474 research outputs found

    On Solving Pentadiagonal Linear Systems via Transformations

    Get PDF
    Many authors have studied numerical algorithms for solving the linear systems of pentadiagonal type. The well-known fast pentadiagonal system solver algorithm is an example of such algorithms. The current paper describes new numerical and symbolic algorithms for solving pentadiagonal linear systems via transformations. The proposed algorithms generalize the algorithms presented in El-Mikkawy and Atlan, 2014. Our symbolic algorithms remove the cases where the numerical algorithms fail. The computational cost of our algorithms is better than those algorithms in literature. Some examples are given in order to illustrate the effectiveness of the proposed algorithms. All experiments are carried out on a computer with the aid of programs written in MATLAB

    A fast algorithm for solving diagonally dominant symmetric quasi-pentadiagonal Toeplitz linear systems

    Get PDF
    In this paper, we develop a new algorithm for solving diagonally dominant symmetric quasi-pentadiagonal Toeplitz linear systems. Numerical experiments are given in order to illustrate the validity and efficiency of our algorithm.The authors would like to thank the supports of the Portuguese Funds through FCT–Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013

    Improved recursive Green's function formalism for quasi one-dimensional systems with realistic defects

    Full text link
    We derive an improved version of the recursive Green's function formalism (RGF), which is a standard tool in the quantum transport theory. We consider the case of disordered quasi one-dimensional materials where the disorder is applied in form of randomly distributed realistic defects, leading to partly periodic Hamiltonian matrices. The algorithm accelerates the common RGF in the recursive decimation scheme, using the iteration steps of the renormalization decimation algorithm. This leads to a smaller effective system, which is treated using the common forward iteration scheme. The computational complexity scales linearly with the number of defects, instead of linearly with the total system length for the conventional approach. We show that the scaling of the calculation time of the Green's function depends on the defect density of a random test system. Furthermore, we discuss the calculation time and the memory requirement of the whole transport formalism applied to defective carbon nanotubes

    Multi-partitioning for ADI-schemes on message passing architectures

    Get PDF
    A kind of discrete-operator splitting called Alternating Direction Implicit (ADI) has been found to be useful in simulating fluid flow problems. In particular, it is being used to study the effects of hot exhaust jets from high performance aircraft on landing surfaces. Decomposition techniques that minimize load imbalance and message-passing frequency are described. Three strategies that are investigated for implementing the NAS Scalar Penta-diagonal Parallel Benchmark (SP) are transposition, pipelined Gaussian elimination, and multipartitioning. The multipartitioning strategy, which was used on Ethernet, was found to be the most efficient, although it was considered only a moderate success because of Ethernet's limited communication properties. The efficiency derived largely from the coarse granularity of the strategy, which reduced latencies and allowed overlap of communication and computation
    • …
    corecore