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Shape From Shading

Emmanuel Prados, Olivier Faugeras

ABSTRACT Shape From Shading is the process of computing the three-
dimensional shape of a surface from one image of that surface. Contrary to
most of the other three-dimensional reconstruction problems (for example,
stereo and photometric stereo), in the Shape From Shading problem, data
are minimal (we use a single image!). As a consequence, this inverse problem
is intrinsically a difficult one. In this chapter we describe the main difficul-
ties of the problem and the most recent theoretical results. We also give
some examples of realistic modelings and of rigorous numerical methods.

1 Introduction

The “Shape From Shading” problem (SFS) is to compute the three-dimen-
-sional shape of a surface from the brightness of one black and white image
of that surface; see figure 1.

FIGURE 1. The “Shape-from-Shading” problem.

In the 70’s, Horn [18] was the first to formulate the Shape From Shading
problem simply and rigorously as that of finding the solution of a nonlinear
first-order Partial Differential Equation (PDE) called the brightness equa-
tion. In a first period (in the 80’s) the authors focus on the computational
part of the problem, trying to compute directly numerical solutions. Ques-
tions about the existence and uniqueness of solutions to the problem were
simply not even posed at that time with the important exception of the
work of Bruss and Brooks [8, 5]. Nevertheless, due to the poor quality of
the results, these questions as well as those related to the convergence of
numerical schemes for computing the solutions became central in the last
decade of the 20th century. Today, the Shape From Shading problem is
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a) b) c)

a) The crater illusion [31]: From the image we perceive two craters, a small and a

big one. But we can turn these craters into volcanoes (although upside down) if

we imagine the light source to be at the bottom of the picture rather than at the

top. This picture is actually that of a pair of ash cones in the Hawaiian Island, not

that of a pair of craters. b-c) “Bas-relief Ambiguity” [4]: Frontal and side views

of a marble bas-relief sculpture. Notice how the frontal views appear to have full

3-dimensional depth, while the side view reveals the flattening. This demonstrates

that the image b) can be produced by two surfaces: the three-dimensional surface

we imagine by visualizing image b) and the actual bas-relief which is at the origin

of the two photos b) and c).

FIGURE 2. Examples of Shape From Shading ambiguities.

known to be an ill-posed problem. For example, a number of articles show
that the solution is not unique [5, 28, 29, 38, 4, 16, 36, 34]. The encountered
difficulties have often been illustrated by such concave/convex ambiguities
as the one displayed in Figure 2-a). In this figure, the ambiguity is due
to a change of the estimation of the parameters of the lighting. In fact,
this kind of ambiguity can be widely generalized. In [4], Belhumeur and
colleagues prove that when the lighting direction1 and the Lambertian re-
flectance (albedo) of the surface are unknown, then the same image can
be obtained by a continuous family of surfaces (depending linearly of three
parameters). In other words, they show that neither shading nor shadowing
of an object, seen from a single viewpoint reveals its exact 3D structure.
This is the “Bas-relief Ambiguity”, see [4] and Figures 2-b) and 2-c). Being
aware of these difficulties, we therefore assume here that all the parameters
of the light source, the surface reflectance and the camera are known.

As we have mentioned above, the modeling of the Shape From Shading
problem introduced by Horn leads to a PDE: the brightness equation. This
equation arises from the following

I(x1, x2) = R(n(x1, x2)),

(x1, x2) are the coordinates of a point x in the image. The brightness equa-
tion connects the reflectance map (R) to the brightness image (I). At the
exception of an extremely small number of papers, for example [1, 25, 37],

1In the case of a distant light source.
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almost all the Shape From Shading methods assume that the scene is Lam-
bertian. In this case, the reflectance map is the cosine of the angle between
the light vector L(x) and the normal vector n(x) to the surface:

R = cos(L,n) =
L
|L|

· n
|n|

, (1.1)

(where R, L and n depend on (x1, x2)).

2 Mathematical formulation of the SFS problem

In this section, we formulate the SFS problem as that of solving some
explicit PDEs. These explicit equations arise from equations (1.1).
Let Ω be an open subset of R2 representing the image domain (e.g. the
rectangle ]0, X[×]0, Y [). We represent the scene by a three-dimensional
surface S =

{
S(x); x ∈ Ω

}
, which can be explicitly parameterized by

using the function S defined on the closure Ω into R3. The particular type
of parameterization is irrelevant here but may vary according to the camera
type (orthographic versus pinhole) and to mathematical convenience. In
this work, we assume that the light source is unique and punctual. For y ∈
R3, we denote L(y) the unit vector representing the light source direction
at the point y. If the light source is located at infinity then the light vector
field is uniform (i.e. constant). In this case, we denote by L = (α, β, γ) with
γ > 0, and l = (α, β). If the light source is located at the optical center,
then L(S(x)) = S(x)/|S(x)|.

2.1 “Orthographic SFS” with a far light source

This is the traditional setup for the SFS problem. Here, we assume in
particular that the camera performs an orthographic projection of the
scene. For such a modeling, it is natural to denote by u the distance of
the points in the scene to the camera; in other words, S is parameterized
by S : x 7→ (x, u(x)). For such a parameterization, a normal vector n(x)
at the point S(x) is given by2 n(x) = (−∇u, 1). The SFS problem is then,
given I and L, to find a function u : Ω −→ R satisfying the brightness
equation:

∀x ∈ Ω, I(x) = (−∇u(x) · l + γ)/
√

1 + |∇u(x)|2.

In the SFS literature, this equation is rewritten in a variety of ways as
H(x, p) = 0, where p = ∇u. For example, Rouy and Tourin [38] introduce

HR/T (x, p) = I(x)
√

1 + |p|2 + p · l− γ.

2 The two columns of the Jacobian DS(x) are tangent vectors to S at the point S(x).

Their cross product is a normal vector.
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In [14], Dupuis and Oliensis consider

HD/O(x, p) = I(x)
√

1 + |p|2 − 2p · l + p · l− 1.

In the case where L = (0, 0, 1), Lions et al. [26] deal with:
HEiko(x, p) = |p| −

√
1

I(x)2 − 1. (called the Eikonal equation).
The function H is called the Hamiltonian.

2.2 “Perspective SFS” with a far light source

“Perspective SFS” assumes that the camera performs a perspective projec-
tion of the scene. We therefore assume that S can be explicitly parameter-
ized by the depth modulation function u defined on Ω. In other words, we
choose S(x) = u(x).(x,−f), ∀x ∈ Ω, where f denotes the focal length. For
such a parameterization, a normal vector n(x) at the point S(x) is given
by2 n(x) = (f∇u(x), u(x) + x · ∇u(x)). Combining the expression of n(x)
and the change of variables3 v = ln(u), we obtain from the irradiance
equation (1.1) the following Hamiltonian [34, 41, 11]:

HP/F (x, p) = I(x)
√

f2|p|2 + (x · p + 1)2 − (f l + γx) · p− γ;

2.3 “Perspective SFS” with a point light source at the optical
center

Here, we parameterize S by S(x) = u(x) f√
|x|2 + f2

(x,−f), ∀x ∈ Ω. In

this case, we can choose2 n(x) = (f∇u − fu(x)
|x|2+f2 x , ∇u · x + fu(x)

|x|2+f2 f).
Combining the expression of n(x) and the change of variables3 v = ln(u),
we obtain from equation (1.1) the following Hamiltonian [35, 33]:

HOptC(x, p) = I(x)
√

f2|p|2 + (p · x)2 + Q(x)2 −Q(x).

2.4 A generic Hamiltonian

In [35, 33], Prados and Faugeras proved that all the previous SFS Hamil-
tonians are special cases of the following “generic” Hamiltonian:

Hg(x, p) = κx

√
|Axp + vx|2 + K2

x + wx · p + cx,

with κx,Kx ≥ 0, cx ∈ R, vx,wx ∈ R2 and Ax ∈ M2(R), the set of 2 × 2
real matrices. They also showed that this “generic” Hamiltonian can be
rewritten as a supremum:

Hg(x, p) = sup
a∈B̄2(0,1)

{−fg(x, a) · p− lg(x, a)};

3We assume that the surface is visible (in front of the retinal plane) hence u > 0.
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see [33] for the detailed expressions of fg and lg. This generic formula-
tion considerably simplifies the analysis of the problem. Theorems about
the characterization and the approximation of the solutions are proved as
much as possible for this generic SFS Hamiltonian. In particular, this for-
mulation unifies the orthographic and perspective SFS problems. Also, from
a practical point of view, a single algorithm can be used to numerically solve
these various problems.

3 Mathematical study of the SFS problem

3.1 Related work

It is well-known that the SFS problem is an ill-posed problem even when we
assume complete control of the experimental setup. For example, the previ-
ous SFS PDEs do not have a unique solution: several surfaces can yield the
same image [16]. Before computing a numerical solution, it is therefore very
important to answer the following questions. Does there exist a solution? If
yes, in what sense is it a solution (classical or weak)? Is the solution unique?
The various approaches for providing answers to these questions can be
classified in two categories. First, Dupuis and Oliensis [14] and Koz-
era [24] deal with smooth (classical) solutions. More precisely, Dupuis and
Oliensis [14] prove the uniqueness of some constrainted C2 solutions, and
they characterize some C1 solutions. Kozera works with hemi-spheres and
planes [24]. Nevertheless, we can design smooth images “without (smooth)
shape” [6, 23]; also, because of noise, of errors on parameters (focal length,
light position, etc) and of incorrect modeling (interrecflections, extended
light source, nonlambertian reflectance...) there never exist in practice such
smooth solutions with real images. In other respects, this also explains why
the global methods (e.g. [14, 20, 27]) which are completely based on such
regularity assumptions are somewhat disappointing with real images. This
leads to consider the problem in a weaker framework. Second, in the
90s, Lions, Rouy and Tourin [38, 26] propose to solve the SFS problem by
using the notion of viscosity solutions. Recently, their approach has been
extended by Prados and Faugeras [36, 34] and by Falcone [9]. The theory
of viscosity solutions is interesting for a variety of reasons: 1) it ensures
the existence of weak solutions as soon as the intensity image is (Lipschitz)
continuous; 2) it allows to characterize all solutions; 3) any particular
solution is effectively computable. Nevertheless, the work of Lions et al.,
Prados and Faugeras, Falcone et al. [38, 26, 36, 34, 9] has a very important
weakness: the characterization of a viscosity solution and its computation
require in particular the knowledge of its values on the boundary of the im-
age. This is quite unrealistic because in practice such values are not known.
At the opposite of the work based on the viscosity solutions, Dupuis and
Oliensis [14] characterize some C1 solutions with much less data. In partic-
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ular, they do not specify the values of the solution on the boundary of the
image. Considering the advantages and the drawbacks of all these methods,
Prados et al. [35, 32] propose a new class of weak solutions which guar-
antees the existence of a solution4 in a large class of situations including
some where there do not exist smooth solutions. They call these new solu-
tions: “Singular Discontinuous Viscosity Solutions” (SDVS). The notion of
SDVS allows to unify the mathematical frameworks proposed in the SFS
literature and to generalize the previous main theoretical results.

3.2 Nonuniqueness and characterization of a solution

The results presented in this section are based on the notion of SDVS [35].
Let us recall that the viscosity solutions are solutions in a weak sense and
that the classical (differentiable) solutions are particular viscosity solutions.
For more details about this notion of weak solutions, we refer the reader to
[2]. For an intuitive approach connected to computer vision, see for example
[35] and references therein.

Since the CCD sensors have finite size, we assume that Ω is bounded. In
this case, it is well known that the Hamilton-Jacobi equations of the form
H(x,∇u(x)) = 0, ∀x ∈ Ω, (and so the SFS equations considered here) do
not have a unique viscosity solution [2]. It follows that for characterizing
(and for computing) a solution, we need to impose additional constraints.
In [35] (but also implicitly, in [14]) it is shown that the idea of state con-
traints (also called “Soner conditions”) provides a more convenient notion
of boundary condition than Dirichlet’s5 or Neumann’s6. The “state con-
traint” is a boundary condition which is reduced to

H(x, u(x),∇u(x)) ≥ 0 on ∂Ω,

in the viscosity sense (see for example [2]). This constraint corresponds to
the Dirichlet conditions

∀x ∈ ∂Ω, u(x) = ϕ(x) with ϕ(x) = +∞,

in the viscosity sense. In a sense, completing an equation with state con-
straints consists in choosing the highest viscosity solution. The interest of
the notion of state constraints is twofold: 1) in contrast with the Dirichlet
and Neumann boundary conditions, the state constraints do not require
any data7. 2) the notion of state constraints can be approximately ex-

4Corresponding to Dupuis and Oliensis’ solution, if one exists.
5Dirichlet conditions consists in fixing the values of the solutions.
6Neumann conditions consists in fixing the values of the derivatives the solutions.
7Dirichlet (respectively, Neumann) boundary conditions require the knowledge of the

exact values of the solution (respectively, the exact values of ∇u(x) · n(x), where n(x)

is the unit inward normal vector to ∂Ω at the point x) on the boundary of the image.

In the SFS problem, we rarely have such data at our disposal.
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pressed as “u(x) increases when x tends to ∂Ω”; see [35]. So the addition of
this constraint provides a relevant solution as soon as the original surface
verifies this basic assumption. Let us emphasize that this constraint is in
fact not a strong one since, for example, the condition is satisfied as soon
as the image to be processed contains an object of interest in front of a
background.

The main difficulty encountered when one attempt to solve the SFS
equations (described in section 2) is due to the fact that even if we im-
pose Dirichlet or Soner (state constraints) boundary conditions all over
the boundary of the image, these constraints are not sufficient for obtain-
ing the uniqueness of the solution. For characterizing a weak solution
(SDVS) or a classical solution (C1), it is necessary and sufficient to
impose (in addition) Dirichlet constraints at the singular points
which are local “minima”8; at the other points, we just impose state
constraints [32]. Let us remind the reader that the set of the singular points
is S = { x ∈ Ω | I(x) = 1 }. These points are those of maximal intensity9

and correspond with the points for which the surface normal coincides with
the light direction.
Therefore, in practice, to be able to recover the original surface10, we need
to know what are the singular points which are local minima and the height
of the surface at all these particular points. In the cases where we do not
have this knowledge (unfortunately, we do not have it in practice!), we
are unable to recover the exact original surface. Nevertheless, let us note
that Prados and Faugeras’ framework allows to understand exactly what
we compute, namely the SDVS (which coincides with the value function
considered in particular by Dupuis and Oliensis [14]). In practice, we fix
the height of the solution at the singular points and on the boundary of
the image, when we know it, and we “send” these values to infinity when
this information is not available (i.e., we impose a state constraint). Finally
Prados and his coworkers prove that, with such constraints, there exists a
unique SDVS of the SFS equations11.

4 Numerical solutions by “Propagation and PDEs
methods”

In section 2, we have shown that the SFS problem can be considered as
that of solving a first order PDE. In this section, we consider the numerical
SFS methods consisting in solving directly the exact SFS PDE. We call

8More precisely, the minima of u− ϕ, where ϕ is the adequate subsolution [32].
9Let us recall that we have assumed that I(x) = cos(n,L).

10i.e., in SFS, the photographed surface.
11With some weak adequate assumptions; see [32].
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them “propagation and PDEs methods”. These numerical methods do not
make any linearizations (at the opposite of the linear methods; see [15]
for a recent state of the art). Moreover, they do not introduce any biases
in the equations contrary to the variational methods which, for example,
add regularization or integrability terms. For more details about variational
approaches in Shape From Shading, we refer the reader to Horn and Brooks’
book [19] and to the survey of Durou and his coworkers [15] (and references
therein).

4.1 Related work

The propagation and PDEs methods can be subdivided into two classes.
The “single-pass” methods and the iterative methods. The main single-
pass methods are: the method of characteristic strips (introduced by Horn
[18]), the method of propagation of the equal-height contours (introduced
by Bruckstein [7] and improved by Kimmel and Bruckstein [21]), the fast
marching method (proposed by Sethian and Kimmel [39, 22]). Amongst
the iterative methods let us cite in particular: the algorithm introduced by
Rouy and Tourin [38] and its extensions by Prados and Faugeras [36, 34],
the algorithms of Dupuis and Oliensis [14] based on the control theory
and differential games, the algorithms of Falcone et al. [9] based on finite
elements. Let us note that, at the exception of the work of Prados and
Faugeras [34, 35], all these methods deal only with the Eikonal equation
[18, 7, 38, 21, 39] or with the orthographic SFS with oblique light source
[14, 9, 22, 36].

In spite of the multiplicity of these methods, we can prove that they
all compute approximations of the same solution. In particular, the
initial equal-height contours method of Bruckstein [7] is a variant of the
method of the characteristic strips of Horn [18]. In [7], Bruckstein assumes
that the initial curve is an equal-height contour. By imposing such special
Dirichlet boundary conditions, he drops the Neumann boundary conditions
required by the basic method of the characteristic strips (see [23] for a nice
and rigorous study of these methods). Basically both above methods are
Lagrangian methods that suffer from unstability and topological problems,
see for example [30]. To alleviate these problems Kimmel and Bruckstein
[21] propose to upgrade Bruckstein’s method by using a Eulerian formu-
lation of the problem. In other respects, the connection between the front
propagation problems and the Hamilton Jacobi equations are well known.
In particular, roughly speaking, it has beeb proved that the viscosity solu-
tion of the Hamilton Jacobi equation associated with a front propagation
corresponds with the evolution of the initial contour defined by Huygens’
principle; see for example [17]. In the same way, the other methods we cite
above (Sethian’s, Rouy-Tourin’s, Dupuis-Oliensis’, Falcone’s and Prados-
Faugeras’ methods) compute some approximations of the viscosity solu-
tions of the SFS equations. In particular in [40], Sethian and Vladimirsky
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prove that the numerical solutions computed by the fast marching/ordered
upwind methods converge toward the continuous viscosity solution (with
Dirichlet boundary data on the boundary of the image). In [35], Prados and
Faugeras generalize and unify the results proved in [38, 14, 9, 36, 34]. More
precisely, they show that in all cases, the authors compute approximations
of the SDVS. Basically, the difference between the work [38, 14, 9, 36, 34]
is based on the choice of the boundary conditions; see [32]. In a general
manner, all propagation and PDE methods require additional constraints:
in particular, Dirichlet, Neumann or Soner boundary conditions. In other
words, the computed solutions are characterized by the boundary condi-
tions. These boundary conditions must contain enough information. Also,
this information is thereby propagated “along” the solutions. Let us note
that except for Horn’s [18] and Bruckstein and Kimmel’s method [7, 21],
all the previous methods can deal with various Dirichlet/Soner boundary
conditions. More precisely, the algorithms of Rouy and Tourin [38], Dupuis
and Oliensis [14], Sethian [39] and Prados and Faugeras [36, 34] can use
Dirichlet and/or Soner conditions on the boundary of the image ∂Ω at all
the singular points S and on any other part of the image (for example, on
an equal-height contour...). For instance, when we do not know the values
of the solution at any points of the image, we can impose state constraints
(i.e. Soner conditions) on ∂Ω∪S except for one point where we must impose
a Dirichlet boundary condition. Contrary to these methods, let us note that
Horn’s [18] requires Dirichlet and Neumann boundary conditions and that
Bruckstein’s [7, 21] require the knowledge of an equal-height contour. This
last constraint is a very specific Dirichlet condition and is much stronger
than the previous ones. Note that implicitly, Bruckstein methods [7, 21]
also impose state constraints on ∂Ω ∪ S.

Finally, from a more numerical point of view, we can also remark that
the approximation scheme considered by Sethian [39] is the one designed
by Rouy and Tourin in [38]. Moreover, Prados and Faugeras’ schemes are
extensions of the Rouy and Tourin’s scheme and their solutions coincide
with those of Oliensis’ schemes.

4.2 An example of provably convergent numerical method:
Prados and Faugeras’ method

In this section, we present the provably convergent numerical method of
Prados and Faugeras [33]. Let us recall that this method unifies in partic-
ular the iterative methods of Rouy and Tourin [38], Prados et al. [36, 34]
and Dupuis and Oliensis [14].
We consider here a finite difference approximation scheme. The reader unfa-
miliar with the notion of approximation schemes can refer to [3] or [33]. Let
us just recall that, following [3], an approximation scheme is a functional
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equation of the form

S(ρ, x, u(x), u) = 0 ∀x ∈ Ω,

which “approximates” the considered PDE. S is defined onM×Ω×R×B(Ω)

into R, M = R+ × R+ and ρ = (h1, h2) ∈ M defines the size of the mesh
that is used in the corresponding numerical algorithms. B(D) is the space
of bounded functions defined on a set D.

Definition 1 We say that a scheme S is stable12 if for all fixed mesh size
ρ it has solutions and if all the solutions are bounded independently of ρ.

For ensuring the stability of a scheme, it is globally sufficient that it is
monotonous (i.e. the function u 7→ S(ρ, x, t, u) is nonincreasing) and that
the function t 7→ S(ρ, x, t, u) is nondecreasing, see [33]. For obtaining such
a scheme, Prados and Faugeras [33] approximate the generic Hamiltonian
Hg by

Hg(x,∇u(x)) ≈ sup
a∈B̄(0,1)

(
2X

i=1

(−fi(x, a))
u(x)− u(x + si(x, a)hi

−→ei )

−si(x, a)hi
− lg(x, a)

)

where fi(x, a) is the ith component of fg(x, a) and si(x, a) is its sign. Thus,
they obtain the approximation scheme Simpl(ρ, x, u(x), u) = 0 with Simpl

defined by:

Simpl(ρ, x, t, u) = sup
a∈B̄(0,1)

(
2X

i=1

(−fi(x, a))
t− u(x + si(x, a)hi

−→ei )

−si(x, a)hi
− lg(x, a)

)
.

By introducing a fictitious time ∆τ , they also transform this implicit scheme
in a “semi-implicit” scheme (also monotonous):

Ssemi(ρ, x, t, u) = t− ( u(x) + ∆τ Simpl(ρ, x, u(x), u) ),

where ∆τ = (fg(x, a0) · (1/h1, 1/h2))
−1; a0 being the optimal control as-

sociated with Simpl(ρ, x, u(x), u). Let us emphasize that these two schemes
have exactly the same solutions and that they verify the previous monotonic-
ity conditions (with respect to t and u). Prados and Faugeras prove in [33]
the stability of these two schemes.
By construction, these two schemes are consistent12 with the SFS equations
as soon as the brightness image I is Lipschitz continuous; see [33]. Using the
stability and the monotonicity of the schemes and some uniqueness results,
it follows directly from [3] that the solutions of the approximation schemes
Simpl and Ssemi converge towards the unique viscosity solution of the con-
sidered equation (complemented with the adequate boundary conditions)
when the mesh size vanishes; see [33].

12 Following Barles and Souganidis definitions [3].
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We now describe an iterative algorithm that computes numerical ap-
proximations of the solutions of a scheme S(ρ, x, u(x), u) = 0 for all fixed
ρ = (h1, h2). We denote, for k ∈ Z2, xk = (k1h1, k2h2), and Q := {k ∈ Z2

s.t. xk ∈ Ω}. We call “pixel” a point xk in Ω. Since Ω is bounded the
number of pixels is finite. The following algorithm computes for all k ∈ Q
a sequence of approximations Un

k of u(xk):

Algorithm:

1. Initialisation (n = 0): ∀k ∈ Q, U0
k = u0(xk);

2. Choice of a pixel xk and modification (step n + 1) of Un
k : we choose

Un+1 such that {
Un+1

l = Un
l if l 6= k,

S(ρ, xk, Un+1
k , Un) = 0;

3. Choose the next pixel xk (using alternating raster scans [13]) and go
back to 2.

In [33], Prados and Faugeras prove that if u0 is a supersolution of the SFS
scheme Simpl (respectively, Ssemi) then step 2 of the algorithm has always a
unique solution and that the computed numerical solutions converge (when

n → +∞ ) toward the solutions of the scheme. Many details about the
implementation of the algorithm can be found in [33].

5 Examples of numerical results

In this section, we show some examples of numerical results on real images.
In these experiments, we test the implicit generic SFS algorithm of Prados
and Faugeras. At the same time, we suggest some applications of the SFS
methods hoping that the results will convince the reader of the applicability
of this method to real problems.
Let us recall that we have assumed that the camera is geometrically and
photometrically calibrated. In the experiments of sections 5.1 and 5.2 we
know the focal length (5.8 mm) and approximately the pixel size (0.0045
mm; CCD size = 1/2.7”) of the digital camera (Pentax Optio 330GS).
In section 5.3, we choose some arbitrary reasonable parameters. Let us
note that in these tests, we also make some educated guesses for gamma
correction (when the photometric properties of the images seem incorrect).

5.1 Document restoration using SFS

In this section, we consider a reprographic system to remove the geomet-
ric and photometric distortions generated by the classical photocopy of a
bulky book. Note that several solutions have been proposed in the SFS lit-
erature. Let us cite in particular the work of Wada et al. [43], Cho et al. [10]
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and Courteille et al. [11]. Here, the acquisition process we use is a classical
camera. The book is illuminated by a single light source located at infinity
or close to the optical center (following the models described in section
2). The acquired images are then processed using Prados and Faugeras’
SFS method to obtain the shape of the photographed page. Let us empha-
size that, for obtaining a compact experimental system, the camera must
be located relatively close to the book. Therefore the perspective model is
especially relevant for this application. Also, the distortion due to the per-
spective clearly appears in the image a) of figure 4. In this SFS method
we assume that the albedo is constant. In this application, this does not

a) b)

FIGURE 3. a) Real image of a page of text [size ' 800×800]; b) Surface recovered
from a) by Prados and Faugeras’ generic algorithm (without removing the printed
parts of a)),

a) b) c)

FIGURE 4. a) real image of a page containing pictures and graphics [size
' 2000×1500], b) surface (textured by the printed parts of a)) recovered from a)
by Prados and Faugeras’ generic algorithm (after having removed and inpainted
the ink parts of a)). c) An orthographic projection of the surface b): the geometric
(and photometric) distorsions are significantly reduced.

hold because of the printed parts. Before recovering the surface of the page,
we therefore localize the printed parts by using image statistic (similar to
Cho’s [10]) and we erase them automatically by using an inpainting algo-
rithm. This step can produce an important pixel noise. Nevertheless, this
is not a problem for us because, as figure 3-b) shows, Prados and Faugeras’
SFS method is extremely robust to pixel noise: figure 3-b) displays the re-
sult produced by this algorithm (after 10 iterations) using the image of a
text page with its pigmented parts, Fig.3-a). In this test, characters are
considered as noise. Once we have recovered the three-dimensional shape
of the page, we can then flatten the surface. Note that at each step of this



1. Shape From Shading 13

a) b) c)

FIGURE 5. a) Real face image [size ' 450 × 600]; b) surface recovered from a)
by the generic SFS algorithm with the perspective model with the light source
located at the optical center; c) surface recovered by the generic SFS algorithm
with the same modeling hypotheses as for b) after the inpainting process.

restoration process we can keep the correspondences with the pixels in the
image. Thus, at the final step, we can restore the printed parts.
To prove the applicability of this method, we have tested it on a page
wrapped on a cylindrical surface13 (we have used a cheap camera and flash
in an approximately dark room). Figure 4 shows the original image in a),
the reconstructed surface (after 10 iterations) (textured by the ink parts
of a)) in b) and an orthographic projection of the reconstructed surface, in
e). Figure 4-c) indicates that this method allows to remove the perspective
and photometric distortions.

5.2 Face reconstruction from SFS

In this section we propose a very simple protocol based on SFS for face
reconstruction. We use one camera equiped with a basic flash in an ap-
proximately dark place. We have tested the implicit generic SFS algorithm
on a real image of a face (using a small amount of make-up to make it more

Lambertian) located at '700 mm of the camera in an approximately dark
place (see Fig.5-a)). Figure 5-b) shows the surface recovered by the generic
algorithm with the perspective model with a point light source at the op-
tical center. As in the previous application, the albedo is not constant over
the whole image. Therefore we removed14 the eyes and the eyebrows in the
image by using an inpainting algorithm. Figure 5 shows in c) the surface
recovered from the image obtained after the inpainting process.

5.3 Potential applications to medical images

In this section, we are interested in applying the SFS method to some med-
ical images. Our interest is motivated, for example, by the work of Craine

13For emphasizing the perspective effect.
14Can be automated by matching the image to a model image already segmented.
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a) b) c)

FIGURE 6. Reconstruction of a normal stomach. a) Original image of a normal
stomach [size' 200 × 200]; b) surface recovered from a) by the generic SFS al-
gorithm with the perspective model with the light source located at the optical
center; c) surface b) visualized with a different illumination.

et al. [12] (who use SFS for correcting some errors on the quantitative measure-

ment of areas in the cervix, from colonoscopy images). We have applied Prados
and Faugeras’ algorithm to an endoscopic image of a normal stomach15

(see figure 6-a)). For producing such an image, the light source must be
very close to the camera, because of space constraints. So the adequate
modeling is that of the “perspective SFS” with the light source located at
the optical center. In figure 6-b), we show the result obtained. To further
show the quality of the reconstruction, we display the surface b) with a
different illumination. Finally, notice that the stomach wall is not perfectly
Lambertian (see Fig.6-a)). This suggests the robustness of this SFS method
to departures from the Lambertian hypothesis.

6 Conclusion

After having presented the SFS problem, we have described its main dif-
ficulties: in practice, the classical SFS equations are ill-posed. In a sec-
ond time, we have focused on the numerical methods. We have considered
the propagation and PDEs methods; in particular Prados and Faugeras’
methods. We have demonstrated the applicability of the SFS methods by
displaying some experimental results with real images. Finally, we have
suggested that SFS may be useful in a number of real-life applications.
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