46,455 research outputs found

    Optical Propagation Methods for System-Level Modeling of Optical MEM Systems

    Get PDF
    In this thesis, we determine and implement an optical propagation technique suitable for system-level simulation of optical micro-systems. The Rayleigh-Sommerfeld formulation is selected as the optical propagation modeling technique because it satisfies the requirements of a system-level CAD tool and supports accurate modeling at propagation distances on the order of the wavelength of light. We present an efficient solution to the Rayleigh-Sommerfeld formulation using the angular spectrum technique which uses the fast Fourier transform to decompose the complex optical wavefront into plane waves propagating from the aperture to the observation plane. This technique reduces the computational order of solving the Rayleigh-Sommerfeld formulation from a brute force direct integration technique of O(N4) to a computational order of O(N2logN).For use in a design environment, we present an error analysis of our technique. Errors are caused by the discrete sampling of the optical wavefront over a finite range to approximate the infinite continuous Fourier transform. Methods for reducing both aliasing and truncation errors are presented, along with techniques to estimate the remaining errors of the angular spectrum technique. We perform a rigorous error estimate on several common optical wavefronts and provide techniques to perform an error analysis on a general wavefront. The utility of this method is shown by implementing the work into a mixed-signal, multi-domain CAD tool, in which we perform system-level simulations and analyses of several optical MEM systems

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Ion-Exchanged Glass Waveguide Technology: A Review

    Get PDF
    We review the history and current status of ion exchanged glass waveguide technology. The background of ion exchange in glass and key developments in the first years of research are briefly described. An overview of fabrication, characterization and modeling of waveguides is given and the most important waveguide devices and their applications are discussed. Ion exchanged waveguide technology has served as an available platform for studies of general waveguide properties, integrated optics structures and devices, as well as applications. It is also a commercial fabrication technology for both passive and active waveguide components
    • …
    corecore