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Abstract

We review an example of wide-area mobile agent applications: video-
on-demand, long-lived scientific computation, and collaborative work, and
the design of a distributed infrastructure required in each of these applica-
tions for location-independent communication. For the latter application,
we propose an infrastructure algorithm that assumes two kinds of collabo-
ration: (1) within a group of “mobile” individuals, who can communicate
frequently using different computers connected to a local-area network
(possibly via a wireless medium), and (2) some individuals may also com-
municate outside their groups using the global network. The algorithm
has been specified formally, as an executable encoding in Nomadic Pict.
The formal specification is concise but gives enough details to be directly
translated by application programmers using their language of choice.
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1 Introduction

The ongoing growth of wide-area networks has brought up considerable interest
in software mobility, in several forms. Mobile agents [8, 16, 12] are units of
executing code that can migrate between machines, and perform tasks locally.
The simplest form of mobile agents — mobile code — is now commonly used in
web applications, e.g. as Java [11] applets. Mobile computation [7] goes further
and allows a running computation (code, data, threads of control) to migrate.
It has been widely argued [7, 12, 30, 33] that software mobility provides a useful
enabling technology for wide-area applications, such as web services, scientific
computation, and collaborative work. With the advent of mobile systems, com-
puters and people can move dynamically. This paves way for novel wide-area
applications. Software mobility can greatly simplify development of such appli-
cations. For instance, architecture-independence and dynamic rebinding, which
are characteristics of software mobility, allow migratory applications to be easily
adapted to changes in physical locations and underlying environment.

To ease application writing one would like to be able to use high-level lo-
cation independent communication facilities, allowing the parts of an appli-
cation to interact without having to explicitly track each other’s movements.
To provide these above standard network technologies (which directly support
only location-dependent communication) requires some distributed infrastruc-
ture. Sewell, Wojciechowski, and Pierce [27] argued that the choice or design
of an infrastructure must be somewhat application-specific — any given infras-
tructure algorithm will only have satisfactory performance for some range of
migration and communication behaviour; the algorithms must be matched to
the expected properties of applications and the communication network. Some
applications also demand disconnected operation (on laptops) and a higher-level
of fault-tolerance.

1.1 Communication Infrastructures for Wide-Area Mo-
bile Computation

Continuing the above work, we propose some example infrastructures for three
wide-area applications of mobile computation: the video-on-demand web ser-
vice, long-lived scientific computation, and collaborative work. We justify our
choices, based on a specific migration and communication pattern of these ap-
plications. In the first two applications the pattern is actually quite limited,
thereby a very simple infrastructure is sufficient. The most interesting case
appeared to be collaborative work. In the paper, we design an infrastructure
algorithm that assumes a model with two kinds of collaboration: (1) within a
group of “mobile” individuals, who can communicate frequently using differ-
ent computers connected to a local-area network (including mobile devices with
wireless connections), and (2) some individuals may also communicate over the
global network or move between groups. This two-tier model of collaboration
covers many real-world scenarios, e.g. think of people working closely on the
same project or task within a local (indoor or outdoor) area, who may occa-
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sionally contact a distant expert or manager or other group.
In our earlier work with Sewell [35, 36], we discussed the Personal Assis-

tant (PA) — a small application for local collaborative work and the design
of an infrastructure suited to it. We focused on demonstrating the benefits of
a multi-level architecture based on clearly defined levels of abstraction, that
correspond to the location-dependent and location-independent communication
between mobile agents. A simple distributed algorithm for location-independent
communication that we have described in [35, 36] assumes a local-area network
(LAN) rather than the wide-area case that we are most interested in here.

In this paper, we explore the full space of infrastructure algorithms for the
wide-area PA application, and propose a novel infrastructure algorithm that
matches the model of two-tier collaboration. The algorithm uses a federation
of servers. Each federated server is responsible for managing communication
within a group of PAs, with a simple discovery protocol for establishing commu-
nication between groups. Such architecture fits naturally into our collaboration
model, optimizing inter and intra-group communications and migrations. A nice
property of the algorithm is that it behaves as well as the optimal-within-LAN
query server algorithm proposed in [35, 36]. However, it avoids a single point of
failure. Furthermore, cache information and compaction techniques are used so
that also the communication between LANs requires only one network message
in the common case.

1.2 Formal Specification of Infrastructure Algorithms in
Nomadic Pict

Many similar propositions of infrastructure algorithms appeared in various im-
plementations of mobile agents (see e.g. [10, 32, 4, 1, 18, 19, 6] among others)
and mobile systems [22, 37, 25]; we characterize this work in Section 6. However,
the details of these algorithms remain the matter of implementation (with few
exceptions, such as a formally verified algorithm in [18]). The existing informal
or textual descriptions do not unambiguously identify a single algorithm — they
often lack important details such as:

• what data are actually locked and for how long,

• how many control messages are needed for application message delivery,

• are the migrations and communications synchronized?

A formal specification can make such details explicit, and so would greatly
help one to make a solid judgment about efficiency, scalability and robustness
of these algorithms. In this paper, we therefore specify our algorithm formally,
thereby making all the details of concurrency and synchronization precise. For
this, we have used Nomadic Pict [27, 36, 33, 29] — a statically-typed, distributed
programming language with agent mobility and message-passing communica-
tion. The language has been proposed especially for designing and reasoning
about communication infrastructure algorithms for mobile agents.

4



Specifying our infrastructure algorithm in Nomadic Pict has several advan-
tages. The algorithm’s specification is concise (it fits into this paper) but pro-
vides all relevant implementation details. This means that application program-
mers are able to translate the specification almost automatically into a low-level
code using their language of choice.

All infrastructure algorithms that we are aware of, use some common de-
sign patterns, such as forwarding pointers, location servers, broadcast and pub-
lish/subscribe interactions [34]. The Nomadic Pict specification makes design
patterns easy to identify, aiding code reuse and clarity.

Message-passing communication in Nomadic Pict is expressed using typed
channels, with a type system that is able to verify communication safety. This
means that common errors, such as packet data format mismatch or dangling
communication, can be found and corrected early in the design process, thus
reducing the probability of such errors later when implementing a full-size in-
frastructure in a target language. Moreover, specifications in Nomadic Pict can
be also tested on distributed machines since the language has been implemented;
the source code is available [28].

The paper is organized as follows. Section 2 describes some example ap-
plications of mobile computation with a simple communication infrastructure.
Section 3 presents the PA application which requires a complex infrastructure.
Section 4 summarizes briefly the Nomadic Pict notation that we use later. Sec-
tion 5 presents a formal specification of the PA infrastructure algorithm as a
Nomadic Pict encoding. Section 6 discusses related work. Section 7 concludes.

2 Mobile Agent Applications with Simple In-
frastructure

In some distributed applications, software mobility has potential advantages
over traditional approaches. Firstly, we describe a video-on-demand web ser-
vice, in which by bringing the computation closer to data, it is often possible
to decrease latency and increase throughput of network transmission. Then,
we describe long-lived scientific computation, in which mobility can help to ef-
ficiently use computer resources. As we will see, both applications require a
rather simple communication infrastructure.

2.1 Video-On-Demand Web Service

The use of mobile computation makes a lot of sense in case of applications that
are launched from mobile devices. Suppose we want to download a large file
from a video-on-demand web service to a mobile computer; the file can be frag-
mented, and different fragments are available on different busy servers. Since
mobile devices are only intermittently connected to a network, our application
can develop an agent request, possibly while disconnected, and begin down-
loading the file once it is connected. Note that the communication can often
be via low-bandwidth, high-latency, high-cost connections (wireless or dial-up
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links). The agent can therefore react to a drop in network bandwidth (or battery
level) and clone itself on a well-connected site, e.g. the user’s home PC. The
network-intensive transfer is continued at this remote site. In the meantime,
the application on the mobile computer can resume transfer if the connection
is reestablished. Progress on both sites, if any, is reported during a subsequent
connect session, so that the agents can adjust their downloading criteria and
download only those fragments of a file that are needed to complete the transfer.
During the periods of time when the connection is stable, the missing fragments
are downloaded directly from the user’s home PC. In a more advanced case,
we can have two or more agents that migrate to distant Internet locations to
transfer data in parallel.

Migration and Communication Pattern The application uses a one-hop
migration in a wide-area network. The parts of a running application may be
moved dynamically (together with a local state and possibly also a thread of
control) to well-connected locations, or sites, where they continue downloading
the file. The migrated state describes the current state of the downloading
protocol, e.g. names of files, directories, file fragments, and web addresses.
Different file fragments downloaded at remote sites are communicated directly
to the mobile computer, where they are merged by the application that initiated
the downloading process.

Design of Appropriate Infrastructure The application components at
different sites create a star or a tree-like infrastructure, where a root of the
tree is the main component that has initiated the process of downloading files.
The locations of downloading agents do not change. However, the root compo-
nent may be disconnected and connected again, possibly at a different location.
Therefore, it needs to synchronize with the downloading agents on each recon-
nection, so that they can update the current location of the root, and switch
its status to “connected”. No global service for tracking migrations is however
required.

2.2 Long-Lived Scientific Computation

The combinatorial optimization problems in a number of areas, including
telecommunications, VLSI design, financial analysis, and biomedical analysis,
may require considerable computations. In such cases, parallel implementations
of metaheuristics that are applied to these problems, such as genetic and tabu
search algorithms, become necessary to reach high-quality solutions in reason-
able times. One approach to parallelization assumes that multiple instances
of the algorithm (called tasks) are executed in parallel on different machines.
Different tasks can start with the same or different initial solution. Each task
performs a given number of iterations and then broadcasts the best solution.
The best of all solutions becomes the initial solution for the next iteration of
the algorithm.

Roughly, a larger number of parallel tasks leads to higher performance. Mo-
bility can help to efficiently use all the machines and provide a quality of service

6



for concurrent users. For instance, tasks can be occasionally moved between
machines as part of system maintenance, or for load balancing. The main ad-
vantage of mobile computation here is the possibility of moving tasks between
locations transparently, e.g. as part of a system administration procedure before
switching off or rebooting a machine, or when the system is overloaded. The
idea of using migration for load balancing is not new [16] — it spawned a lot
of interest in process migration in the 80s. The recent technology advances,
including virtual machines, enable however more useful implementations, which
remove some restrictions of the early approaches.

Migration and Communication Pattern The migration is infrequent, e.g.
twice every 24 hours. During day-time, an application is executed only on a
few dedicated machines, while during the night, it can possibly involve tens or
several hundred computers connected to a university campus network, or over
the Internet.

Design of Appropriate Infrastructure The tasks of a collaborative group
synchronize among themselves on migrations, and multicast partial solutions
within the group. Some tasks (with their state) can be lost due to process
crashes. This is however not a problem since no task holds critical data. Thus
new tasks can be easily added on-the-fly to replace those that crashed. If the
algorithm runs long enough, it will eventually produce a solution with acceptable
quality. As strong reliability of message delivery is not required, tasks can use
best-effort or gossip-based multicasts [3], which scale well to a large number of
tasks.

3 The Personal Assistant Application with
Complex Infrastructure

We now discuss an application that requires a complex communication infras-
tructure.

We consider the support of collaborations within (say) a large computer
science department, spread over several buildings. Most individuals will be
involved in a few collaborations, each of 2–10 people. Individuals move fre-
quently between offices, labs and public spaces; impromptu working meetings
may develop anywhere. Individuals would therefore like to be able to summon
their working state (which may be complex, consisting of editors, file browsers,
tests-in-progress etc.) to any machine. These summonings should preserve any
communications that they are engaged in, for example audio/video links with
other members of the project. To achieve this, the user’s working state can be
encapsulated in a mobile agent, an electronic personal assistant (PA), that can
migrate on demand.

We consider the support of remote collaborations, too. Personal assistants
can be temporarily delegated to another institution. For instance, the program-
ming state (which may include source files, makefiles, and test data) can be
delegated to expert(s) who can analyse the files while interacting with the pro-
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gram’s developer over the Internet, modify code, run the modified code using
the original test data, and finally send the corrected program back to the de-
veloper. Also, individuals can occasionally visit other institutions and summon
their PA agents.

A closely related application for multimedia CSCW is described in [2], imple-
mented (with real video support) using the Tube Mobile Agent System. A low-
level multimedia stream library was used; streams were reconnected on move-
ment at the application level. Moving this into the infrastructure would involve
synchronizations between the source and all sinks of a stream on any migration.

Migration and Communication Pattern To facilitate experimentation,
we have implemented a minimal functionality of the PA application, i.e. an
instant messaging service. The application has three classes of agents: the
PAs themselves, which migrate from site to site; summoner agents, which are
static (one per site) and are used to call the PAs (the application launches
summoners dynamically, using the standard migration primitive, onto the list of
active sites); and name server agents, also static, which maintain a lookup table
from the textual keys of PAs to their internal agent names. For simplicity the
implementation uses location-independent communication throughout, despite
the fact that the name server and summoners are static.

A usable infrastructure for the PA application can only be designed in the
context of detailed assumptions, both about the system properties and about
the expected behaviour of the high-level agents.

For the former, we assume that the application is running over a collection
of large LANs, which are connected to a wide-area network, or intranet. In
each LAN reliable messaging can be provided by lower-level protocols and all
machines are at roughly the same communication cost distance from each other.
Machines are also basically reliable, although from time to time it is necessary
to reboot or turn off.

For the latter, we suppose that the number of PA agents is of the same order
as the number of people in the labs. Each PA will migrate infrequently, with
minutes or hours between migrations. The path of migrations is unpredictable
— it may range over the whole LAN, some PAs may also migrate between
LANs. The migrations of different PAs are essentially uncorrelated in time. It is
common for people to work for extended periods at machines out of their offices.
PAs communicate between each other frequently, with significant bandwidth —
e.g. audio/video messages or streams, and other data (that must be delivered
reliably).

Design of Appropriate Infrastructure We develop our infrastructure in
several steps, beginning with the simple algorithms described in [27] and [36].
Then, we discuss an algorithm that is more suitable for wide-area collaboration.

The Central Server algorithm has a single server that records the current
site of every agent; agents synchronize with the server before and after migra-
tions; application (location-independent) messages are sent via the server. The
Forwarding Pointers algorithm has a daemon on each site; when an agent mi-
grates away it leaves a pointer to the site that it is going to (and the daemon
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there). Application messages are delivered by the daemons, following the point-
ers. Neither of these algorithms suffice for the PA application. The central
server is a bottleneck for all inter-PA communication; further, all application
messages must make two hops (and these messages make up the main source of
network load). The forwarding pointers algorithm removes the bottleneck, but
there application messages may have to make many hops, even in the common
case.

Adapting the Central Server so as to reduce the number of application-
message hops required, we have the Query Server algorithm. As before, it has a
server that records the current site of every agent, and agents synchronize with
it on migrations. In addition, each site has a daemon. An application message
is sent to the daemon which then queries the server to discover the site of the
target agent; the message is then sent to the daemon on the target site. If the
agent has migrated away, the message is returned to the original daemon to try
again. In the common case application messages will here take only one hop.
The obvious defect is the large number of control messages between daemons
and the server; to reduce these each site’s daemon can maintain a cache of
location data.

The Query Server with Caching, described precisely in [36], does this. When
a daemon receives a mis-delivered message, for an agent that has left its site, the
message is forwarded to the server. The server both forwards the message on
to the agent’s current site and sends a cache-update message to the originating
daemon. In the common case application messages are therefore delivered in
only one hop. However, the algorithm does not scale to a large number of agents
and the global network. The obvious defect is the need to send control messages
between the daemons and the server over the Internet, even if migrations and
communications are local within a LAN. Furthermore the algorithm has single
point of failure. The usual solution is to have many servers, each dealing with
agents of a single user or a collaborative group. The problem is however how
to manage the servers so that the number of messages between servers and
daemons is optimized, considering the migration and communication pattern of
our two-tier model of collaboration.

In this paper we propose the Federated Query Server with Caching (FQSC)
as an example solution. It has a collection of query servers, each maintaining
locations of agents that are present in a local domain, where a domain can
range from a single mobile computer to a LAN. For each agent name there is
at least one server (the local server) that records the current site of the agent;
agents synchronize with the local server before and after migrations. In case of
migrations to a new domain, agents must also register at a new query server,
which now becomes their local server. The location-independent messages are
sent directly to remote destinations according to the cache information, or —
if there is no good cache data — via servers, following pointer chains that are
collapsed when possible. In the common case application messages are delivered
in only one hop.
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This may seem well-suited to the PA application, but the textual description
omits many critical points — it does not unambiguously identify a single algo-
rithm. To do so, and to develop reasonable confidence in its correctness and
performance, a more precise description is required, ideally in an executable
form. We give such a description, as a Nomadic Pict encoding, in Section 5.

4 The Nomadic Pict Language

Nomadic Pict has been designed and implemented as a vehicle for exploring
distributed infrastructure. It builds on the Pict language of Pierce and Turner
[24], a concurrent (but not distributed) language based on the asynchronous
π-calculus [14]. Pict supports fine-grain concurrency and the communication of
asynchronous messages. To these Low-Level Nomadic Pict adds primitives for
agent creation, the migration of agents between sites, and the communication
of location-dependent asynchronous messages between agents. The high-level
language adds location-independent communication; an arbitrary infrastructure
can be expressed as a user-defined translation into the low-level language.

In this section we introduce enough of the Nomadic Pict language for the
example infrastructure following. The language constructs have been described
informally; an operational semantics can be found in [27, 33].

We begin with an example. Below is a program in the low-level language
showing how an applet server can be expressed. It can receive (on the channel
named getApplet) requests for an applet; the requests contain a pair (bound
to a and s) consisting of the name of the requesting agent and the name of its
site. We use P and Q (in the italic font) to denote other program fragments.

getApplet ?* [a s] =

agentagentagent b =

migratemigratemigrate tototo s ( <a@s’>ack!b | P )

ininin ()

When a request is received the server creates an applet agent with a new name
bound to b. This agent immediately migrates to site s. It then sends an
acknowledgment to the requesting agent a (which is assumed to be on site s’)
containing its name. In parallel, the body P of the applet commences execution.

The example illustrates the main entities of the language: sites, agents and
channels. Sites should be thought of as physical machines or, more accurately,
as instantiations of the Nomadic Pict runtime system on machines; each site
has a unique name. Agents are units of executing code; an agent has a unique
name and a body consisting of some Nomadic Pict process; at any moment it
is located at a particular site. Channels support communication within agents,
and also provide targets for inter-agent communication—an inter-agent message
will be sent to a particular channel within the destination agent. Channels also
have unique names. The language is built above asynchronous messaging, both
within and between sites; in the current implementation inter-site messages are
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sent on TCP connections, created on demand, but our algorithms do not depend
on the message ordering that could be provided by TCP.

The inter-agent message <a@s>ack!b is characteristic of the low-level lan-
guage. It is location-dependent—if agent a is in fact on site s then the message
b will be delivered, to channel ack in a; otherwise the message will be discarded.
In the implementation at most one inter-site message is sent.

Names As in the π-calculus, names play a key rôle; sites, agents and channels
are all named (they are distinguished by the type system). New names of agents
and channels can be created dynamically. These names are pure, in the sense of
Needham [21]; no information about their creation is visible within the language
(in our current implementation they do contain site IDs, but could equally well
be implemented by choosing large random numbers).

Types The language inherits a rich type system from Pict, including higher-
order polymorphism, simple recursive types and subtyping. It has a partial type
inference algorithm, which can statically detect some communication errors, e.g.
due to mismatch between types of message senders and message receivers. It
adds new base types Site and Agent of site and agent names, and a type
Dynamic for implementing traders. In this paper we make most use of Site,
Agent, the base type Bool of booleans, the type ^T of channel names that can
carry values of type T, tuples [T1 .. Tn], and existential polymorphic types
such as [#X T1 .. Tn] in which the type variable X may occur in the field types
T1 .. Tn. We also use variants and a type operator Map from the libraries,
taking two types and giving the type of maps, or lookup tables, from one to the
other.

Values and Patterns Channels allow the communication of first-order values:
names a,b,. . . , boolean values, strings, tuples [v1 .. vn] of the n values v1
.. vn, packages of existential types [T v1 .. vn], and elements of variant
types {Label> v}. The language does not support communication of processes
(except for the migration of whole agents) or of higher-order functions. Patterns
p are of the same shapes as values.

Low-Level Language The main syntactic category is that of processes (we
confuse processes and declarations for brevity). We will introduce the main
low-level primitives in groups.

agentagentagent a=P ininin Q agent creation
migratemigratemigrate tototo s P agent migration

The execution of the construct agentagentagent a=P ininin Q spawns a new agent on the
current site, with body P. After the creation, Q commences execution, in parallel
with the rest of the body of the spawning agent. The new agent has a unique
name which may be referred to both in its body and in the spawning agent (i.e.
a is binding in P and Q). Agents can migrate to named sites — the execution
of migratemigratemigrate tototo s P as part of an agent results in the whole agent migrating to
site s. After the migration, P commences execution in parallel with the rest of
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the body of the agent.

P | Q parallel composition
() nil

The body of an agent may consist of many process terms in parallel, i.e. essen-
tially of many lightweight threads. They will interact only by message passing.

newnewnew c:ˆT P new channel name creation
c!v output v on channel c in the current agent
c?p = P input from channel c
c?*p = P replicated input from channel c

To express computation within an agent, while keeping a lightweight implemen-
tation and semantics, the language includes π-calculus-style interaction primi-
tives. Execution of newnewnew c:^T P creates a new unique channel name for carrying
values of type T; c is binding in P. An output c!v (of value v on channel c)
and an input c?p=P in the same agent may synchronize, resulting in P with the
appropriate parts of the value v bound to the formal parameters in the pattern
p. A replicated input c?*p=P behaves similarly except that it persists after the
synchronization, and so may receive another value. In both c?p=P and c?*p=P
the names in p are binding in P.

To express time-bound program exceptions, the language also includes a
timed input construct with a timeout value, omitted here as we do not use it.

iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q

test-and-send to agent a on this site
<a@s>c!v send to agent a on site s

Finally, the low-level language includes primitives for interaction between
agents. The execution of iflocaliflocaliflocal <a>c!v thenthenthen P elseelseelse Q in the body of an
agent b has two possible outcomes. If agent a is on the same site as b, then
the message c!v will be delivered to a (where it may later interact with an
input) and P will commence execution in parallel with the rest of the body of b;
otherwise the message will be discarded, and Q will execute as part of b. The
construct is analogous to test-and-set operations in shared memory systems —
delivering the message and starting P, or discarding it and starting Q, atomi-
cally. It can greatly simplify algorithms that involve communication with agents
that may migrate away at any time, yet is still implementable locally, by the
runtime system on each site. Another useful construct can be expressed in the
language introduced so far: <a@s>c!v attempts to deliver c!v to agent a on site
s. It fails silently if a is not where expected and so is usually used only where
a is predictable.

High-Level Language The high-level language is obtained by extending the
low-level with location-independent communication primitives.

<a@?>c!v location-independent output to agent a

12



The intended semantics of an output <a@?>c!v is that its execution will reliably
deliver the message c!v to agent a, irrespective of the current site of a and of
any migrations. The low-level communication primitives are also available, for
interacting with application agents whose locations are predictable.

Expressing Encodings The language for expressing encodings allows the
translation of each interesting phrase (all those involving agents or communica-
tion) to be specified; the translation of a whole program can be expressed using
this compositional translation. A translation of types can also be specified, and
parameters can be passed through the translation. We omit the concrete syn-
tax; the example infrastructure in Section 5 should give the idea. The concrete
syntax has been described in the language documentation [28].

Locks, methods and objects The language inherits a common idiom for
expressing concurrent objects from Pict [23]. The process

newnewnew lock:^StateType

( lock!initialState

| method1?*arg = (lock?state = ... lock!state’ ...)

...

| methodn?*arg = (lock?state = ... lock!state’’ ...)

)

is analogous to an object with methods method1. . .methodn and a state of type
StateType. Mutual exclusion between the bodies of the methods is enforced by
keeping the state as an output on a lock channel; the lock is free if there is an
output and taken otherwise.

5 Example Infrastructure for Personal Assis-
tants

In Section 3, we introduced the Federated Query Server with Caching (FQSC)
infrastructure for the PA application. In this section we describe the infras-
tructure algorithm as a Nomadic Pict encoding, thereby making all the details
of concurrency and synchronization precise. At first sight the code fragments
may seem impenetrable, but we believe they repay study – almost the entire
encoding can be given in 2.5 pages, rather concise for a non-trivial executable
distributed infrastructure.

5.1 Specification of the FQSC Algorithm in Nomadic Pict

An encoding consists of three parts, a top-level translation (applied to whole
programs), an auxiliary compositional translation {P} of high-level constructs
P, and an encoding of types. The FQSC encoding involves three main classes
of agents: the query servers Q (distributed on sites so that there is at least one
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serverserver?*SQ:Site = (* launch a query server Q on site SQ *)

agentagentagent Q =

migratemigratemigrate tototo SQ

newnewnew lock : ^(Map AgentTy SiteTy)

( <toplevel@firstSite>nq![Q SQ]

| lock!(map.make ==) (* initialise lock *)

| register?*[a [S DS]] =

lock?m = ( lock!(map.add m a [S DS])

| (val [A _ _] = a <A@S>ack![]))

| migrating?*a = (* lock during a migration *)

lock?m = switchswitchswitch (map.lookup m a) ofofof

{Found> [S : Site DS : Agent]} ->

(val [A _ _] = a

( <A@S>ack![]

| migrated?[S’ DS’ DR’ R’] =

( lock!(map.add m a [R’ DR’])

| <A@S’>ack![])))

{NotFound> _} -> ()

| message?*[#X DU U a:AgentTy c:^X v:X _] =

(* deal with a lost message *)

lock?m = switchswitchswitch (map.lookup m a) ofofof

{Found> [R : Site DR : Agent]} ->

( <DR @ R>message![Q SQ a c v true]

| update?[_ [S’ DS’]] =

( <DU @ U>update![a [S’ DS’]]

| lock!(map.add m a [S’ DS’] )))

{NotFound> _} ->

(val [A Q’ SQ’] = a

( <Q’@ SQ’>message![Q SQ a c v true]

| update?[_ [S’ DS’]] =

( <DU @ U>update![a [S’ DS’]]

| lock!(map.add m a [S’ DS’] )))))

Figure 1: Parts of the Top Level in the FQSC Algorithm – the Query Server

server in each LAN), the daemons D (one on each site), and the translations
of high-level application agents (which may migrate). The top-level translation
launches all the query servers and the daemons before executing the application
program. The query server, and the code which launches daemons, are given in
Figures 1, 2; the interesting clauses of the compositional translation are in the
text below.

Each class of agents maintains some explicit state as an output on a lock
channel. For each agent name there is at least one server – including some local
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daemondaemon?*[S:Site [Q:Agent SQ:Site]] =

(* launch a daemon D on site S *)

(* Q is a local Query Server at site SQ *)

agentagentagent D = (* the daemon body *)

migratemigratemigrate tototo S

newnewnew lock : ^(Map AgentTy SiteTy)

( <toplevel@firstSite>nd![S D Q SQ]

| lock!(map.make ==)

| try_message?*[#X a:AgentTy c:^X v:X] =

lock?m= switchswitchswitch (map.lookup m a) ofofof

{Found> [R : Site DR : Agent]} ->

( <DR @ R>message![D S a c v false]

| lock!m )

{NotFound> _} ->

( <Q @ SQ>message![D S a c v true]

| lock!m )

| message?*[#X DU:Agent U:Site a:AgentTy

c:^X v:X ackme:Bool] =

(valvalval [A _ _] = a

iflocaliflocaliflocal <A>c!v thenthenthen

ififif ackme thenthenthen <DU @ U>update![a [S D]] elseelseelse ()

elseelseelse <Q@SQ>message![DU U a c v true])

| update?*[a s] = lock?m = lock!(map.add m a s) )

Figure 2: Parts of the Top Level in the FQSC Algorithm – the Daemon Daemon

server in a LAN where the agent currently is – that has the site and daemon
where the agent is currently located, stored in a map m. As we will see below, the
encoding of each high-level agent records its current site and daemon, and the
name and site of the local server. This is kept accurate when agents are created
or migrate. To guarantee this property, the cross-domain migration involves a
local server hand-over.

Each daemon maintains a map m from some agent names to the site and
daemon that they guess the agent is located at. This is updated only when
a message delivery fails. If a local server does not have correct location data,
a message will be delivered using forwarding pointer chains that are collapsed
when possible. If a query server has no pointer for the destination agent of a
message then it will forward the message to its home server, i.e. the server on
which the agent was originally registered, which has the pointer. To make this
possible an agent name is encoded by a triple of an agent name and the names
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of the agent’s home server and the home server’s site.
The messages sent between agents fall into three groups, implementing the

high-level agent creation, agent migration, and location-independent messages.
Typical executions are illustrated in Figures 3, 4 and below. Correspondingly,
only these cases of the compositional translation are non-trivial.

To send a location-independent message the translation of a high-level agent
simply asks the local daemon to send it. The compositional translation of
<b@?>c!v, ‘send v to channel c in agent b’, is below.

{<b @ ?>c ! v}a =
currentloc?[S DS Q SQ]=

iflocaliflocaliflocal <DS>try_message![b c v] thenthenthen

currentloc![S DS Q SQ]

elseelseelse ()

This first reads from the agent’s lock channel currentloc: the name S of the
current site, the name DS of the local daemon, the name Q of the local query
server, and the name SQ of the server’s site, then sends [b c v] on the channel
try message to DS, replacing the lock after the message is sent. The translation
is parametric on the name a of the agent containing this phrase — for this
phrase, a is however not used. We return later to the process of delivery of the
message.

A high-level agent a synchronizes with the query server while creating a new
agent b, with messages on register and ack.

{ agentagentagent b = P ininin P’ }a =

currentloc?[S DS Q SQ] =

(valvalval [A _ _] = a

agentagentagent B =

valvalval b = [B Q SQ]

( <Q @ SQ>register![b [S DS]]

| ack?_= iflocaliflocaliflocal <A>ack![] thenthenthen

( currentloc![S DS Q SQ]

| {P}b )

elseelseelse ())

ininin

valvalval b = [B Q SQ]

ack?_= ( currentloc![S DS Q SQ]

| {P’}a ))

The current site/daemon/server data for the new agent must be initialised to
[S DS Q SQ]; the creating agent is prevented from migrating away until the
registration has taken place by keeping its currentloc lock until an ack is
received from b. Note that the name b of the new agent in the high-level
program is actually encoded by a triple of an agent name B and the names of
its home server Q and the home server’s site SQ, i.e. b = [B Q SQ]; there is a
translation of a type

{Agent} = AgentTy = [Agent Agent Site] .
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A sample execution is below.

a@S b@S Q@SQ

create

sXXXXXXXXXz
register![b [S DS]]

���������9
ack!

¾ack!

To migrate while keeping the local query server’s map accurate, the trans-
lation of a migratemigratemigrate in a high-level agent must synchronize with the local query
server before and after actually migrating, with migrating, migrated, and ack
messages. If the target site U is in the domain managed by a different query
server Q’ (see an elseelseelse clause below) then the agent registers at Q’ (which is
now the agent’s new local server) and sends a migrated message to Q (which
updates its cache with the new server’s name/site).

{ migratemigratemigrate tototo u P }a =
currentloc?[S DS Q SQ] =

valvalval [A _ _] = a

valvalval [U DU Q’ SQ’] = u

( <Q @ SQ>migrating!a

| ack?_=

(migratemigratemigrate tototo U

ififif (== [Q’ SQ’] [Q SQ]) thenthenthen

(* migration within a domain *)

( <Q @ SQ>migrated![U DU DU U]

| ack?_ = (currentloc![U DU Q SQ]

| {P}a ))

elseelseelse (* a cross-domain hop! *)

( <Q’ @ SQ’>register![a [U DU]]

| ack?_=( <Q@SQ>migrated![U DU Q’SQ’]

| ack?_ =

( currentloc![U DU Q’ SQ’]

| {P}a )))))
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A sample execution of a migration in a domain is below.

a@S Q@SQ

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigrate tototo U

XXXXXXXXXz

migrated![U DU DU U]

���������9
ack!

A sample execution of a cross-domain migration with registration at Q’ is fol-
lowing.

a@S Q@SQ Q’@SQ’

XXXXXXXXXz

migrating!a

���������9
ack!

migratemigratemigrate tototo U

XXXXXXXXXXXXXXXXXXz

register![a [U DU]]

������������������9
ack!

XXXXXXXXXz

migrated![U DU Q’ SQ’]

���������9
ack!

The query server’s lock is kept during the migration. The agent’s own record of
its current site and daemon and its local server must also be updated with the
new data U DU Q’ SQ’ when the agent’s lock is released. Note that in the body
of the encoding the name DU of the daemon on the target site and the names Q’
and SQ’ of the server and its site of the target domain must be available. This
is achieved by encoding site names in the high-level program by quadruples of
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Message flow in good-guess and no-guess scenarios.

Daemon agent

Mobile agent

Site

Message flow No guess in D

D DR

Q

SQ

RS

ba
Good guess

a

D

S

The best scenario: good guess in the D cache. This should be the common case.

a@S D@S DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v false]

-c!v -c!v

No guess in the D cache.

a@S D@S Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v true]

XXXXXXXXXz

message![Q SQ b c v true]

���������9
update![b [R DR]]

-c!v

���������9
update![b [R DR]]

Horizontal arrows are synchronized communications within a single machine
(using iflocaliflocaliflocal); slanted arrows are asynchronous messages.

Figure 3: The Delivery of Location-Independent Message <b@?>c!v from a to b
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The 1st worst scenario: wrong guess in the D cache.

a@S D@S DU@U Q@SQ DR@R b@R

-try message![b c v]
XXXXXXXXXz

message![D S b c v false]

XXXXXXXXXz

message![D S b c v true]

XXXXXXXXXz

message![Q SQ b c v true]

���������9
update![b [R DR]]

-c!v

������������������9
update![b [R DR]]

The 2nd worst scenario: not-updated (or no) guess in the query server’s cache.

Q@SQ Q’@SQ’

XXXXXXXXXz

message![Q SQ b c v true]

q q q
���������9

update![b [R DR]]

Figure 4: The Delivery of Location-Independent Message <b@?>c!v from a to b
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a site name and the associated daemon name and a query server name/site for
that site; there is a translation of a type

{Site} = SiteTy = [Site Agent Agent Site] .

Returning to the process of message delivery, there are three cases (see Fig-
ure 3 for the first two cases). Consider the implementation of <b@?>c!v in agent
a on site S, where the daemon is D. Suppose b is on site R, where the daemon is
DR. Either D has the correct site/daemon of b cached, or D has no cache data for
b, or it has incorrect cache data. In the first case D sends a message message
to DR which delivers the message to b using iflocaliflocaliflocal. For the PA application
this should be the common case, including the cross-domain communication; it
requires only one network message.

In the cache-miss case (see at the bottom of Figure 3) daemon D sends a
message message to the local query server Q, which forwards the message to
a daemon DR at site R, which then delivers successfully and sends an update
message back to D via Q (both D and Q update their cache). The query server’s
lock is kept until the message is delivered, thus preventing b from migrating
until then. Two other variants are possible. If the forwarding pointer for the
agent b is not found, Q forwards the message to b’s home server (the server’s
name/site are encoded as part of the name b). Similarly, if b has moved between
domains and there has been no communication to b since then (and so no cache
updates), Q will contain a pointer to the query server in the domain visited by
b. In this case, the message message is forwarded between query servers until
it eventually reaches DR (see the chain of forwarding servers at the bottom of
Figure 4). Note that the forwarding pointer chain is collapsed by sending the
update messages which update caches with b’s current location.

Finally, the incorrect-cache-hit case (see Figure 4). Suppose D has a mistaken
pointer to DU@U. It will send a message message to DU which will be unable to
deliver the message. DU will then send a message to the query server, much as
before (except that the cache update message still goes to D, not to DU).

5.2 Design Choices and Possible Extensions

The FQSC algorithm avoids sending too many cache updates over the Internet,
e.g. as long as agent migrations are local, a cache-update message to other
query servers is sent only in the case of incorrect-cache-hits from these servers.
Consequently, the cost of forwarding a message to agents in other domains is
paid only for the first message. Then, the forwarding pointer chain is collapsed
and any subsequent messages (from the same location) are sent directly.

The above design choice reflects the expected behaviour of the PA agents,
i.e. (1) the inter-domain migrations, which correspond to the PA delegation or
a physical movement of individuals, are less frequent than migrations within a
domain, and (2) the communication is more frequent than migration. Otherwise,
it may be worth to collapse the forwarding pointer chain more often, e.g. the
cache of several daemons and servers could be updated upon each cross-domain
migration (not only the last-visited ones).
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One can also analyse the application further. In fact, migrations of the
PA agents may usually be within a small group of machines, e.g. those of a
project group. More sophisticated infrastructures might use some heuristics to
take advantage of this. For a critical application a quantitative analysis may be
required. An exhaustive discussion is beyond the scope of this paper.

The PA application may also demand disconnected operation (on laptop
computers). For this, we can easily extend the FQSC algorithm with the Query
Server with Caching and Disconnection (QSCD) infrastructure, described in
[34]. The QSCD infrastructure allows a program to disconnect a site (a lap-
top computer) from the network, and later reconnect, so that all application
messages to and from the site are transparently delivered irrespective of agent
migration and site disconnection. The FQSC augmented with QSCD infras-
tructure allows mobile computers to change domains. They can also connect
to each other and establish ad-hoc communications, assuming that at least one
computer has a query server, so that this computer can be a “domain” to which
the other connects.

This paper does not explicitly address questions of security, fault-tolerance,
or administrative domains. These should be addressed in the full-size imple-
mentation of the PA infrastructure. In order to tolerate machine crashes, the
(logical) query servers can be replicated on several machines using a group com-
munication middleware [13]. Reliable communication channels can be imple-
mented using reliable point-to-point communication above UDP, e.g. the reli-
able transport protocol provided by the group communication middleware.

6 Related Work

Many authors present strategies for locating mobile objects and devices (see,
e.g., survey papers [37, 25]). Similar to locating objects are mechanisms for
resource discovery. For instance, Dimakopoulos and Pitoura [9] describe cached-
based distributed flooding approaches to locate a peer that provides a particular
resource, with cache updates propagated either upon resource lookup or change.

Our work builds on the above, but is focused on location-independent mes-
sage delivery, which provides stronger properties than a pair of unsynchronized
agent lookup and message sending actions. For instance, the FQSC algorithm
guarantees that messages are not lost irrespective of agent migrations, and the
upper bound on the number of hops required to deliver a message in case of
local (within domain) migrations is known.

A number of agent systems provide a form of location independence; we
briefly review some of them below. Comparisons are difficult, in part because of
the lack of clear levels of abstraction and descriptions of algorithms — without
these, it is hard to understand the performance and robustness properties of the
infrastructures.

The Join Language [10] provides location-independent messages using a
built-in infrastructure, based on forwarding pointer chains that are collapsed
when possible.
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Voyager [32] supports location-independent messages, both synchronous and
asynchronous messages and multicasts, again using forwarding pointer chains
that are collapsed when possible. A directory service is also provided.

The Mobile Object Workbench [4] provides location independent interac-
tion, using a hierarchical directory service for locating clusters of objects that
have moved. There is a single infrastructure, although it is stated that the
architecture is flexible enough to allow others.

The infrastructure work of Aridor and Oshima [1] provides three main forms
of message delivery: location-independent using either forwarding pointers or
location servers, and location dependent (they also provide other mechanisms
for locating an agent).

Mobile Objects and Agents (MOA) [17] supports four schemes for locating
agents; these are used as required to deliver location-independent messages.
Stream communication between agents is also described, with communicating
channel managers informing each other on migration.

Roth and Peters [26] propose a scalable global service for locating mobile
agents, with encryption and decryption capabilities to prevent security attacks
through agent impersonating.

The MASIF proposal [15] also involves four locating schemes, but appears
to build communication facilities on top. This excludes a number of reason-
able infrastructures; it contrasts with our approach here, in which location-
independent message delivery is taken as primary (some infrastructures do not
support a location service).

Murphy and Picco [20] present a distributed-snapshot-based algorithm —
it attempts to deliver a message to every agent in the system using broadcast,
and only the agents whose IDs match the message target actually accept the
message.

Moreau [18] describes formally an algorithm for routing messages to mi-
grating agents, which is based on distributed location directory service, with
forwarding pointer chains that are collapsed when possible. In [19], he describes
the directory extended with pointer redundancy to tolerate node crashes; the
algorithm has been verified using the proof assistant Coq.

Cao et al. [6, 5] propose to separate agents and movable mailboxes, i.e.
receivers of location-independent messages, with push and pull techniques that
can be used by agents to obtain messages from their mailbox; they also discuss
schemes to make the communication tolerant to mailbox crashes [6], and path
compression for better performance [5].

The use of home servers in our FQSC algorithm resembles the Internet Mo-
bile Host Protocol (IMHP) proposed by Perkins et al. [22] for transparent rout-
ing of IP packets to mobile hosts. By enabling sites to also cache bindings for
mobile hosts (or mobile agents in FQSC) both protocols provide mechanisms
for better routing which bypasses the default reliance on routes through the
home server, and so they eliminate the likelihood that the home server would
be a bottleneck. However, cache updates are performed differently, with FQSC
optimizing the migration and communication pattern of Personal Assistants.
The FQSC protocol normally delivers messages to mobile agents in one-hop,
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while IMHP must route messages to mobile hosts via care-of address (which
corresponds to the current local server of the target mobile agent in FQSC).

See also [34, 33] for discussion of many different infrastructure strategies for
location independence, including some comparison and discussion of scalability
and reliability issues.

7 Conclusion

The contribution of this paper is twofold:

• We discuss the communication and migration pattern of example wide-
area mobile agent applications: video-on-demand and scientific computa-
tion, which require a simple communication infrastructure, and collabora-
tive work that demands a more sophisticated infrastructure;

• For the latter, we propose the FQSC algorithm that is matched to the
two-tier model of wide-area collaboration of mobile users; it optimizes
message complexity, assuming frequent migrations and communications
within groups of users and occasional inter-group migrations.

The FQSC algorithm has been presented formally as an executable speci-
fication in the Nomadic Pict language. The advantage of using Nomadic Pict
to design communication protocols for mobile computation is that errors can
be found and corrected early in the design process. The specifications can be
verified using a type system, tested on distributed machines, and finally recoded
in Java or other language.

In our experience with designing such algorithms we have found that the lan-
guage provides a good level of abstraction at which potential problems (such as
deadlocks and lost messages) can be seen rather clearly. The uniform treatment
of concurrency and asynchronous messages both within agents and between
machines is a significant gain.

Last but not least, the Nomadic Pict language supports formal reasoning
about software mobility. Unyapoth and Sewell [31] have developed language-
based proof techniques which are based on Nomadic Pict, and used them to
formally prove the correctness of an example infrastructure algorithm (a Central
Server algorithm).

Acknowledgments. We would like to thank Peter Sewell and Asis Un-
yapoth for many useful discussions throughout the Nomadic Pict project.
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