12,801 research outputs found

    Lane Line Detection and Object Scene Segmentation Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehicles in Complex Road Conditions

    Get PDF
    An Otsu-threshold- and Canny-edge-detection-based fast Hough transform (FHT) approach to lane detection was proposed to improve the accuracy of lane detection for autonomous vehicle driving. During the last two decades, autonomous vehicles have become very popular, and it is constructive to avoid traffic accidents due to human mistakes. The new generation needs automatic vehicle intelligence. One of the essential functions of a cutting-edge automobile system is lane detection. This study recommended the idea of lane detection through improved (extended) Canny edge detection using a fast Hough transform. The Gaussian blur filter was used to smooth out the image and reduce noise, which could help to improve the edge detection accuracy. An edge detection operator known as the Sobel operator calculated the gradient of the image intensity to identify edges in an image using a convolutional kernel. These techniques were applied in the initial lane detection module to enhance the characteristics of the road lanes, making it easier to detect them in the image. The Hough transform was then used to identify the routes based on the mathematical relationship between the lanes and the vehicle. It did this by converting the image into a polar coordinate system and looking for lines within a specific range of contrasting points. This allowed the algorithm to distinguish between the lanes and other features in the image. After this, the Hough transform was used for lane detection, making it possible to distinguish between left and right lane marking detection extraction; the region of interest (ROI) must be extracted for traditional approaches to work effectively and easily. The proposed methodology was tested on several image sequences. The least-squares fitting in this region was then used to track the lane. The proposed system demonstrated high lane detection in experiments, demonstrating that the identification method performed well regarding reasoning speed and identification accuracy, which considered both accuracy and real-time processing and could satisfy the requirements of lane recognition for lightweight automatic driving systems

    Real-time automated road, lane and car detection for autonomous driving

    Get PDF
    In this paper, we discuss a vision based system for autonomous guidance of vehicles. An autonomous intelligent vehicle has to perform a number of functionalities. Segmentation of the road, determining the boundaries to drive in and recognizing the vehicles and obstacles around are the main tasks for vision guided vehicle navigation. In this article we propose a set of algorithms which lead to the solution of road and vehicle segmentation using data from a color camera. The algorithms described here combine gray value difference and texture analysis techniques to segment the road from the image, several geometric transformations and contour processing algorithms are used to segment lanes, and moving cars are extracted with the help of background modeling and estimation. The techniques developed have been tested in real road images and the results are presented

    A disaster risk assessment model for the conservation of cultural heritage sites in Melaka Malaysia

    Get PDF
    There exist ongoing efforts to reduce the exposure of Cultural Heritage Sites (CHSs) to Disaster Risk (DR). However, a complicated issue these efforts face is that of ‘estimation’ whereby no standardised unit exist for assessing the effects of Cultural Heritage (CH) exposed to DR as compared to other exposed items having standardised assessment units such as; ‘number of people’ for deaths, injured and displaced, ‘dollar’ for economic impact, ‘number of units’ for building stock or animals among others. This issue inhibits the effective assessment of CHSs exposed to DR. Although there exist several DR assessment frameworks for conserving CHSs, the conceptualisation of DR in these studies fall short of good practice such as international strategy for disaster reduction by United Nations which expresses DR to being a hollistic interplay of three variables (hazard, vulnerability and capacity). Adopting such good practice, this research seeks to propose a mechanism of DR assessment aimed at reducing the exposure of CHSs to DR. Quantitative method adopted for data collection involved a survey of 365 respondents at CHSs in Melaka using a structured questionnaire. Similarly, data analysis consisted of a two-step Structural Equation Modelling (measurement and structural modelling). The achievement of the recommended thresholds for unidimensionality, validity and reliability by the measurement models is a testimony to the model fitness for all 8 first-order independent variables and 2 first-order dependent variables. While hazard had a ‘small’ but negative effect, vulnerability had a ‘very large’ but negative effect on the exposure of CHSs to DR. Likewise, capacity had a ‘small’ but positive effect on the exposure of CHSs to DR. The outcome of this study is a Disaster Risk Assessment Model (DRAM) aimed at reducing DR to CHSs. The implication of this research is providing insights on decisions for DR assessment to institutions, policymakers and statutory bodies towards their approach to enhancing the conservation of CHSs

    An Empirical Evaluation of Deep Learning on Highway Driving

    Full text link
    Numerous groups have applied a variety of deep learning techniques to computer vision problems in highway perception scenarios. In this paper, we presented a number of empirical evaluations of recent deep learning advances. Computer vision, combined with deep learning, has the potential to bring about a relatively inexpensive, robust solution to autonomous driving. To prepare deep learning for industry uptake and practical applications, neural networks will require large data sets that represent all possible driving environments and scenarios. We collect a large data set of highway data and apply deep learning and computer vision algorithms to problems such as car and lane detection. We show how existing convolutional neural networks (CNNs) can be used to perform lane and vehicle detection while running at frame rates required for a real-time system. Our results lend credence to the hypothesis that deep learning holds promise for autonomous driving.Comment: Added a video for lane detectio
    • …
    corecore