is also connected to "software defect prediction "and "defect

density." Besides, the term "software engineering" in the green cluster is connected to "cluster" in the

yellow cluster, "regression" in the red cluster, and "neural network" in the blue cluster. Moreover, the

terms "random forest" and "feature selection" are connected to "neural network" in the blue cluster,

"recall" and "software engineering" in the green cluster, "cluster" in yellow cluster, "regression" and

"fault prediction model" in the red cluster and "software defect prediction" and "defect density" in the

purple cluster.

Finally, by analyzing the network map in figure1, we can identify the important terms in each cluster,

as follows:

• In the red cluster: "regression" and "software prediction model."

• In the yellow cluster: "cluster" and "accuracy."

• In the green cluster: "recall" and "software engineering."

• In the blue cluster: "random forest", "feature selection" and "neural network"

• In the purple cluster: "software defect prediction" and "defect density."

2.3.2. Analysis Per Topic:

RQ1 drove to look for metrics, data sources, and critical factors able to reveal software defects. Our

review of papers S1 to S26 allowed us to extract such critical factors. Dimensions such as software

status [No. of defects], OOP [Depth of Inheritance Tree and No. of Methods], McCabe Metrics [Line

Count of Code], and Halstead Metrics [Effort to Write Program and Time to Write Program] seem to

be highly considered when studying the revealing of software defects in software companies. Table 5

shows the variety of metrics used in predicting defects in software projects. The studies of S1, S4, and

S16 relied on team dimension (team size and the number of developers) to predict software defects

in software projects. The studies of S2, S3, S4, S7, S8, S12, S15, and S26 relied on software status

dimensions (software complexity, number of defects, and software size) to detect defects in those

projects. Moreover, the studies of S5, S6, S9, S15, S16, S18, and S21 relied on the OOP dimension

(coupling between object classes, depth of inheritance tree, number of methods) also to reveal defects

in those projects. Also, the studies of S7, S8, S10, S11, S13, S16, S19, S22, and S26 relied on McCabe

metrics (line count of code, cyclomatic complexity, essential complexity, and design complexity) to find

the optimal intelligent techniques to predict defects in software projects. Finally, the studies of S1, S3,

S11, S13, S16, S17, S25 relied on Halstead Metrics (total operators + operands, effort to write the

program, number of delivered bugs, count of lines of comments, and time to write a program) to

forecast defects in various software projects. We observed that four factors are the most used in

predicting defects in software projects. These are the number of defects, depth of inheritance tree,

number of methods, and line count of code.

14

Table 5. Major factors in software defect projects
Dimensions

 Team Software status OOP McCabe Metrics Halstead Metrics Other
Factors

Si
ze

N
o

. D
ev

el
o

p
er

s

so
ft

w
ar

e
co

m
p

le
xi

ty

N
o

. o
f

D
ef

e
ct

s

So
ft

w
ar

e
Si

ze

C
o

u
p

lin
g

b
et

w
ee

n
 O

b
je

ct
 c

la
ss

es

D
ep

th
 o

f
In

h
e

ri
ta

n
ce

 T
re

e

N
o

. o
f

M
et

h
o

d
s

Li
n

e
C

o
u

n
t

o
f

C
o

d
e

C
yc

lo
m

at
ic

 C
o

m
p

le
xi

ty

Es
se

n
ti

al
 C

o
m

p
le

xi
ty

D
es

ig
n

 C
o

m
p

le
xi

ty

To
ta

l O
p

er
at

o
rs

 +
 O

p
e

ra
n

d
s

Th
e

ef
fo

rt
 t

o
 W

ri
te

 P
ro

gr
am

N
u

m
b

er
 o

f
D

el
iv

er
ed

 B
u

gs

C
o

u
n

t
o

f
Li

n
es

 o
f

C
o

m
m

en
ts

Ti
m

e
to

 W
ri

te
 P

ro
gr

am

S
.N

.
U

m
a

r

[9
]

S
1

Software

testing defect

prediction

model-a

practical

✓ - - - - - - - - - - - - ✓ ✓ - - ✓

M
.D

.
S

u
ff

ia
n

a
n

d
 e

t
a
l

S
2

[1
0

]

A Prediction
Model for

System

Testing
Defects using

Regression

Analysis

- - ✓ ✓ - - - - - - - - - - - - - ✓

E
.

A
.
F

E
L

IX

a
n

d
 e

t
a
l.

 S
3

[1
1

]

Integrated

Approach to

Software
Defect

Prediction

- - - ✓ - - - - - - - - - - - - ✓ ✓

D
.

V
E

R
M

A
 a

n
d

e
t

a
l.

 S
4

 [
1

2
]

Prediction of

defect density
for open

source

software
using

repository

metrics

- ✓ - ✓ ✓ - - - - - - - - - - - - -

D
.

S
h

a
rm

a
 a

n
d

 e
t

a
l.

 S
5

[1
3

]

Identification
of latent

variables

using factor
analysis and

multiple
linear

regression for

software fault
prediction

- - - - - ✓ ✓ ✓ - - - - - - - - - ✓

O
.

S
a
r
i

a
n

d

e
t

a
l.

 S
6

 [
1

4
] Use of

Logistic

Regression

Analysis for

Bug

Prediction

- - - - - - ✓ ✓ - - - - - - - - - -

G
.

M
A

U
S

A

a
n

d
 e

t
a
l.

 S
7

[1
5

]

Software

Metrics as
Identifiers of

Defect

Occurrence
Severity

- - - ✓ ✓ - - - ✓ - - - - - - - - -

P
e
n

g
 H

.
a

n
d

e
t

a
l.

 s
8

 [

1
6

] presented a
model for

predicting

defects in
software

projects

- - - ✓ ✓ - - - ✓ - - - - - - - - -

15

M
.

D
h

il
lo

n
 a

n
d

e
t

a
l

s9
 [

1
7

]

An empirical

model for

fault

prediction on
the basis

of regression

analysis

- - - - - - ✓ ✓ - - - - - - - - - ✓

X
.

C
h

e
n

 a
n

d
 e

t

a
l.

 s
1

0
 [

1
7

]

An empirical

model for

fault
prediction on

the basis

of regression
analysis

- - - - - - - - ✓ - - - - - - - - ✓

A
.

H
.

Y
o

u
se

f

s1
1
 [

7
]

Extracting

software

static defect
models using

data mining

- - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

K
a

r
u

n
a

 P

a
n

d
 e

t
a
l.

 s
1
2

[1
8

]

Statistical

analysis of
metrics for

software

quality
improvement

- - - ✓ - - - - - - - - - - - - - ✓

S
u

k
a

n
y
a

.V

a
n

d
 e

t
a
l

s1
3

[8
]

An enhanced
evolutionary

model for

software
defect

prediction

- - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -

Y
.

K
o
r
o
g
lu

 a
n

d
 e

t

a
l

s1
4

 [
1

9
]

Defect

prediction on

a legacy
industrial

software: a

case study on
software with

few defects

- - - - - - - - - - - - - - - - - ✓

L
.

K
U

M
A

R
 a

n
d

 e
t

a
l.

 s
1
5

[2
0

]

An effective
fault

prediction

model
developed

using an

extreme
learning

machine with

various
kernel

methods

- - ✓ - - ✓ ✓ - - - - - - - - - - -

F
.

Z
h

a
n

g

a
n

d
 e

t
a
l.

 s
1
6

[2
1

]

Towards
building a

universal

defect
prediction

model

- ✓ - - - - - ✓ ✓ - - - - - - ✓ - -

A
.

M
a
r
a

n
d

i

a
n

d
 e

t
a
l

s1
7

[2
2

]

An approach

of statistical

methods for
improving

software

quality

- - - - - - - - - - - - - ✓ - - - ✓

G
.

R
a

jB
a

h
a

d
u

r

a
n

d
 e

t
a
l

s1
8

[2
3

]

The impact of

using
regression

models to

build defect
classifiers

- - - - - ✓ ✓ ✓ - - - - - - - - - -

16

S
.

R
a

th
o
r
e

a
n

d

e
t

a
l.

 s
1
9

 [
2

4
] Predicting the

number of

faults in a

software
system using

genetic

programming

- - - - - - - - ✓ - - - - - - - - -

M
.

S
ir

sh
a
r

a
n

d
 e

t
a
l.

 s
2
0

[2
5

]

Comparative

Analysis of

Software
Defect

Prediction

Techniques

- - - - - - - - - - - - - - - - - ✓

M
.

R
a

w
a

t
a

n
d

 e
t

a
l.

 s
2

1
 [

2
6

] Software

defect
prediction

models for

quality
improvement:

a literature

study

- - - - - ✓ ✓ ✓ - - - - - - - - - ✓

S
.

F
e
n

g
 a

n
d

 e
t

a
l.

s2
2

Software

defect

prediction
models for

quality

improvement:
a literature

study

- - - - - - - - ✓ - - - - - - - - ✓

S
.

P
a

ti
l

a
n

d
 e

t
a

l.

s2
3

Software

defect
prediction

models for

quality
improvement:

a literature

study

- - - - - - - - - - - - - - - - - ✓

J
.
J

ia
r
p

a
k

d
ee

 a
n

d

e
t

a
l

s2
4

Software

defect

prediction
models for

quality

improvement:
a literature

study

- - - - - - - - - - - - - - - - - ✓

A
.

B
a

n
g
a

sh
 a

n
d

 e
t

a
l.

 s
2

5

Software
defect

prediction

models for
quality

improvement:

a literature
study

- - - - - - - - - - - - - - - - ✓ ✓

S
.

M
o
r
a

sc
a

 a
n

d
 e

t

a
l

s2
6

Software

defect

prediction
models for

quality

improvement:
a literature

study

- - ✓ - - - - - ✓ - - - - - - - - -

17

While addressing RQ2, we examined the techniques applicable in predicting defects in software

projects. With this goal, we analyzed manuscripts S1 to S26 and noticed that techniques such as

multiple linear regression, logistic regression, and machine learning are the most adopted, as shown

in table 6. Moreover, multiple linear regression was adopted by 23% of the analyzed manuscripts,

whereas statistical analysis and data mining were the choices in 27% of manuscripts. Logistic

regression accounted for 27% of the revised manuscripts. Also, machine learning techniques

accounted for 19% of the revised manuscripts. Finally, the remaining 4% corresponded to the other

intelligent techniques. We noticed four points.

 Firstly, the studies (S1, S2, S4, S5, and S21) relied on multiple linear regression where S1 presented a

model to predict defects in software projects to enhance the quality of software testing. This study

seeks to find a suitable model to predict software defects to save effort, costs, and software

companies' time. The results of this study show that R square and standard errors are 0.91 and

5.90%, respectively. S2 presented a model for predicting defects in software projects to improve the

testing process in those projects. Besides, the adjusted R square in multiple linear regression is 90%.

S4 presented a framework to predict defect density in open-source software projects. The results of

this study show that the R square in multiple linear regression is 0.86. S5 presented a model to

predict faults in software projects. Furthermore, the results of this study show that R square and

adjusted R square are 83% and 80%, respectively. S21 presented a review study to detect defects in a

software project. It also seeks to find an optimal model to detect defects efficiently to save costs and

time. Also, this study confirmed that regression models have achieved high results in terms of

accuracy in detecting defects of software projects.

Secondly, the studies (S6, S7, S8, S9, and S10) relied on logistic regression, where S6 presented an

approach to improve the quality of software projects by detecting bugs in software projects

efficiently. Also, the standard error in the proposed statistical technique is 0.24. S7 presented a study

to detect defects in software projects in the early-stage to save effort, money, and time. This study

also depends on statistical techniques such as correlation coefficients and logistic regression. The

results show that the accuracy in logistic regression is 91.2%, and the correlation coefficient is 0.95.

S8 presented a model for predicting defects in software projects. The result of this study shows that

the standard error in logistic regression is 0.19. S9 presented an empirical model to predict fault in

software projects. This study also depends on the binary logistic regression technique to predict

defects in software projects. The results also show that the precision, recall, and f1 measures are

0.65, 0.9, and 0.79. S10 presented a study to predict software defects by using logistic regression just

in time. The results of this study show that the proposed technique is better than the state-of-the-art

methods in terms of accuracy. The accuracy of the proposed technique is 0.73.

Thirdly, the studies (S3, S11, S12, S14, S17, S24, S25) relied on statistical analysis and data mining

techniques where S3 presented an approach to forecasting defects in software projects. It also

depends on statistical regression such as multiple linear regression to predict defects in those

projects. Besides, the adjusted R square in statistical regression is 98.6%, and the correlation

coefficient is 0.98. S11 presented a model to extract software static defects by using data mining

techniques. The results of this study show that the accuracy in Association Rules, Decision Tree,

Naive Bayes, and Neural Network is 77.2%, 76.6%, 73.2%, and 73.2%, respectively. Thus, Association

Rules is better than Decision Tree, Naive Bayes, and Neural Network in terms of accuracy. S12

presented a study to improve the quality of software projects using statistical analysis. The results of

18

this study were evaluated in terms of projection of errors (total errors) and cumulative projection of

severity errors (e.g., series, moderate and minor). It also shows that total errors in 2016 are more

than in 2015 by 1.5%.

Moreover, most severity errors are minor types. S14 presented a study to predict defects in legacy

industrial software using data mining techniques. The results of this study show that the area under

the curve (AUC) in Random Forest, Logistic Regression, Decision Tree, Naive Bayes, and a

combination of Random Forest + Logistic regression is 0.73, 0.72, 0.66, 0.67, and 0.75. Thus, a

combination of Random Forest + Logistic regression is better than Random Forest, Logistic

Regression, Decision Tree, Naive Bayes. S17 presented an approach to improve software quality and

cost minimization using statistical analysis. The results of this study were evaluated in terms of

standard error. The standard error in the statistical model is 0.13. S24 presented a study to evaluate

the impact of automated feature selection techniques on the interpretation of defect models. This

study investigated 12 automated feature selection techniques in terms of consistency, correlation,

performance, computational cost. By analyzing 14 publicly-available defect datasets, the results

showed that the most important inconsistent metrics are highly correlated with the automated

Spearman correlation of 0.85–1. S25 presented a study to predict defects in software models. This

study applied the Mathews Correlation Coefficient-MCC to avoid defects in software models. MCC in

F-score is less than 0.01. Therefore, the proposed technique is better than the state-of-the-art

methods in terms of MCC.

Fourthly, the studies (S13, S15, S16, S18, S20) relied on machine learning techniques where S13

presented a model to predict software defects by using an enhanced genetic algorithm. The results

of this study were evaluated in terms of precision. It also confirmed that precision in enhanced

genetic algorithm, genetic algorithm, and neural network is 0.93, 0.81, and 0.80, respectively. Thus,

the enhanced genetic algorithm is better than the genetic algorithm and neural network. S15

presented a model to predict effective faults in software projects using extreme learning machines

with various kernel methods (e.g., Linear kernel, Polynomial kernel, and Sigmoid kernel). The results

of this study were evaluated in terms of accuracy metrics. The accuracy in the linear kernel,

Polynomial kernel, and Sigmoid kernel is 0.88, 0.93, and 0.91. Thus, an extreme learning machine

using the Polynomial kernel is better than linear kernel and Sigmoid kernel. S16 presented a model to

predict universal defects in software projects using clustering techniques. The results of this study

were evaluated in terms of AUC. The AUC in K-mean clustering is 0.76. S18 presented a model to

detect defects in a software project. This study depends on object-oriented metrics. It also relies on

many intelligent techniques such as linear regression (LR), logistic regression (LG), random forest

(RF), support vector machine (SVM), and neural network (NN). The results of this study were

evaluated in terms of AUC. The AUC in LR, LG, RF, SVM and NN is 0.86, 0.94, 0.91, 0.90 and 0.90.

Thus, LG is better than LR, RF, SVM, and NN. S20 presented a review analysis to predict defects in a

software project. This study depends on many metrics, such as product and process metrics. It also

introduced a comparative analysis between Neural Network, Naive Bayes, Deep Forest technique.

This study relies on previous works in the analysis of these techniques. Besides, this study confirmed

that Deep Forest is better than Neural Network, Naive Bayes in terms of error rate.

Fifthly, the studies (S19, S22, S23, and S26) relied on other intelligent and statistical techniques

where S19 presented an approach to predict many faults in a software system by using a genetic

algorithm. The results of this study were evaluated in terms of error rate and recall. The error rate

19

and recall in the genetic algorithm are 0.11, 0.91, respectively. S22 presented a new technique in

software defect prediction by Complexity-based Oversampling. This paper relied on three main

factors: a line of code, number of children, and weighted method per class. By analyzing the results,

the proposed technique is better than the other oversampling techniques under the statistical

Wilcoxon rank-sum test and Cliff's effect size. S23 presented a framework to predict software defect

type using concept-based classification. This paper's main objective is to minimize the labeled

training data's dependence for automation of the software defect type classification task. The results

show that the proposed framework outperforms the state-of-the-art semi-supervised [LeDEx] in

terms of the F1 score. F1 score in the proposed framework and LeDEx is 63.16% and 62.30%,

respectively. S26 presented a study to assess the software prediction model by using Receiver

Operating Characteristic. The results showed that the proposed technique is better than all other

state-of-the-art methods in terms of recall and accuracy by 0.4 and 0.8, respectively.

Table 6. Intelligent and statistical techniques in software defect project

NO Multiple
Linear

Regression

Logistic
Regression

Statistical
Analysis

Data
Mining

Machine
Learning

Other

S1 ✓ - - - - -

S2 ✓ - - - - -

S3 - - ✓ - - -

S4 ✓ - - - - -

S5 ✓ - - - - -

S6 - ✓ - - - -

S7 - ✓ - - - ✓
S8 - ✓ - - - -

S9 - ✓ - - - -

S10 - ✓ - - - -

S11 - - - ✓ - -

S12 - - ✓ - - -

S13 - - - - ✓ ✓
S14 - - - ✓ - -

S15 - - - - ✓ ✓
S16 - - - - ✓ -

S17 - - ✓ - - -

S18 ✓ ✓ - - ✓ -

S19 - - - - - ✓
S20 - - - - ✓ -

S21 ✓ ✓ - - - -

S22 - - - - - ✓
S23 - - - - - ✓
S24 - - ✓ - - -

S25 - - ✓ - - -

S26 - - - - - ✓

20

The literature study also analyzed the performance evaluation metrics in the scope of our RQ3.

Results are shown in table 7 and table 8. 21% of the selected manuscripts (S10,11,15, 9, 13, and 21)

adopted accuracy and precision. 21% of them (S9, 11, 19, 23, and 25) selected only recall and F1

score. The error rate was used by 30% of the analyzed manuscripts (S1, 6, 7, 8, 17, 19, 20, 22, 24, and

26). 15% of the manuscripts adopted the R Square measure (S1, 2, 3, 4, and 5). We also realized that

13% (S12 S14, S16, and S18) did not use any defined evaluation metric.

Table. 7. Sample of performance metrics rate in previous work

 Performance Metrics Rate

1 Accuracy and precision 21%

2 Recall and F1 Score 21%

3 Error Rate 30%

4 R Square Measure 15%

5 Other 13%

Table 8. Majority of performance metrics used in software defect projects

NO Accuracy Precision Recall F1 score Error

Rate

R-

Square

Other

S1 - - - - ✓ ✓ -

S2 - - - - - ✓ -

S3 - - - - - ✓ -

S4 - - - - - ✓ -

S5 - - - - - ✓ -

S6 - - - - ✓ - -

S7 - - - - ✓ - -

S8 - - - - ✓ - -

S9 - ✓ ✓ ✓ - - -

S10 ✓ - - - - - -

S11 ✓ ✓ ✓ ✓ - - -

S12 - - - - - - ✓

21

S13 - ✓ - - - - -

S14 - - - - - - ✓

S15 ✓ - - - - -

S16 - - - - - - ✓

S17 - - - - ✓ -

S18 - - - - - - ✓

S19 - - ✓ - ✓ - -

S20 - - - - ✓ - -

S21 ✓ - - - - - -

S22 - - - - ✓ - -

S23 - - - ✓ - - -

S24 - - - - ✓ - -

S25 - - - ✓ - - -

S26 - - - - ✓ - -

Our research helped us to determine several research gaps. We only identified a few manuscripts

(S11 and S13) tackling specific metrics impacting defects in software projects. For example, some

studies (S5, S6, S9, S18, and S21) are concentrated on the OOP metric in general, with no mention of

the line count of code and the number of developers. There are only simple manuscripts (S14, S20,

S23, and S24) regarding finding defects in all types of software projects (small, medium, and large

projects). However, stakeholders in software companies seem to find this topic pertinent and are

willing not only to enhance software efficiency in those projects but interested to predict early

defects in software projects to save costs and money. The results of this survey also showed a

significant gap in the field of "intelligent and statistical models," particularly relating to the automatic

prediction of defects in software projects. Some of the most promising algorithms are not yet being

utilized. Only a few studies (S18 and S21) tackle the application of "hybrid statistical and intelligent

techniques, for instance, logistic regression with multiple linear regression and regression analysis

with deep learning," which is a promising technique for forecasting defects in software projects.

Moreover, there is a lack of official studies to identify critical factors that influence defects in

software projects.

22

3. METHODOLOGY

Proposal of a new proposed model based on a statistical model able to predict defects in software

projects. This section presents an approach for a statistical model able to predict defects in software

projects. The proposed model has been used in several scientific data science researches like is the

case of (Yousef, A. H. ,2015). As shown in Figure 4, the detailed the proposed model will cover the

following phases:

1. State-of-the-art analysis: Review the literature to extract important metrics, data sources,

mathematical and computational approaches used for predicting defects of software

projects.

2. Data collection: data is collected from the NASA data sets online. We have two reasons to

select the NASA Data set. The first reason is it is too hard to collect huge data from software

companies to reveal the defects in software projects. The second reason for selecting Nasa is

based on its vast and high-quality data. It explains the static measures and other variables

that are used to detect static defects in software projects. It also shows a binary variable

indicating whether the module is defective or not.

3. Data Analysis and Pre-Processing: Analyze the data in detail and, if necessary, transform it to

expose its information content better. Different mathematical techniques may be used,

namely, outlier removal, discretization, reduction of the number of variables, and/or

dimensionality (adopting regression models).

4. Feature selection: determine critical metrics and detect defects that will be adopted in the

proposed IST study by using logistic regression and multiple linear regression. Create a

mapping between logistic regression and multiple linear regression to determine the final list

of critical metrics capable of predicting defects in software projects.

5. Build a model: present a statistical model capable of predicting defects in software projects

using multiple linear regression and logistic regression.

6. Training and verification model: train the model with data set and verify its ability to predict

defects in software projects.

7. Also, we will present a comparison between logistic regression and multiple linear regression

by using the final list of critical metrics to determine which one is better than the other in

terms of accuracy, precision, recall, F1 measure, and error rate.

Following this holistic approach, we built a methodology composed of five phases, as shown in figure

4.

23

 Fig 4. A Proposed Statistical Model for Software Defects Prediction

24

4. RESULTS AND DISCUSSION

4.1. MULTIPLE LINEAR REGRESSION:

In our trial to detect which features can impact positively the defeat of software projects. This trial is

used multiple Linear regression analysis, where the relationship between multiple independent

variables (factors in software projects) and the dependent variable (grade of impacting the factors in

software projects) is specific. Based on the Eq. (3), the multiple Linear regression analysis can be

specified as follows:

Y = β0 + β1x1 + β2x2 + …. + β11x11 + ε (3)

Where:

Y: is degree of effect the defeat factors in software projects

β0: is the y-intercept

βi: is the regression coefficient

Xi: critical failure factors

ε: the random error term

The applied model has been executed by a set of steps. To begin with, the proposed data is split into

dependent and independent variables (refer to Table 2). Furthermore, it consists of seventy percent

training and thirty percent testing data. The ordinary least squares (OLS) is used to verify the

proposed model that assumes a robust linear relationship between the dependent and the

independent variables. After that, L2 Regularization is used to upgrade the quality of the proposed

model.

This part introduces a flow chart for determining the critical factors that impact software projects by

MLR and LR analysis. Fig. 5 shows the flow chart for the proposed model. MLR and LR analysis

introduced regression statistics like standard error (SE), R-squared (RS), adjusted R-squared (ARS),

and P-value (PV). SE shows a first handle on how fully the provided equation is suitable for the

sample data. It is critical to the units of the stander of the dependent variable. RS shows the

explanatory impose of the regression model. ARS is an updated version of RS that has been modified

for the set of predictors in the model. It raises only if the relative terms promote the model more

than would be expected. It is minimized when a predictor promotes the model by less than expected.

It is always lower than the RS.ARS of MLR and LR is 0.78. PV helps to set the importance of the

statistical results. It is a number between 0 and 1 and is explained in the following method: a small

PV (typically ≤ 0.05) indicates a powerful proof versus the null supposition. The null supposition is

rejected from the statistical results.

25

Fig.5 Flow chart of the proposed algorithm for MLR and LR model

26

Table 9. Summary of critical factors that affect software projects in MLR

No Factor ID P-Value

1 loc ✓ 0

2 v(g) ✓ 0

3 ev(g) X 0.4341

4 iv X 0.0537

5 n ✓ 0

6 v X 0.4804

7 l X 0.2107

8 d ✓ 0.0002

9 i ✓ 0.0075

10 e X 0.9454

11 b X 0.7833

12 t X 0.9454

13 IOCode ✓ 0

14 IOComment ✓ 0.0461

15 IOBlank X 0.0809

16 locCodeAndComment X 0.0667

17 Column1op ✓ 0

18 Column2opnd X 0.2169

19 Column1totalopnd ✓ 0.0001

20 Column1totalop ✓ 0.0003

21 Column1branch ✓ 0

The model based on critical defect factors (CDF) based on the model-based premier list of software

defect factors (PLSDF) to the accuracy and standard error ratio, as shown below in Figs. 6 and 7.

Fig 6. The comparison between model of MLR-CDF and model of MLR-PLSDF to accuracy

78.50%

79.00%

79.50%

80.00%

80.50%

81.00%

81.50%

82.00%

82.50%

MLR-CDF MLR-PLSDF

Accuracy

Accuracy

27

Fig 7. The comparison between model of MLR-CDF and model of MLR-PLSDF to stander error ratio

4.2. LOGISTIC REGRESSION:

In our trial to show the experimental results of our proposed approach. The approach is executed using

a different technique, which is logistic regression. A group of pre-processing steps does the proposed

model. First, the dataset attributes are split into defect factors in software projects as separate

variables and the degree of effecting defect factors in software projects which will be as the dependent

variable. Second, the dataset also is split into 80% training data and also 20% testing data. Third, the

dependent variable was changed from categorical values (False, True) to binary values (0:1). Fourth,

the independent variables were run between 0 and 1. assume that Xmin and Xmax are the minima and

maximum values of an attribute X, as shown in Eq. (5).

 Xnew =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥𝑋𝑚𝑖𝑛
 Eq (5)

We used logistic regression to define critical defect factors that impact software projects. Two

methods do it. The first method relies on the critical defect factors (LR-CDF) of software projects. The

second model relies on the premier list of software defect factors (LR-PLSDF). In the PLSDF method,

the relationship between independent variables (premier list of software defect factors) and the

dependent variable (degree of effecting defect factors in software projects) is fixed, as shown in Eq.

(6). The logistic regression of PLSDF can be identified as follows:

P =
1

1+𝑒−(β0 + β1x1 + β2x2 + …..+ β13x13)
 Eq (6)

25%

26%

26%

27%

27%

28%

28%

MLR-CDF MLR-PLSDF

Standard Error
Ratio

Standard Error
Ratio

28

Where:

• P = degree of effecting defect factors in software projects

• β0 = P-intercept

• βi = regression coefficient

• Xi = LR-CDF

Table 10 present the statistical results of the PLSDF method. It includes two significant results

(Adjusted R squared and P-value). ARS is - 0.82. The PV shows the significant separate features that

affect detect defects in software projects. If P-value>0.05, the degree is not significant statistically.

For example, the P-value for (v(g)=0.5970) is greater than 0.05; thus, this feature should refuse.

therefore, those features with a value level (P-Value<0.05) would be known as elects for being

important features affecting defect factors selection.

Table 10. Summary of critical factors that affect software projects in LR

No Factor ID P-Value

1 loc ✓ 0.0000

2 v(g) X 0.5970

3 ev(g) ✓ 0.0267

4 iv ✓ 0.0447

5 n X 0.1740

6 v X 0.6973

7 l ✓ 0.0003

8 d ✓ 0.0072

9 i ✓ 0.0084

10 e X 0.9994

11 b X 0.7338

12 t X 0.9995

13 IOCode ✓ 0.0001

14 IOComment ✓ 0.0047

15 IOBlank ✓ 0.0111

16 locCodeAndComment X 0.0747

17 Column1op ✓ 0.0032

18 Column2opnd ✓ 0.0000

19 Column1totalopnd ✓ 0.0016

20 Column1totalop ✓ 0.0437

21 Column1branch X 0.1599

29

Fig 8. The comparison between model of LR-CDF and model of LR-PLSDF to accuracy

Fig 9. The comparison between model of LR-CDF and model of LR-PLSDF to stander error ratio

In this part we do comparison between the accuracy and stander error ratio in multilinear regression

and logistic regression to extract the best result, as show in figure 10,11, which shows that the best

result extracts from (LR-CDF).

82.50%

83.00%

83.50%

84.00%

84.50%

85.00%

85.50%

86.00%

86.50%

LR-CDF LR-PLSDF

Accuracy

Accuracy

21%

21%

22%

22%

23%

23%

24%

24%

25%

25%

LR-CDF MLR-PLSDF

Standard Error
Ratio

Standard Error
Ratio

30

Fig.10 The accuracy comparison of all proposed statistical model

Fig.11 The standard error ratio comparison of all proposed statistical model

76.00%

77.00%

78.00%

79.00%

80.00%

81.00%

82.00%

83.00%

84.00%

85.00%

86.00%

87.00%

MLR-CDF MLR-PLSDF LR-CDF LR-PLSDF

Accuracy

Accuracy

0%

5%

10%

15%

20%

25%

30%

MLR-CDF MLR-PLSDF LR-CDF LR-PLSDF

Standard Error
Ratio

Standard Error
Ratio

31

The LR-CDF model outperforms the state-of-the-art methods in previous works of accuracy, as shown

in figure 12.

Fig12. The comparison between the proposed model and state of the art methods

The LR-CDF model outperforms the intelligent techniques (Association rule, Decision tree, Naive

Bayes, and neural network) in Ahmed H. Yousef's study in terms of accuracy by 9.1%, 10.3%, 13.1%,

and 13.1% respectively.

66.00%

68.00%

70.00%

72.00%

74.00%

76.00%

78.00%

80.00%

82.00%

84.00%

86.00%

88.00%

Association rules Decision tree Naı¨ve Bayes Neural network Proposed Model
(LR-CDF)

32

5. CONCLUSIONS

5.1. MAIN CONTRIBUTION

This paper presented a systematic review on the topic of revealing defects in software projects,

concentrating on finding replies to our research questions, a diplomatic map was used to find the most

used terminology in the statistical technique’s software projects domains. By following a Prisma

approach in our systematic review, we started by determining 627 papers and ended with VP analyses

of 26 papers. The research questions covered three major points. Firstly, we identified the factors of

our metrics that influence revealing defects in software projects. Secondly, we concentrated our

research on identifying the production techniques used in the context. After, we determined the

evaluation criteria used by those techniques. Thus, there is still a chance for enhancement regarding

our topic to use statistical and intelligent techniques to reveal defects in software projects.

Finally, a new methodology based on a statistical model able to predict defects in software projects

was proposed.

This study succeeded in identifying the critical factors that affect the detection of defects in the

programs. Statistical analysis is executed by four methods, which are MLR-CDF, MLR-PLSDF, LR-CDF,

and LR-PLSDF. LR-CDF outperforms on all the proposed methods in order to accuracy and standard

error. In addition, LR-CDF outperforms on state-of-the-art methods (Association rule, Decision tree,

Naive Bayes, and neural network) related to the accuracy by 9.1%, 10.3%, 13.1%, and 13.1%

respectively.

5.2. LIMITATIONS TO THE CURRENT WORK

The study has some limitations. it was restricted by the search keywords selected and the time of the

manuscripts (last six years). In addition, it utilized a fixed number of electronic sources. Furthermore,

this study only handled English scientific papers, and we cannot warranty to have picked all the worthy

substance for our review.

As mentioned, the study has not enveloped all scientific papers in 2021, which may include novel

intelligent techniques. The emergence of novel intelligent techniques may assist in enhancing the

accuracy of revealing defects in different software projects.

5.3. FUTURE WORK

 It is recommended as future work to utilize other techniques in terms of improving the model

accuracy and identifying critical factors for revealing defects in software projects.

This study proposes processing the revealed defects of software projects by integrating optimization

techniques and deep learning techniques such as long short-term memory, convolutional neural

networks, and deep forest, which are some of the recent trends found in research aiming to improve

the accuracy of the proposed model and state-of-the-art method in previous works.

33

Bibliography

S. N. U. (2013). Software Testing Defect Prediction Model - a Practical Approach. International Journal of

Research in Engineering and Technology, 02(05), 741–745. https://doi.org/10.15623/ijret.2013.0205001

Bangash, A. A., Sahar, H., Hindle, A., & Ali, K. (2020). On the time-based conclusion stability of cross-project defect

prediction models. Empirical Software Engineering. https://doi.org/10.1007/s10664-020-09878-9

Chen, X., Zhao, Y., Wang, Q., & Yuan, Z. (2018). MULTI: Multi-objective effort-aware just-in-time software defect

prediction. Information and Software Technology, 93, 1–13. https://doi.org/10.1016/j.infsof.2017.08.004

Dhiauddin, M., Suffian, M., & Ibrahim, S. (2012). A Prediction Model for System Testing Defects using Regression

Analysis. International Journal of Soft Computing And Software Engineering, 2(7), 2251–7545.

https://doi.org/10.7321/jscse.v2.n7.6

Dhillon, M. K., Singh, P. B., & Singh, P. J. (2016). Empirical Model for Fault Prediction On the Basis of Regression

Analysis. International Journal of Science and Research (IJSR), 5(6), 163–168.

https://doi.org/10.21275/v5i6.nov164139

Felix, E. A., & Lee, S. P. (2017). Integrated Approach to Software Defect Prediction. IEEE Access, 5, 21524–21547.

https://doi.org/10.1109/ACCESS.2017.2759180

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir, M. A., & Zhang, M. (2020). COSTE: Complexity-based

OverSampling TEchnique to alleviate the class imbalance problem in software defect prediction. Information and

Software Technology, 129(September 2020), 106432. https://doi.org/10.1016/j.infsof.2020.106432

He, P., He, Y., Yu, L., & Li, B. (2018). An Improved Method for Cross-Project Defect Prediction by Simplifying

Training Data. Mathematical Problems in Engineering, 2018. https://doi.org/10.1155/2018/2650415

Jiarpakdee, J., Tantithamthavorn, C., & Treude, C. (2020). The impact of automated feature selection techniques

on the interpretation of defect models. Empirical Software Engineering, 25(5), 3590–3638.

https://doi.org/10.1007/s10664-020-09848-1

T. Pushpavathi, V. Suma, and V. Ramaswamy, “Defect Prediction in Software Projects-Using Genetic

Algorithm based Fuzzy C-Means Clustering and Random Forest Classifier”, International Journal of

Scientific & Engineering Research, Vol. 5, pp. 888-898, 2014.

A. Mohamed, N. Darwish and H. Hefny, “Towards a Machine Learning Model for Predicting Failure of

Agile Software Projects”, International Journal of Computer Applications, Vol. 168, No. 6, pp. 20-26,

2017

T. Hovorushchenko and A. Krasiy, “Realization of the Neural Network Model of Prediction of the

Software Project Characteristics for Evaluating the Success of its Implementation”, International

Conference on Intelligent Data Acquisition And Advanced Computing Systems, pp. 348-353, 2015.

N. Darwish, A. Mohamed, and A. Abdelghany, “A Hybrid Machine Learning Model for Selecting Suitable

Requirements Elicitation Techniques”, International Journal of Computer Science and Information

Security, Vol. 14, No. 6, pp. 1-12, 2016.

T. Chow and D. Cao, “A survey study of critical success factors in agile software projects”, Journal of

System and Software, Vol.81, pp. 961-971, 2008.

https://doi.org/10.1007/s10664-020-09848-1

34

Kondo, M., Bezemer, C. P., Kamei, Y., Hassan, A. E., & Mizuno, O. (2019). The impact of feature reduction

techniques on defect prediction models. In Empirical Software Engineering (Vol. 24, Issue 4). Empirical Software

Engineering. https://doi.org/10.1007/s10664-018-9679-5

Koroglu, Y., Sen, A., Kutluay, D., Bayraktar, A., Tosun, Y., Cinar, M., & Kaya, H. (2016). Defect prediction on a

legacy industrial software: A case study on software with few defects. Proceedings - International Conference on

Software Engineering, 17-May-201, 14–20. https://doi.org/10.1145/2896839.2896843

Kumar, L., Tirkey, A., & Rath, S. K. (2018). An effective fault prediction model developed using an extreme learning

machine with various kernel methods. Frontiers of Information Technology and Electronic Engineering, 19(7),

864–888. https://doi.org/10.1631/FITEE.1601501

Marandi, A. K., & Khan, D. A. (2017). An approach of statistical methods for improve software quality and cost

minimization. International Journal of Applied Engineering Research, 12(6), 1054–1061.

Mauša, G., Grbac, T. G., Brezočnik, L., Podgorelec, V., & Heričko, M. (2019). Software metrics as identifiers of

defect occurrence severity. CEUR Workshop Proceedings, 2508(September), 22–25.

Morasca, S., & Lavazza, L. (2020). On the assessment of software defect prediction models via ROC curves.

Empirical Software Engineering, 25(5), 3977–4019. https://doi.org/10.1007/s10664-020-09861-4

Patil, S., & Ravindran, B. (2020). Predicting software defect type using concept-based classification. Empirical

Software Engineering, 25(2), 1341–1378. https://doi.org/10.1007/s10664-019-09779-6

Rajbahadur, G. K., Wang, S., Kamei, Y., & Hassan, A. E. (2017). The impact of using regression models to build

defect classifiers. IEEE International Working Conference on Mining Software Repositories, 135–145.

https://doi.org/10.1109/MSR.2017.4

Rathore, S. S., & Kumar, S. (2015). Predicting number of faults in software system using genetic programming.

Procedia Computer Science, 62(Scse), 303–311. https://doi.org/10.1016/j.procs.2015.08.454

Rawat, M. S., & Dubey, S. K. (2012). Software Defect Prediction Models for Quality Improvement: A Literature

Study. International Journal of Computer Science Issues, 9(5), 288–296.

Sari, O., & Kalipsiz, O. (2015). Bug prediction for an ATM monitoring software use of logistic regression analysis

for bug prediction. ICEIS 2015 - 17th International Conference on Enterprise Information Systems, Proceedings,

2, 382–387. https://doi.org/10.5220/0005382803820387

Sharma, D., & Chandra, P. (2019). Identification of latent variables using, factor analysis and multiple linear

regression for software fault prediction. International Journal of Systems Assurance Engineering and

Management, 10(6), 1453–1473. https://doi.org/10.1007/s13198-019-00896-5

Sirshar, M. (2019). Comparative Analysis of Software Defect Prediction Techniques. December, 456頁、453頁

、603頁.

Sukanya, V. S., & Saraswathy, S. (2017). An Enhanced Evolutionary Model for Software Defect Prediction. 7(10),

15323–15328.

Verma, D., & Kumar, S. (2017). Prediction of defect density for open source software using repository metrics.

Journal of Web Engineering, 16(3–4), 294–311.

Yousef, A. H. (2015). Extracting software static defect models using data mining. Ain Shams Engineering Journal,

6(1), 133–144. https://doi.org/10.1016/j.asej.2014.09.007

35

Zhang, F., Mockus, A., Keivanloo, I., & Zou, Y. (2016). Towards building a universal defect prediction model with

rank transformed predictors. Empirical Software Engineering, 21(5), 2107–2145.

https://doi.org/10.1007/s10664-015-9396-2

Abdelaziz Mohamed, A., Ramadan Darwish, N., & Ahmed Hefny, H. (2017). Towards a Machine Learning Model

for Predicting Failure of Agile Software Projects. International Journal of Computer Applications, 168(6), 975–

8887.

Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for

conducting bibliometric analysis in science: An up-to-date review. Profesional de La Informacion, 29(1), 1–20.

https://doi.org/10.3145/epi.2020.ene.03

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, T. P. (2009). Preferred Reporting Items for Systematic

Reviews and Meta-Analyses : The PRISMA Statement. 6(7). https://doi.org/10.1371/journal.pmed.1000097

Jiarpakdee, J., Tantithamthavorn, C., & Hassan, A. E. (2021). The Impact of Correlated Metrics on the

Interpretation of Defect Models. IEEE Transactions on Software Engineering, 47(2), 320–331.

https://doi.org/10.1109/TSE.2019.2891758

Li, N., Shepperd, M., & Guo, Y. (2020). A systematic review of unsupervised learning techniques for software

defect prediction. Information and Software Technology, 122(February), 106287.

https://doi.org/10.1016/j.infsof.2020.106287

Maddeh, M., Ayouni, S., Alyahya, S., & Hajjej, F. (2021). Decision tree-based Design Defects Detection. IEEE

Access, 9, 71606–71614. https://doi.org/10.1109/ACCESS.2021.3078724

https://doi.org/10.1371/journal.pmed.1000097

Page | i

