26,620 research outputs found

    Quantum-inspired Machine Learning on high-energy physics data

    Get PDF
    Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton-proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.Comment: 13 pages, 4 figure

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201

    Multi-scale Discriminant Saliency with Wavelet-based Hidden Markov Tree Modelling

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between centre and surround classes. Discriminant power of features for the classification is measured as mutual information between distributions of image features and corresponding classes . As the estimated discrepancy very much depends on considered scale level, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden Markov Tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, a saliency value for each square block at each scale level is computed with discriminant power principle. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multi-scale discriminant saliency (MDIS) method against the well-know information based approach AIM on its released image collection with eye-tracking data. Simulation results are presented and analysed to verify the validity of MDIS as well as point out its limitation for further research direction.Comment: arXiv admin note: substantial text overlap with arXiv:1301.396

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts
    corecore