165 research outputs found

    Equivalence of oblique and frontal illumination in perspective shape from shading

    Get PDF
    In this paper, it is shown that any oblique illumination shape-from-shading problem under perspective projection for Lambertian reflection and a single distant light source can be converted to an equivalent frontal illumination problem by a simple nonlinear intensity transformation which is equivalent to a rectification in stereo vision. Remarkably, it involves no approximation of depth. The method is evaluated on perspective shape-from-shading involving wide range of oblique angles. © 2007 IEEE.published_or_final_versio

    Shape from Shading: Recognizing the Mountains through a Global View

    Get PDF
    Resolving local ambiguities is an important issue for shape from shading (SFS). Pixel ambiguities of SFS can be eliminated by propagation approaches. However, patch ambiguities still exist. Therefore, we formulate the global disambiguation problem to resolve these ambiguities. Intuitively, it can be interpreted as flipping patches and adjusting heights such that the result surface has no kinks. The problem i s intractable because exponentially many possible configurations need to be checked. Alternatively, we solve the integrability testing problem closely related to the original one. It can be viewed as finding a surface which satisfies the global integrability constraint. To encode the constraints, we introduce a graph formulation called configuration graph. Searching the solution on this graph can be reduced to a Max-cut problem and its solution is computable using semidefinite programming (SDP) relaxation. Tests carried out on synthetic and real images show that the global disambiguation works well fro complex shapes

    A unified framework for document image restoration

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Structured 3D Features for Reconstructing Controllable Avatars

    Full text link
    We introduce Structured 3D Features, a model based on a novel implicit 3D representation that pools pixel-aligned image features onto dense 3D points sampled from a parametric, statistical human mesh surface. The 3D points have associated semantics and can move freely in 3D space. This allows for optimal coverage of the person of interest, beyond just the body shape, which in turn, additionally helps modeling accessories, hair, and loose clothing. Owing to this, we present a complete 3D transformer-based attention framework which, given a single image of a person in an unconstrained pose, generates an animatable 3D reconstruction with albedo and illumination decomposition, as a result of a single end-to-end model, trained semi-supervised, and with no additional postprocessing. We show that our S3F model surpasses the previous state-of-the-art on various tasks, including monocular 3D reconstruction, as well as albedo and shading estimation. Moreover, we show that the proposed methodology allows novel view synthesis, relighting, and re-posing the reconstruction, and can naturally be extended to handle multiple input images (e.g. different views of a person, or the same view, in different poses, in video). Finally, we demonstrate the editing capabilities of our model for 3D virtual try-on applications.Comment: Accepted at CVPR 2023. Project page: https://enriccorona.github.io/s3f/, Video: https://www.youtube.com/watch?v=mcZGcQ6L-2

    Recovering 3D Shape with Absolute Size from Endoscope Images Using RBF Neural Network

    Get PDF
    Medical diagnosis judges the status of polyp from the size and the 3D shape of the polyp from its medical endoscope image. However the medical doctor judges the status empirically from the endoscope image and more accurate 3D shape recovery from its 2D image has been demanded to support this judgment. As a method to recover 3D shape with high speed, VBW (Vogel-Breuß-Weickert) model is proposed to recover 3D shape under the condition of point light source illumination and perspective projection. However, VBW model recovers the relative shape but there is a problem that the shape cannot be recovered with the exact size. Here, shape modification is introduced to recover the exact shape with modification from that with VBW model. RBF-NN is introduced for the mapping between input and output. Input is given as the output of gradient parameters of VBW model for the generated sphere. Output is given as the true gradient parameters of true values of the generated sphere. Learning mapping with NN can modify the gradient and the depth can be recovered according to the modified gradient parameters. Performance of the proposed approach is confirmed via computer simulation and real experiment

    Three-dimensional modeling of the human jaw/teeth using optics and statistics.

    Get PDF
    Object modeling is a fundamental problem in engineering, involving talents from computer-aided design, computational geometry, computer vision and advanced manufacturing. The process of object modeling takes three stages: sensing, representation, and analysis. Various sensors may be used to capture information about objects; optical cameras and laser scanners are common with rigid objects, while X-ray, CT and MRI are common with biological organs. These sensors may provide a direct or an indirect inference about the object, requiring a geometric representation in the computer that is suitable for subsequent usage. Geometric representations that are compact, i.e., capture the main features of the objects with a minimal number of data points or vertices, fall into the domain of computational geometry. Once a compact object representation is in the computer, various analysis steps can be conducted, including recognition, coding, transmission, etc. The subject matter of this dissertation is object reconstruction from a sequence of optical images using shape from shading (SFS) and SFS with shape priors. The application domain is dentistry. Most of the SFS approaches focus on the computational part of the SFS problem, i.e. the numerical solution. As a result, the imaging model in most conventional SFS algorithms has been simplified under three simple, but restrictive assumptions: (1) the camera performs an orthographic projection of the scene, (2) the surface has a Lambertian reflectance and (3) the light source is a single point source at infinity. Unfortunately, such assumptions are no longer held in the case of reconstruction of real objects as intra-oral imaging environment for human teeth. In this work, we introduce a more realistic formulation of the SFS problem by considering the image formation components: the camera, the light source, and the surface reflectance. This dissertation proposes a non-Lambertian SFS algorithm under perspective projection which benefits from camera calibration parameters. The attenuation of illumination is taken account due to near-field imaging. The surface reflectance is modeled using the Oren-Nayar-Wolff model which accounts for the retro-reflection case. In this context, a new variational formulation is proposed that relates an evolving surface model with image information, taking into consideration that the image is taken by a perspective camera with known parameters. A new energy functional is formulated to incorporate brightness, smoothness and integrability constraints. In addition, to further improve the accuracy and practicality of the results, 3D shape priors are incorporated in the proposed SFS formulation. This strategy is motivated by the fact that humans rely on strong prior information about the 3D world around us in order to perceive 3D shape information. Such information is statistically extracted from training 3D models of the human teeth. The proposed SFS algorithms have been used in two different frameworks in this dissertation: a) holistic, which stitches a sequence of images in order to cover the entire jaw, and then apply the SFS, and b) piece-wise, which focuses on a specific tooth or a segment of the human jaw, and applies SFS using physical teeth illumination characteristics. To augment the visible portion, and in order to have the entire jaw reconstructed without the use of CT or MRI or even X-rays, prior information were added which gathered from a database of human jaws. This database has been constructed from an adult population with variations in teeth size, degradation and alignments. The database contains both shape and albedo information for the population. Using this database, a novel statistical shape from shading (SSFS) approach has been created. Extending the work on human teeth analysis, Finite Element Analysis (FEA) is adapted for analyzing and calculating stresses and strains of dental structures. Previous Finite Element (FE) studies used approximate 2D models. In this dissertation, an accurate three-dimensional CAD model is proposed. 3D stress and displacements of different teeth type are successfully carried out. A newly developed open-source finite element solver, Finite Elements for Biomechanics (FEBio), has been used. The limitations of the experimental and analytical approaches used for stress and displacement analysis are overcome by using FEA tool benefits such as dealing with complex geometry and complex loading conditions

    Shape From Shading

    Get PDF
    Shape From Shading is the process of computing the threedimensional shape of a surface from one image of that surface. Contrary to most of the other three-dimensional reconstruction problems (for example, stereo and photometric stereo), in the Shape From Shading problem, data are minimal (we use a single image!). As a consequence, this inverse problem is intrinsically a difficult one. In this chapter we describe the main difficulties of the problem and the most recent theoretical results. We also give some examples of realistic modelings and of rigorous numerical methods
    corecore