4 research outputs found

    Communication Infrastructure Design for Wide-Area Mobile Computation: Specification in Nomadic Pict

    Get PDF
    We review an example of wide-area mobile agent applications: video-on-demand, long-lived scientific computation, and collaborative work, and the design of a distributed infrastructure required in each of these applications for location-independent communication. For the latter application, we propose an infrastructure algorithm that assumes two kinds of collaboration: (1) within a group of ``mobile'' individuals, who can communicate frequently using different computers connected to a local-area network (possibly via a wireless medium), and (2) some individuals may also communicate outside their groups using the global network. The algorithm has been specified formally, as an executable encoding in Nomadic Pict. The formal specification is concise but gives enough details to be directly translated by application programmers using their language of choice

    A Fault-Tolerant Directory Service for Mobile Agents based on Forwarding Pointers

    No full text
    A reliable communication layer is an essential component of a mobile agent system. We present a new fault-tolerant directory service for mobile agents, which can be used to route messages reliably to them, even in the presence of failures of intermediary nodes between senders and receivers. The directory service, based on a technique of forwarding pointers, introduces some redundancy in order to ensure resilience to stopping failures of nodes containing forwarding pointers; in addition, it avoids cyclic routing of messages, and it supports a technique to collapse chains of pointers that allows direct communication between agents. We have formalised the algorithm and derived a fully mechanical proof of its correctness using the proof assistant Coq; we report on our experience of designing the algorithm and deriving its proof of correctness. The complete source code of the proof is made available from the WWW

    Proceedings of the 2nd International Workshop on Security in Mobile Multiagent Systems

    Get PDF
    This report contains the Proceedings of the Second Workshop on Security on Security of Mobile Multiagent Systems (SEMAS2002). The Workshop was held in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous Agents in 2001. The far reaching influence of the Internet has resulted in an increased interest in agent technologies, which are poised to play a key role in the implementation of successful Internet and WWW-based applications in the future. While there is still considerable hype concerning agent technologies, there is also an increasing awareness of the problems involved. In particular, that these applications will not be successful unless security issues can be adequately handled. Although there is a large body of work on cryptographic techniques that provide basic building-blocks to solve specific security problems, relatively little work has been done in investigating security in the multiagent system context. Related problems are secure communication between agents, implementation of trust models/authentication procedures or even reflections of agents on security mechanisms. The introduction of mobile software agents significantly increases the risks involved in Internet and WWW-based applications. For example, if we allow agents to enter our hosts or private networks, we must offer the agents a platform so that they can execute correctly but at the same time ensure that they will not have deleterious effects on our hosts or any other agents / processes in our network. If we send out mobile agents, we should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are not only interested in whether the agents carry out-out their intended task correctly. They must defend themselves against attacks initiated by other agents, and survive in potentially malicious environments. Agent technologies can also be used to support network security. For example in the context of intrusion detection, intelligent guardian agents may be used to analyse the behaviour of agents on a firewall or intelligent monitoring agents can be used to analyse the behaviour of agents migrating through a network. Part of the inspiration for such multi-agent systems comes from primitive animal behaviour, such as that of guardian ants protecting their hill or from biological immune systems
    corecore