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ABSTRACT 

Defect detection in software is the procedure to identify parts of software that may comprise 

defects. Software companies always seek to improve the performance of software projects in terms 

of quality and efficiency. They also seek to deliver the soft-ware projects without any defects to the 

communities and just in time. The early revelation of defects in software projects is also tried to 

avoid failure of those projects, save costs, team effort, and time. Therefore, these companies need to 

build an intelligent model capable of detecting software defects accurately and efficiently. 

This study seeks to achieve two main objectives. The first goal is to build a statistical model to 

identify the critical defect factors that influence software projects. The second objective is to build a 

statistical model to reveal defects early in software pro-jects as reasonable accurately. A bibliometric 

map (VOSviewer) was used to find the relationships between the common terms in those domains. 

The results of this study are divided into three parts: 

In the first part The term "software engineering" is connected to "cluster," "regression," and "neural 

network." Moreover, the terms "random forest" and "feature selection" are connected to "neural 

network," "recall," and "software engineering," "cluster," "regression," and "fault prediction model" 

and "software defect prediction" and "defect density." 

 In the second part We have checked and analyzed 29 manuscripts in detail, summarized their major 

contributions, and identified a few research gaps. 

In the third part Finally, software companies try to find the critical factors that affect the detection of 

software defects and find any of the intelligent or statistical methods that help to build a model 

capable of detecting those defects with high accuracy. 

Two statistical models (Multiple linear regression (MLR) and logistic regression (LR)) were used to 

find the critical factors and through them to detect software defects accurately. MLR is executed by 

using two methods which are critical defect factors (CDF) and premier list of software defect factors 

(PLSDF). The accuracy of MLR-CDF and MLR-PLSDF is 82.3 and 79.9 respectively. The standard error 

of MLR-CDF and MLR-PLSDF is 26% and 28% respectively. In addition, LR is executed by using two 

methods which are CDF and PLSDF. The accuracy of LR-CDF and LR-PLSDF is 86.4 and 83.8 

respectively. The standard error of LR-CDF and LR-PLSDF is 22% and 25% respectively. Therefore, LR-

CDF outperforms on all the proposed models and state-of-the-art methods in terms of accuracy and 

standard error. 
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1. INTRODUCTION 

Software companies aim to improve the quality of software projects in terms of their accuracy and 

efficiency. Software companies consume from 50% to 75% of the total budget of software projects in 

finding and fixing defects in those projects (Koroglu,2016). In the CHAOS report, many software 

projects vary in size (small, medium, and large projects) and, therefore, cost. These projects use 

many software development methods such as waterfall and agile. Several software projects failed 

due to the development and testing phase, as shown in table 1. A standard software development 

cycle has six phases, namely, planning, analysis, design, implementation, testing, and maintenance. 

In the development phase, developers modify source code that may lead to many defects in a 

software project. In modifications, developers should be careful not to produce any new defects in 

these projects. The testing phase is crucial to soft-ware projects. It is responsible for delivering the 

final project or product efficiently to customers without any defects and in time. Many factors, such 

as McCabe and Halstead, help developers find and fix defects in those projects, as shown in table 2. 

Nevertheless, there is difficulty in using these factors in medium and large-scale pro-jects. Thus, 

developers need a statistical or intelligent model capable of predicting defects in software projects 

accurately and efficiently.  

Many reasons lead to the failure of software development projects. These are the lack of experience 

of the project team, lack of knowledge of the code language, insufficient experience in the field, etc. 

Software defects in the development phase are among the most critical problems facing software 

companies because the many defects lead to those projects' failure. The avoidance of software 

defects is to gain clients' trust by providing a quality product. According to the CHAOS report, many 

software projects still fail because of the many reasons that have been mentioned earlier (Abdelaziz 

Mohamed et al., 2017). However, the direct reason for these projects' failure is the emergence of 

many software defects, as shown in Table 1 (Abdelaziz Mohamed et al., 2017).  

Therefore, this study looks to realize two main objectives. The primary objective is to construct a 

statistical model to distinguish the critical defect factors that impact software projects. The second 

objective is to construct a statistical model to reveal defects early in software projects with sensitivity 

and accuracy.  

We made a compressive study about the relevant related work using PRISMA methodology. The 

PRISMA explanation gives the minimum set of items for detailing a precise audit. It comprises the 

four-phase flow diagram, which permits us to utilize the Clarification and Elaboration document to go 

through cases and clarifications and find the meaning and method of reasoning for each item on the 

checklist. For a clear under-standing of PRISMA, perusing the Clarification and Elaboration document 

is unequivocally recommended. The PRISMA Stream Graph delineates the stream of data through the 

diverse stages of a Precise Audit. It maps out the number of records recognized, included, and 

prohibited and the reasons for avoidances.  

The contribution of our study has 4 dimensions: 

1. Create a bibliometric map to determine statistical or intelligent techniques that have been 

adopted for revealing defects in software projects. 
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2. Create a bibliometric map to determine performance metrics that have been adopted in the 

literature in the detection of software defects. 

3. Build a statistical model to determine critical factors that influence on reveal defects in 

software projects. 

4. Build a statistical model for revealing defects in software projects with reasonable accuracy. 

Table 1. CHAOS Report by Agile Versus Waterfall (Abdelaziz Mohamed et al., 2017) 

 

 

 

 

 

 

 

 

 

 

The study is organized as follows. Section 2 presents the materials and methods, PRISMA, search 

questions, and search strategy. Section 3 presents the results with an analysis, and discussion, 

visualizing analysis and analysis per topic. Section 4 presents the methodology. Finally, in section 5, we 

discuss the conclusion. 

 

 

 

 

 

 

 

 

 

Size Method Successful Challenged  Failed 

All Size  

Projects 

Agile (Scrum) 39% 52% 9% 

Waterfall 11% 60% 20% 

Large Size Projects Agile (Scrum) 18% 29% 53% 

Waterfall 3% 55% 42% 

Medium Size 

Projects 

Agile (Scrum) 27% 62% 11% 

Waterfall 7% 68% 25% 

Small Size Projects Agile (Scrum) 58% 38% 4% 

Waterfall 44% 45% 11% 
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2. LITERATURE REVIEW 

2.1.  BACKGROUND 

2.1.1. Software Defects: 

Software Defect is a defect, error or bug in the Software which has an adverse effect on the occurrence, 

operation, implementation, or performance of the Software. 

Many researchers such as Sirshar, M. (2019) and others ( Sharma, D., & Chandra, P. (2019);  Sukanya, 

V. S., & Saraswathy, S. (2017) )  have suggested many factors to detect software defects . However, 

to date, there is no formal study to determine the critical factors to help software companies detect 

software defects with a reasonable degree of accuracy.  Most researchers such as Rathore, S. S., & 

Kumar, S. (2015) and others also used scientific methods and models to detect software defects, but 

these models were weak in accuracy and results. Thus, software companies need a formal study to 

determine the critical factors to build a statistical model capable of detecting soft-ware defects with 

high results and accuracy. 

Table 2. Software Metrics of McCabe and Halstead to reveal software defects (Yousef, 2015) 

 

Factor ID  Factor Description 

1 Loc McCabe’s line count of code 

2 v(g) McCabe ‘‘cyclomatic complexity’’ 

3 eV(g) McCabe ‘‘essential complexity’’ 

4 Iv(g) McCabe ‘‘design complexity’’ 

5 N Halstead total operators + operands 

6 V Halstead ‘‘volume’’ 

7 L Halstead ‘‘program length’’ 

8 D Halstead ‘‘difficulty’’ 

9 I Halstead ‘‘intelligence’’ 

10 E Halstead ‘‘effort’’: effort to write program 

11 B Halstead ‘‘Number of Delivered Bugs’’ 

12 T Halstead’s time estimator: time to write 
program 

13 LOCode Halstead’s line count 

14 LOComment Halstead’s count of lines of comments 

15 LOBlank Halstead’s count of blank line 

16 LOCodeAndComment Halstead’s count of lines which contain 
both code and comments 

17 uniq_Op Unique operators 

18 uniq_Opnd Unique operands 

19 total_Op Total operators 

20 total_Opnd Total operands 

21 branchCount Of the flow graph 

22 defects Module has/has not one or more reported 
defects 
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2.1.2. Regression Analysis: 

This section is composed of two parts which are multiple linear regression and logistic regression, as 

follows:  

2.1.2.1. Multiple Linear Regression: 

Multiple regression analysis consists of one dependent variable and many independent variables, but 

it is persistent such as the reveal of a software defect, number of hours, and etc [(T. Pushpavathi, V. 

Suma, and V. Ramaswamy,2014),(A. Mohamed, N. Darwish and H. Hefny,2017)]. In linear regression, 

the dependent variable (status of software defect (True and False)) has an indefinite number of 

potential values. The degree of independent variables is unpretentious. It utilizes the ordinary least 

squares (OLS) approach to decrease errors and achieve the best potential fit. It utilizes the generic 

linear equation, as follows (T. Hovorushchenko and A. Krasiy,2015): 

Y= B0+∑ (BiXi) + ϵ (1) 

Where  

Y: dependent variable  

Xi: independent variables.  

B0 : intercept (the value of y when x = 0).  

Bi: the slope of the line.  

ϵ: terminology of the distinction that isn't explained by the model and it's called "error".  

 

2.1.2.2. Logistic Regression: 

Logistic regression is a compilation algorithm used to portend a definite variable (True or False) 

based on a set of separate variables or to portend the probability of an entity pertinence to one class 

or another class. Logistic regression algorithm uses one or more predictor variables that may be 

continuous or definite to portend the entity classes. This method helps to identify important factors 

(Xi) affecting the target variable (Y) and the quality of the relationship between each of these factors 

and the dependent variable [5,18].   

    Logistic regression offers decile such as standard error (SE), Adjusted-R-squared (ARS), and P-value 

(PV). SE measures the precision that represents a sample division of the population by using norm 

variation. ARS is used to show the impose of the logistic regression model. It calculates the rate of 

the impact of separate variables on the dependent variable. PV is a statistical rate that shows how 

each separate variable affects the dependent variable and is a number between (zero, one), a large 

P-value (> 0.05) indicates weak evidence against the null supposition; as an outcome, the model 

rejects the supposition (N. Darwish, A. Mohamed, and A. Abdelghany,2016),( T. Chow and D. 

Cao,2008). The main equation of logistic regression (T. Chow and D. Cao,2008). as follows: 

g(E(y)) = α + βx1 + γx2 (2) 
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Where, 

g() is the link function,  

E(y) is the expectation of target variable 

α + βx1 + γx2 is the linear predictor ( α,β,γ to be predicted).  

2.2. MATERIALS AND METHODS 

 The systematic literature survey presents an evaluation of the scientific community’s contributions 

to the topic of revealing software defects by using a rigorous and auditable methodology based on 

the PRISMA approach. 

The PRISMA method is composed of five phases, as follows: 

1. Identification of relevant manuscripts of the domain or domains. 

2. Screening of titles, abstracts, papers without experiments, and position papers. 

3. Eligibility analysis. 

4. Full-text screening exclusion. 

5. Final papers to be analyzed in detail. 

 We also adopted a bibliometric map; the bibliometric map is used to find the relationships between 

common software defects domain terms (Moral-Muñoz et al., 2020). To this end, we followed three 

phases, evaluating the following quantities: 

1. Words frequency. 

2. Most common words. 

3. Frequency of these common words in the final manuscripts of the study. 

By following PRISMA (Moher,2009), this section is structured in the following way: (1) our research 

questions, (2) followed paper search strategy, (3) bibliometric map, (4) inclusion and exclusion 

criteria, and (5) final paper selection.   

2.2.1. Research Questions 

   Our study aims to provide a state-of-the-art review of current research efforts in revealing software 

projects. We start by introducing the reader to specific topics con-cerning research objectives and 

employed methods. Particularly, the survey addresses the following research questions, aiming to 

identify the adoption techniques that have been applied in the overall domain of revealing software 

defects: 

RQ1: What kinds of metrics have been adopted in software defects (SD)? 
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RQ2: Which statistical or intelligent techniques have been adopted for SD? 

RQ3: What performance metrics have been adopted in the literature in the prediction of SD? 

2.2.2. Search Strategy 

   A literature survey generally recommends searching several available journal and conference paper 

repositories to determine if similar work has already been per-formed, aiding in locating potentially 

relevant studies. The papers counted were searched in two electronic repositories, Scopus and Web 

of Science. This study's covered topics were multidisciplinary, including, Software, Computer Science, 

Engineering, Mathematics, Environmental Science, Telecommunications, and Multidisciplinary 

Sciences. However, both repositories were used. The analysis showed that most of the publications 

from Web of Science were in Scopus as well. A repeated search process was performed to identify 

publications that have in their titles, abstracts, or keywords the following expressions: "software-

defects" (or software defects, or defect or projects defects), and "machine learning" in Figure 1. 

 

Fig. 1 search query for scientific manuscripts to extract the best studies in software defects 

 

 

 

 

 

 

 

 

 

 

 

 

 

(software-defects OR defect OR projects) AND (OR “data mining ” 

OR forecasting OR “machine learning” OR “neural network" OR “clustering" OR “artificial 
intelligence” OR “prediction” OR “predictive” OR “statistical” OR analysis”) 
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Fig. 2. scientific steps for analyzing the proposed manuscripts “PRISMA flow chart” 

 

In phase 1, we applied the search string to all electronic repositories looking for papers published 

between 2015 to 2019, which resulted in 627 publications.  

In Phase 2, followed a 5-step approach. In step 1, we excluded manuscripts based on titles (e.g., 

software defects, regression, and machine learning), which narrowed the set to 211 publications. In 

step 2, we excluded manuscripts based on abstracts screening, which resulted in 117 publications. In 

the following step 3, we excluded manuscripts reporting research without experiments, resulting in 

83 publications. 

Subsequently, in step 4 of phase 2, we excluded position manuscripts which gave us the final figure 

of 29 publications.  

In phase 3, manuscripts underwent a full-text reading and review, which lead to no exclusions (the 

result of phase 4).  

As a result of our paper selection approach, the final list included 29 manuscripts (phase 5), analyzed 

in detail in this paper. These were further divided into the following four categories, as shown in 

tables 3 and 4. 
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1. Regression analysis studies to reveal Software Defects. 

2. Studies of Software Defects Prediction. 

Table 3. Regression analysis studies to reveal Software Defects 

No Ref Application Dimensions Method of Solution and 

Performance Metrics 

1 S.N. Umar Software testing defect 

prediction model-a practical 

approach 

Total number of test 

cases executed, test 

team size, allocated 

development effort, 

test case execution 

effort, and the total 

number of components 

delivered 

Multiple linear 

regression. R square and 

standard error 

2 (Dhiauddin & 

Ibrahim, 2012) 

A Prediction Model for 

System Testing Defects 

using 

Regression Analysis 

Software complexity, 

test process, errors, the 

severity of the defect, 

and validity of defect  

Multiple linear 

regression. Adjusted R 

square  

3 E. A. FELIX and et 

al  

Integrated Approach to 

Software 

Defect Prediction 

Defect acceleration, 

namely, the defect 

density, defect velocity, 

and defect introduction 

time 

Statistical analysis. 

Adjusted R square and 

correlation coefficient 

4 D. VERMA and et 

al 

Prediction of defect density 

for open source software 

using 

repository metrics 

software size, number 

of developers, commits, 

and the total number of 

defects  

Multiple linear 

regression. R square 

5 D. Sharma and et 

al 

Identification of latent 

variables using factor 

analysis 

and multiple linear 

regression for software 

fault prediction 

Coupling between 

object classes, depth of 

inheritance tree, lack of 

cohesion of methods, 

and weighted methods 

per class 

Multiple linear 

regression. R square and 

Adjusted R square 

6 O. Sari and et al  Use of Logistic Regression 

Analysis for Bug Prediction 

Weighted method 

count, depth of 

inheritance tree, lack of 

cohesion in methods, 

number of attributes, 

and number of methods 

Logistic regression. 

Standard error 
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7 G. MAUSA and et 

al 

Software Metrics as 

Identifiers of Defect 

Occurrence 

Severity 

Software size, number 

of code lines, and the 

total number of defects. 

Correlation coefficients 

and logistic regression. 

Error rate 

8 Peng H. and et al  presented a model for 

predicting defects in 

software projects 

Software size, number 

of code lines, and the 

total number of defects. 

Logistic regression. 

Standard error 

9 M. Dhillon and et 

al  

An empirical model for fault 

prediction on the basis 

of regression analysis 

Weighted method 

count, depth of 

inheritance tree, lack of 

cohesion in methods, 

number of attributes, 

and number of methods  

Logistic regression.  

Precision, recall, and f1 

measure 

10 X. Chen and et al Multi-Objective Effort-

Aware Just-in-Time 

Software Defect 

Prediction 

diffusion [Number of 

modified subsystems], 

size [line of codes], 

history [The number of 

unique changes to the 

modified files], and 

finally, experience 

[Developer experience]. 

Logistic regression.  

Accuracy  

 

Table 4. Studies of Software Defects Prediction 

No Ref Application Dimensions Method of Solution 

and Performance 

Metrics 

1 A. H. Yousef   Extracting software static 

defect models using 

data mining  

McCabe and Halstead 

metrics 

Data mining 

techniques. 

Accuracy, Precision, 

Recall, and F1 score 

2 Karuna P and et al  Statistical analysis of metrics 

for 

software quality 

improvement 

Violation of programming 

standards, error in data 

representation, error in 

design logic, and assorted 

error type  

Statistical analysis. 

Mean and standard 

deviation 

3 Sukanya. V and et 

al  

An enhanced evolutionary 

model for software defect 

prediction  

McCabe and Halstead 

metrics 

Enhanced genetic 

algorithm, genetic 

algorithm, and 
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neural network. 

Precision 

4 Y. Koroglu and et 

al  

Defect prediction on a legacy 

industrial software: a case 

study on software with few 

defects 

Product and process 

metrics  

Data mining 

techniques. AUC 

5 L. KUMAR and et al   An effective fault prediction 

model developed using an 

extreme learning machine 

with various kernel methods 

Complexity, coupling, 

cohesion, and inheritance 

in the code 

Extreme learning 

machine with 

various kernel 

methods (e.g., 

Linear kernel, 

Polynomial kernel, 

and Sigmoid kernel). 

Accuracy 

6 F. Zhang and et al Towards building a universal 

defect prediction model 

The weighted method 

programming language, 

issue tracking, total lines 

of code, total number of 

files, the total number of 

commits, and the total 

number of developers  

K-mean clustering. 

AUC 

7 A. Marandi and et 

al 

An approach of statistical 

methods for improving 

software quality 

 

Post-delivery rework 

effort, actual effort, cost 

of the appraisal, cost of 

prevention, and cost of 

failure  

Statistical analysis. 

Standard error 

8 G. RajBahadur and 

et al  

The impact of using 

regression models to build 

defect classifiers 

Object-oriented metrics Linear regression, 

logistic regression, 

random forest, 

support vector 

machine, and neural 

network. AUC 

9 S. Rathore and et 

al 

Predicting the number of 

faults in a software system 

using genetic programming 

Total number of 

modules, number of lines 

of code, and number of 

faulty modules 

Genetic 

programming.  

Recall and error rate 

10 M. Sirshar and et 

al  

Comparative Analysis of 

Software Defect Prediction 

Product and process 

metrics 

Neural Network, 

Naive Bayes, Deep 
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Techniques Forest technique. 

Error rate 

11 M. Rawat and et al Software defect prediction 

models for quality 

improvement: 

a literature study 

Object-oriented code, 

product, and process 

metrics 

Regression models. 

Accuracy 

12 S. Feng and et al Complexity-based 

Oversampling Technique to 

alleviate the class 

imbalance problem in 

software defect prediction 

Line of code, number of 

children, and weighted 

method per class 

Complexity-based 

Oversampling. Error 

rate 

13 S. Patil and et al Predicting software defect 

type using concept-based 

classification 

Interface, syntax, and 

standard [build-config-

install] 

Concept-based 

Classification. F1 

score 

14 J. Jiarpakdee and 

et al 

The impact of automated 

feature selection techniques 

on the interpretation of 

defect models 

inconsistent 

and correlated 

Automated 

Spearman 

correlation. Error 

rate 

15 A. Bangash and et 

al 

On the time-based 

conclusion stability of cross-

project 

defect prediction models 

Time, types of the 

projects, software 

development 

process 

Mathews 

Correlation 

Coefficient. F-score 

16 S. Morasca and et 

al 

On the assessment of 

software defect prediction 

models via ROC curves 

Lines of code and 

complexity 

Receiver Operating 

Characteristic. Error 

rate 

 

2.3. RESULTS, ANALYSIS, AND DISCUSSION 

 
This section introduces two main parts, which are bibliometric analysis and analyzing previous works 

in detail. The first part shows the relationships between common terms in intelligence, statistical 

techniques, and performance metrics used in the previous study. The second part seeks to find the 

scientific gap between proposed manuscripts in this study to build a novel model to overcome the 

issues for revealing defects in software projects. 
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2.3.1. Visualizing Analysis  

We used VOS viewer ("VOS viewer," n.d.), a Visualizing bibliometric network, to find common 

terminology in two areas: software defects and statistical techniques, across the 29 manuscripts under 

analysis. This tool supported our study, with visual information enabling us to explore the relations 

between the domains of software defects and statistical techniques. Moreover, it helped us find the 

most common dimensions, clustering, and variety techniques able to answer our research questions. 

Figure 3 represents the visualization of a network map that displays the relations between the most 

popular terminology, how it is linked. The larger node represents the popular terminology in 

manuscripts, and the size of it represents the number of times these words appeared in manuscripts. 

VOS viewer splits the terminology into clusters according to the relevance concerning each other. 

 

 
 

Fig. 3. The relationships between the common terms using the bibliometric map. 
 

We performed the analysis on the title and abstract using a binary counting method of 759 examined 

keywords with a minimum threshold of 2 occurrences, resulting in 57 terminologies, as shown in the 

figure. The largest nodes representing the important nodes of each cluster in the network map are 

determined as" Regression" (red), "cluster" (yellow), "software engineering" (green), "neural network" 

(blue), and finally "software defect prediction" (purple) 
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Looking closer at the network map in figure1, we can see that the 5 clusters are connected between 

them; for instance, the "regression" term is connected to "fault prediction model" in the same red 

cluster, it connected to "cluster" and "accuracy" in the yellow cluster, it is also connected to "software 

engineering" and "recall" in the green cluster. Finally, it is also connected to "neural network" and 

"feature selection" in the blue cluster; it is also connected to "software defect prediction "and "defect 

density." Besides, the term "software engineering" in the green cluster is connected to "cluster" in the 

yellow cluster, "regression" in the red cluster, and "neural network" in the blue cluster. Moreover, the 

terms "random forest" and "feature selection" are connected to "neural network" in the blue cluster, 

"recall" and "software engineering" in the green cluster, "cluster" in yellow cluster, "regression" and 

"fault prediction model" in the red cluster and "software defect prediction" and "defect density" in the 

purple cluster. 

Finally, by analyzing the network map in figure1, we can identify the important terms in each cluster, 

as follows: 

• In the red cluster: "regression" and "software prediction model." 

• In the yellow cluster: "cluster" and "accuracy." 

• In the green cluster: "recall" and "software engineering." 

• In the blue cluster: "random forest", "feature selection" and "neural network" 

• In the purple cluster: "software defect prediction" and "defect density." 

2.3.2. Analysis Per Topic: 

RQ1 drove to look for metrics, data sources, and critical factors able to reveal software defects. Our 

review of papers S1 to S26 allowed us to extract such critical factors. Dimensions such as software 

status [ No. of defects], OOP [Depth of Inheritance Tree and No. of Methods], McCabe Metrics [ Line 

Count of Code], and Halstead Metrics [Effort to Write Program and Time to Write Program] seem to 

be highly considered when studying the revealing of software defects in software companies. Table 5 

shows the variety of metrics used in predicting defects in software projects. The studies of S1, S4, and 

S16 relied on team dimension (team size and the number of developers) to predict software defects 

in software projects. The studies of S2, S3, S4, S7, S8, S12, S15, and S26 relied on software status 

dimensions (software complexity, number of defects, and software size) to detect defects in those 

projects. Moreover, the studies of S5, S6, S9, S15, S16, S18, and S21 relied on the OOP dimension 

(coupling between object classes, depth of inheritance tree, number of methods) also to reveal defects 

in those projects. Also, the studies of S7, S8, S10, S11, S13, S16, S19, S22, and S26 relied on McCabe 

metrics (line count of code, cyclomatic complexity, essential complexity, and design complexity) to find 

the optimal intelligent techniques to predict defects in software projects.  Finally, the studies of S1, S3, 

S11, S13, S16, S17, S25 relied on Halstead Metrics (total operators + operands, effort to write the 

program, number of delivered bugs, count of lines of comments, and time to write a program) to 

forecast defects in various software projects. We observed that four factors are the most used in 

predicting defects in software projects. These are the number of defects, depth of inheritance tree, 

number of methods, and line count of code. 
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Table 5. Major factors in software defect projects 
Dimensions 

  Team Software status OOP McCabe Metrics Halstead Metrics Other 
Factors 
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While addressing RQ2, we examined the techniques applicable in predicting defects in software 

projects. With this goal, we analyzed manuscripts S1 to S26 and noticed that techniques such as 

multiple linear regression, logistic regression, and machine learning are the most adopted, as shown 

in table 6. Moreover, multiple linear regression was adopted by 23% of the analyzed manuscripts, 

whereas statistical analysis and data mining were the choices in 27% of manuscripts. Logistic 

regression accounted for 27% of the revised manuscripts. Also, machine learning techniques 

accounted for 19% of the revised manuscripts. Finally, the remaining 4% corresponded to the other 

intelligent techniques. We noticed four points. 

 Firstly, the studies (S1, S2, S4, S5, and S21) relied on multiple linear regression where S1 presented a 

model to predict defects in software projects to enhance the quality of software testing. This study 

seeks to find a suitable model to predict software defects to save effort, costs, and software 

companies' time.  The results of this study show that R square and standard errors are 0.91 and 

5.90%, respectively. S2 presented a model for predicting defects in software projects to improve the 

testing process in those projects. Besides, the adjusted R square in multiple linear regression is 90%. 

S4 presented a framework to predict defect density in open-source software projects. The results of 

this study show that the R square in multiple linear regression is 0.86. S5 presented a model to 

predict faults in software projects. Furthermore, the results of this study show that R square and 

adjusted R square are 83% and 80%, respectively. S21 presented a review study to detect defects in a 

software project. It also seeks to find an optimal model to detect defects efficiently to save costs and 

time. Also, this study confirmed that regression models have achieved high results in terms of 

accuracy in detecting defects of software projects. 

Secondly, the studies (S6, S7, S8, S9, and S10) relied on logistic regression, where S6 presented an 

approach to improve the quality of software projects by detecting bugs in software projects 

efficiently. Also, the standard error in the proposed statistical technique is 0.24. S7 presented a study 

to detect defects in software projects in the early-stage to save effort, money, and time. This study 

also depends on statistical techniques such as correlation coefficients and logistic regression. The 

results show that the accuracy in logistic regression is 91.2%, and the correlation coefficient is 0.95. 

S8 presented a model for predicting defects in software projects. The result of this study shows that 

the standard error in logistic regression is 0.19. S9 presented an empirical model to predict fault in 

software projects. This study also depends on the binary logistic regression technique to predict 

defects in software projects. The results also show that the precision, recall, and f1 measures are 

0.65, 0.9, and 0.79. S10 presented a study to predict software defects by using logistic regression just 

in time. The results of this study show that the proposed technique is better than the state-of-the-art 

methods in terms of accuracy. The accuracy of the proposed technique is 0.73. 

Thirdly, the studies (S3, S11, S12, S14, S17, S24, S25) relied on statistical analysis and data mining 

techniques where S3 presented an approach to forecasting defects in software projects. It also 

depends on statistical regression such as multiple linear regression to predict defects in those 

projects. Besides, the adjusted R square in statistical regression is 98.6%, and the correlation 

coefficient is 0.98. S11 presented a model to extract software static defects by using data mining 

techniques. The results of this study show that the accuracy in Association Rules, Decision Tree, 

Naive Bayes, and Neural Network is 77.2%, 76.6%, 73.2%, and 73.2%, respectively. Thus, Association 

Rules is better than Decision Tree, Naive Bayes, and Neural Network in terms of accuracy. S12 

presented a study to improve the quality of software projects using statistical analysis. The results of 
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this study were evaluated in terms of projection of errors (total errors) and cumulative projection of 

severity errors (e.g., series, moderate and minor). It also shows that total errors in 2016 are more 

than in 2015 by 1.5%. 

Moreover, most severity errors are minor types. S14 presented a study to predict defects in legacy 

industrial software using data mining techniques. The results of this study show that the area under 

the curve (AUC) in Random Forest, Logistic Regression, Decision Tree, Naive Bayes, and a 

combination of Random Forest + Logistic regression is 0.73, 0.72, 0.66, 0.67, and 0.75. Thus, a 

combination of Random Forest + Logistic regression is better than Random Forest, Logistic 

Regression, Decision Tree, Naive Bayes. S17 presented an approach to improve software quality and 

cost minimization using statistical analysis. The results of this study were evaluated in terms of 

standard error. The standard error in the statistical model is 0.13. S24 presented a study to evaluate 

the impact of automated feature selection techniques on the interpretation of defect models. This 

study investigated 12 automated feature selection techniques in terms of consistency, correlation, 

performance, computational cost. By analyzing 14 publicly-available defect datasets, the results 

showed that the most important inconsistent metrics are highly correlated with the automated 

Spearman correlation of 0.85–1. S25 presented a study to predict defects in software models. This 

study applied the Mathews Correlation Coefficient-MCC to avoid defects in software models. MCC in 

F-score is less than 0.01. Therefore, the proposed technique is better than the state-of-the-art 

methods in terms of MCC. 

Fourthly, the studies (S13, S15, S16, S18, S20) relied on machine learning techniques where S13 

presented a model to predict software defects by using an enhanced genetic algorithm. The results 

of this study were evaluated in terms of precision. It also confirmed that precision in enhanced 

genetic algorithm, genetic algorithm, and neural network is 0.93, 0.81, and 0.80, respectively. Thus, 

the enhanced genetic algorithm is better than the genetic algorithm and neural network. S15 

presented a model to predict effective faults in software projects using extreme learning machines 

with various kernel methods (e.g., Linear kernel, Polynomial kernel, and Sigmoid kernel).  The results 

of this study were evaluated in terms of accuracy metrics. The accuracy in the linear kernel, 

Polynomial kernel, and Sigmoid kernel is 0.88, 0.93, and 0.91. Thus, an extreme learning machine 

using the Polynomial kernel is better than linear kernel and Sigmoid kernel. S16 presented a model to 

predict universal defects in software projects using clustering techniques. The results of this study 

were evaluated in terms of AUC. The AUC in K-mean clustering is 0.76. S18 presented a model to 

detect defects in a software project. This study depends on object-oriented metrics. It also relies on 

many intelligent techniques such as linear regression (LR), logistic regression (LG), random forest 

(RF), support vector machine (SVM), and neural network (NN). The results of this study were 

evaluated in terms of AUC. The AUC in LR, LG, RF, SVM and NN is 0.86, 0.94, 0.91, 0.90 and 0.90. 

Thus, LG is better than LR, RF, SVM, and NN. S20 presented a review analysis to predict defects in a 

software project. This study depends on many metrics, such as product and process metrics. It also 

introduced a comparative analysis between Neural Network, Naive Bayes, Deep Forest technique. 

This study relies on previous works in the analysis of these techniques. Besides, this study confirmed 

that Deep Forest is better than Neural Network, Naive Bayes in terms of error rate. 

Fifthly, the studies (S19, S22, S23, and S26) relied on other intelligent and statistical techniques 

where S19 presented an approach to predict many faults in a software system by using a genetic 

algorithm. The results of this study were evaluated in terms of error rate and recall. The error rate 
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and recall in the genetic algorithm are 0.11, 0.91, respectively. S22 presented a new technique in 

software defect prediction by Complexity-based Oversampling. This paper relied on three main 

factors: a line of code, number of children, and weighted method per class.  By analyzing the results, 

the proposed technique is better than the other oversampling techniques under the statistical 

Wilcoxon rank-sum test and Cliff's effect size. S23 presented a framework to predict software defect 

type using concept-based classification. This paper's main objective is to minimize the labeled 

training data's dependence for automation of the software defect type classification task. The results 

show that the proposed framework outperforms the state-of-the-art semi-supervised [LeDEx] in 

terms of the F1 score. F1 score in the proposed framework and LeDEx is 63.16% and 62.30%, 

respectively. S26 presented a study to assess the software prediction model by using Receiver 

Operating Characteristic. The results showed that the proposed technique is better than all other 

state-of-the-art methods in terms of recall and accuracy by 0.4 and 0.8, respectively. 

Table 6. Intelligent and statistical techniques in software defect project 

 

 

NO Multiple 
Linear 

Regression 

Logistic 
Regression 

Statistical 
Analysis 

Data 
Mining 

Machine 
Learning 

Other 

S1 ✓ - - - - - 

S2 ✓ - - - - - 

S3 - - ✓ - - - 

S4 ✓ - - - - - 

S5 ✓ - - - - - 

S6 - ✓ - - - - 

S7 - ✓ - - - ✓ 
S8 - ✓ - - - - 

S9 - ✓ - - - - 

S10 - ✓ - - - - 

S11 - - - ✓ - - 

S12 - - ✓ - - - 

S13 - - - - ✓ ✓ 
S14 - - - ✓ - - 

S15 - - - - ✓ ✓ 
S16 - - - - ✓ - 

S17 - - ✓ - - - 

S18 ✓ ✓ - - ✓ - 

S19 - - - - - ✓ 
S20 - - - - ✓ - 

S21 ✓ ✓ - - - - 

S22 - - - - - ✓ 
S23 - - - - - ✓ 
S24 - - ✓ - - - 

S25 - - ✓ - - - 

S26 - - - - - ✓ 
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The literature study also analyzed the performance evaluation metrics in the scope of our RQ3. 

Results are shown in table 7 and table 8. 21% of the selected manuscripts (S10,11,15, 9, 13, and 21) 

adopted accuracy and precision. 21% of them (S9, 11, 19, 23, and 25) selected only recall and F1 

score. The error rate was used by 30% of the analyzed manuscripts (S1, 6, 7, 8, 17, 19, 20, 22, 24, and 

26). 15% of the manuscripts adopted the R Square measure (S1, 2, 3, 4, and 5). We also realized that 

13% (S12 S14, S16, and S18) did not use any defined evaluation metric. 

Table. 7. Sample of performance metrics rate in previous work 

 Performance Metrics Rate 

1 Accuracy and precision 21% 

2 Recall and F1 Score 21% 

3 Error Rate 30% 

4 R Square Measure 15% 

5 Other 13% 

 

Table 8. Majority of performance metrics used in software defect projects 

NO Accuracy Precision Recall F1 score Error 

Rate 

R- 

Square 

Other 

S1 - - - - ✓ ✓ - 

S2 - - - - - ✓ - 

S3 - - - - - ✓ - 

S4 - - - - - ✓ - 

S5 - - - - - ✓ - 

S6 - - - - ✓ - - 

S7 - - - - ✓ - - 

S8 - - - - ✓ - - 

S9 - ✓ ✓ ✓ - - - 

S10 ✓ - - - - - - 

S11 ✓ ✓ ✓ ✓ - - - 

S12 - - - - - - ✓ 
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S13 - ✓ - - - - - 

S14 - - - - - - ✓ 

S15 ✓ - - - - -  

S16 - - - - - - ✓ 

S17 - - - - ✓ -  

S18 - - - - - - ✓ 

S19 - - ✓ - ✓ - - 

S20 - - - - ✓ - - 

S21 ✓ - - - - - - 

S22 - - - - ✓ - - 

S23 - - - ✓ - - - 

S24 - - - - ✓ - - 

S25 - - - ✓ - - - 

S26 - - - - ✓ - - 

 

Our research helped us to determine several research gaps. We only identified a few manuscripts 

(S11 and S13) tackling specific metrics impacting defects in software projects. For example, some 

studies (S5, S6, S9, S18, and S21) are concentrated on the OOP metric in general, with no mention of 

the line count of code and the number of developers. There are only simple manuscripts (S14, S20, 

S23, and S24) regarding finding defects in all types of software projects (small, medium, and large 

projects). However, stakeholders in software companies seem to find this topic pertinent and are 

willing not only to enhance software efficiency in those projects but interested to predict early 

defects in software projects to save costs and money. The results of this survey also showed a 

significant gap in the field of "intelligent and statistical models," particularly relating to the automatic 

prediction of defects in software projects. Some of the most promising algorithms are not yet being 

utilized. Only a few studies (S18 and S21) tackle the application of "hybrid statistical and intelligent 

techniques, for instance, logistic regression with multiple linear regression and regression analysis 

with deep learning," which is a promising technique for forecasting defects in software projects. 

Moreover, there is a lack of official studies to identify critical factors that influence defects in 

software projects. 
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3. METHODOLOGY 

Proposal of a new proposed model based on a statistical model able to predict defects in software 

projects. This section presents an approach for a statistical model able to predict defects in software 

projects. The proposed model has been used in several scientific data science researches like is the 

case of (Yousef, A. H. ,2015). As shown in Figure 4, the detailed the proposed model will cover the 

following phases: 

 

1. State-of-the-art analysis: Review the literature to extract important metrics, data sources, 

mathematical and computational approaches used for predicting defects of software 

projects. 

2. Data collection: data is collected from the NASA data sets online. We have two reasons to 

select the NASA Data set. The first reason is it is too hard to collect huge data from software 

companies to reveal the defects in software projects. The second reason for selecting Nasa is 

based on its vast and high-quality data. It explains the static measures and other variables 

that are used to detect static defects in software projects. It also shows a binary variable 

indicating whether the module is defective or not. 

3. Data Analysis and Pre-Processing: Analyze the data in detail and, if necessary, transform it to 

expose its information content better. Different mathematical techniques may be used, 

namely, outlier removal, discretization, reduction of the number of variables, and/or 

dimensionality (adopting regression models). 

4. Feature selection: determine critical metrics and detect defects that will be adopted in the 

proposed IST study by using logistic regression and multiple linear regression. Create a 

mapping between logistic regression and multiple linear regression to determine the final list 

of critical metrics capable of predicting defects in software projects. 

5. Build a model: present a statistical model capable of predicting defects in software projects 

using multiple linear regression and logistic regression.  

6. Training and verification model: train the model with data set and verify its ability to predict 

defects in software projects.  

7. Also, we will present a comparison between logistic regression and multiple linear regression 

by using the final list of critical metrics to determine which one is better than the other in 

terms of accuracy, precision, recall, F1 measure, and error rate.  

Following this holistic approach, we built a methodology composed of five phases, as shown in figure 

4. 

 

 

 



23 
 

 

 

 

 

 

 

 Fig 4. A Proposed Statistical Model for Software Defects Prediction 
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4. RESULTS AND DISCUSSION 

4.1. MULTIPLE LINEAR REGRESSION: 

In our trial to detect which features can impact positively the defeat of software projects. This trial is 

used multiple Linear regression analysis, where the relationship between multiple independent 

variables (factors in software projects) and the dependent variable (grade of impacting the factors in 

software projects) is specific. Based on the Eq. (3), the multiple Linear regression analysis can be 

specified as follows:  

Y = β0 + β1x1 + β2x2 + …. + β11x11 + ε (3) 

Where: 

Y: is degree of effect the defeat factors in software projects  

β0: is the y-intercept  

βi: is the regression coefficient  

Xi: critical failure factors  

ε: the random error term 

The applied model has been executed by a set of steps. To begin with, the proposed data is split into 

dependent and independent variables (refer to Table 2). Furthermore, it consists of seventy percent 

training and thirty percent testing data. The ordinary least squares (OLS) is used to verify the 

proposed model that assumes a robust linear relationship between the dependent and the 

independent variables. After that, L2 Regularization is used to upgrade the quality of the proposed 

model. 

This part introduces a flow chart for determining the critical factors that impact software projects by 

MLR and LR analysis. Fig. 5 shows the flow chart for the proposed model. MLR and LR analysis 

introduced regression statistics like standard error (SE), R-squared (RS), adjusted R-squared (ARS), 

and P-value (PV). SE shows a first handle on how fully the provided equation is suitable for the 

sample data. It is critical to the units of the stander of the dependent variable. RS shows the 

explanatory impose of the regression model. ARS is an updated version of RS that has been modified 

for the set of predictors in the model. It raises only if the relative terms promote the model more 

than would be expected. It is minimized when a predictor promotes the model by less than expected. 

It is always lower than the RS.ARS of MLR and LR is 0.78. PV helps to set the importance of the 

statistical results. It is a number between 0 and 1 and is explained in the following method: a small 

PV (typically ≤ 0.05) indicates a powerful proof versus the null supposition. The null supposition is 

rejected from the statistical results.  
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Fig.5 Flow chart of the proposed algorithm for MLR and LR model 
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Table 9. Summary of critical factors that affect software projects in MLR 

No Factor ID  P-Value 

1 loc ✓ 0 

2 v(g)  ✓ 0 

3 ev(g)  X 0.4341 

4 iv X 0.0537 

5 n ✓ 0 

6 v X 0.4804 

7 l X 0.2107 

8 d ✓ 0.0002 

9 i ✓ 0.0075 

10 e X 0.9454 

11 b X 0.7833 

12 t X 0.9454 

13 IOCode ✓ 0 

14 IOComment ✓ 0.0461 

15 IOBlank X 0.0809 

16 locCodeAndComment      X 0.0667 

17 Column1op ✓ 0 

18 Column2opnd X 0.2169 

19 Column1totalopnd ✓ 0.0001 

20 Column1totalop ✓ 0.0003 

21 Column1branch ✓ 0 

 

 

The model based on critical defect factors (CDF) based on the model-based premier list of software 

defect factors (PLSDF) to the accuracy and standard error ratio, as shown below in Figs. 6 and 7. 

 

Fig 6. The comparison between model of MLR-CDF and model of MLR-PLSDF to accuracy 
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Fig 7. The comparison between model of MLR-CDF and model of MLR-PLSDF to stander error ratio 

4.2. LOGISTIC REGRESSION: 

In our trial to show the experimental results of our proposed approach. The approach is executed using 

a different technique, which is logistic regression. A group of pre-processing steps does the proposed 

model. First, the dataset attributes are split into defect factors in software projects as separate 

variables and the degree of effecting defect factors in software projects which will be as the dependent 

variable. Second, the dataset also is split into 80% training data and also 20% testing data. Third, the 

dependent variable was changed from categorical values (False, True) to binary values (0:1). Fourth, 

the independent variables were run between 0 and 1. assume that Xmin and Xmax are the minima and 

maximum values of an attribute X, as shown in Eq. (5). 

                                                Xnew = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥𝑋𝑚𝑖𝑛
                                     Eq (5)                

We used logistic regression to define critical defect factors that impact software projects. Two 

methods do it. The first method relies on the critical defect factors (LR-CDF) of software projects. The 

second model relies on the premier list of software defect factors (LR-PLSDF). In the PLSDF method, 

the relationship between independent variables (premier list of software defect factors) and the 

dependent variable (degree of effecting defect factors in software projects) is fixed, as shown in Eq. 

(6). The logistic regression of PLSDF can be identified as follows: 

P = 
1

1+𝑒−(β0 + β1x1 + β2x2 + …..+ β13x13)
                     Eq (6) 
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Where: 

• P = degree of effecting defect factors in software projects 

• β0 = P-intercept 

• βi = regression coefficient  

• Xi = LR-CDF 

Table 10 present the statistical results of the PLSDF method. It includes two significant results 

(Adjusted R squared and P-value). ARS is - 0.82. The PV shows the significant separate features that 

affect detect defects in software projects. If P-value>0.05, the degree is not significant statistically. 

For example, the P-value for (v(g)=0.5970) is greater than 0.05; thus, this feature should refuse. 

therefore, those features with a value level (P-Value<0.05) would be known as elects for being 

important features affecting defect factors selection. 

Table 10. Summary of critical factors that affect software projects in LR 

No Factor ID  P-Value 

1 loc ✓ 0.0000 

2 v(g)  X 0.5970 

3 ev(g)  ✓ 0.0267 

4 iv ✓ 0.0447 

5 n X 0.1740 

6 v X 0.6973 

7 l ✓ 0.0003 

8 d ✓ 0.0072 

9 i ✓ 0.0084 

10 e X 0.9994 

11 b X 0.7338 

12 t X 0.9995 

13 IOCode ✓ 0.0001 

14 IOComment ✓ 0.0047 

15 IOBlank ✓ 0.0111 

16 locCodeAndComment      X 0.0747 

17 Column1op ✓ 0.0032 

18 Column2opnd ✓ 0.0000 

19 Column1totalopnd ✓ 0.0016 

20 Column1totalop ✓ 0.0437 

21 Column1branch X 0.1599 
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Fig 8. The comparison between model of LR-CDF and model of LR-PLSDF to accuracy 

 

 

Fig 9. The comparison between model of LR-CDF and model of LR-PLSDF to stander error ratio 
 

In this part we do comparison between the accuracy and stander error ratio in multilinear regression 

and logistic regression to extract the best result, as show in figure 10,11, which shows that the best 

result extracts from (LR-CDF). 

 
 

 

82.50%

83.00%

83.50%

84.00%

84.50%

85.00%

85.50%

86.00%

86.50%

LR-CDF LR-PLSDF

Accuracy

Accuracy

21%

21%

22%

22%

23%

23%

24%

24%

25%

25%

LR-CDF MLR-PLSDF

Standard Error
Ratio

Standard Error
Ratio



30 
 

 

Fig.10 The accuracy comparison of all proposed statistical model 
 

 

Fig.11 The standard error ratio comparison of all proposed statistical model 
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The LR-CDF model outperforms the state-of-the-art methods in previous works of accuracy, as shown 

in figure 12. 

 

Fig12. The comparison between the proposed model and state of the art methods  
 

The LR-CDF model outperforms the intelligent techniques (Association rule, Decision tree, Naive 

Bayes, and neural network) in Ahmed H. Yousef's study in terms of accuracy by 9.1%, 10.3%, 13.1%, 

and 13.1% respectively. 
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5. CONCLUSIONS 

5.1. MAIN CONTRIBUTION  

This paper presented a systematic review on the topic of revealing defects in software projects, 

concentrating on finding replies to our research questions, a diplomatic map was used to find the most 

used terminology in the statistical technique’s software projects domains. By following a Prisma 

approach in our systematic review, we started by determining 627 papers and ended with VP analyses 

of 26 papers. The research questions covered three major points. Firstly, we identified the factors of 

our metrics that influence revealing defects in software projects. Secondly, we concentrated our 

research on identifying the production techniques used in the context. After, we determined the 

evaluation criteria used by those techniques. Thus, there is still a chance for enhancement regarding 

our topic to use statistical and intelligent techniques to reveal defects in software projects. 

Finally, a new methodology based on a statistical model able to predict defects in software projects 

was proposed. 

This study succeeded in identifying the critical factors that affect the detection of defects in the 

programs. Statistical analysis is executed by four methods, which are MLR-CDF, MLR-PLSDF, LR-CDF, 

and LR-PLSDF.  LR-CDF outperforms on all the proposed methods in order to accuracy and standard 

error. In addition, LR-CDF outperforms on state-of-the-art methods (Association rule, Decision tree, 

Naive Bayes, and neural network) related to the accuracy by 9.1%, 10.3%, 13.1%, and 13.1% 

respectively. 

 

5.2. LIMITATIONS TO THE CURRENT WORK     

The study has some limitations. it was restricted by the search keywords selected and the time of the 

manuscripts (last six years). In addition, it utilized a fixed number of electronic sources. Furthermore, 

this study only handled English scientific papers, and we cannot warranty to have picked all the worthy 

substance for our review.  

As mentioned, the study has not enveloped all scientific papers in 2021, which may include novel 

intelligent techniques. The emergence of novel intelligent techniques may assist in enhancing the 

accuracy of revealing defects in different software projects. 

5.3. FUTURE WORK 

   It is recommended as future work to utilize other techniques in terms of improving the model 

accuracy and identifying critical factors for revealing defects in software projects. 

This study proposes processing the revealed defects of software projects by integrating optimization 

techniques and deep learning techniques such as long short-term memory, convolutional neural 

networks, and deep forest, which are some of the recent trends found in research aiming to improve 

the accuracy of the proposed model and state-of-the-art method in previous works. 
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