1,022 research outputs found

    Fast human detection for video event recognition

    Get PDF
    Human body detection, which has become a research hotspot during the last two years, can be used in many video content analysis applications. This paper investigates a fast human detection method for volume based video event detection. Compared with other object detection systems, human body detection brings more challenge due to threshold problems coming from a wide range of dynamic properties. Motivated by approaches successfully introduced in facial recognition applications, it adapts and adopts feature extraction and machine learning mechanism to classify certain areas from video frames. This method starts from the extraction of Haar-like features from large numbers of sample images for well-regulated feature distribution and is followed by AdaBoost learning and detection algorithm for pattern classification. Experiment on the classifier proves the Haar-like feature based machine learning mechanism can provide a fast and steady result for human body detection and can be further applied to reduce negative aspects in human modelling and analysis for volume based event detection

    Dynamic approach for real-time skin detection

    Get PDF
    Human face and hand detection, recognition and tracking are important research areas for many computer interaction applications. Face and hand are considered as human skin blobs, which fall in a compact region of colour spaces. Limitations arise from the fact that human skin has common properties and can be defined in various colour spaces after applying colour normalization. The model therefore, has to accept a wide range of colours, making it more susceptible to noise. We have addressed this problem and propose that the skin colour could be defined separately for every person. This is expected to reduce the errors. To detect human skin colour pixels and to decrease the number of false alarms, a prior face or hand detection model has been developed using Haar-like and AdaBoost technique. To decrease the cost of computational time, a fast search algorithm for skin detection is proposed. The level of performance reached in terms of detection accuracy and processing time allows this approach to be an adequate choice for real-time skin blob tracking

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features

    Full text link
    We propose a simple yet effective approach to the problem of pedestrian detection which outperforms the current state-of-the-art. Our new features are built on the basis of low-level visual features and spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. We then directly optimise the partial area under the ROC curve (\pAUC) measure, which concentrates detection performance in the range of most practical importance. The combination of these factors leads to a pedestrian detector which outperforms all competitors on all of the standard benchmark datasets. We advance state-of-the-art results by lowering the average miss rate from 13%13\% to 11%11\% on the INRIA benchmark, 41%41\% to 37%37\% on the ETH benchmark, 51%51\% to 42%42\% on the TUD-Brussels benchmark and 36%36\% to 29%29\% on the Caltech-USA benchmark.Comment: 16 pages. Appearing in Proc. European Conf. Computer Vision (ECCV) 201

    Dynamic approach for real-time skin detection

    Get PDF
    Human face and hand detection, recognition and tracking are important research areas for many computer interaction applications. Face and hand are considered as human skin blobs, which fall in a compact region of colour spaces. Limitations arise from the fact that human skin has common properties and can be defined in various colour spaces after applying colour normalization. The model therefore, has to accept a wide range of colours, making it more susceptible to noise. We have addressed this problem and propose that the skin colour could be defined separately for every person. This is expected to reduce the errors. To detect human skin colour pixels and to decrease the number of false alarms, a prior face or hand detection model has been developed using Haar-like and AdaBoost technique. To decrease the cost of computational time, a fast search algorithm for skin detection is proposed. The level of performance reached in terms of detection accuracy and processing time allows this approach to be an adequate choice for real-time skin blob tracking

    Data association and occlusion handling for vision-based people tracking by mobile robots

    Get PDF
    This paper presents an approach for tracking multiple persons on a mobile robot with a combination of colour and thermal vision sensors, using several new techniques. First, an adaptive colour model is incorporated into the measurement model of the tracker. Second, a new approach for detecting occlusions is introduced, using a machine learning classifier for pairwise comparison of persons (classifying which one is in front of the other). Third, explicit occlusion handling is incorporated into the tracker. The paper presents a comprehensive, quantitative evaluation of the whole system and its different components using several real world data sets

    Fast Face Detector Training Using Tailored Views

    Full text link
    Face detection is an important task in computer vision and often serves as the first step for a variety of applications. State-of-the-art approaches use efficient learning algorithms and train on large amounts of manually labeled imagery. Acquiring appropriate training images, however, is very time-consuming and does not guarantee that the collected training data is representative in terms of data variability. Moreover, available data sets are often acquired under con-trolled settings, restricting, for example, scene illumination or 3D head pose to a narrow range. This paper takes a look into the automated generation of adaptive training samples from a 3D morphable face model. Using statistical insights, the tailored training data guarantees full data variability and is enriched by arbitrary facial attributes such as age or body weight. Moreover, it can automatically adapt to environmental constraints, such as illumination or viewing angle of recorded video footage from surveillance cameras. We use the tailored imagery to train a new many-core imple-mentation of Viola Jones ā€™ AdaBoost object detection frame-work. The new implementation is not only faster but also enables the use of multiple feature channels such as color features at training time. In our experiments we trained seven view-dependent face detectors and evaluate these on the Face Detection Data Set and Benchmark (FDDB). Our experiments show that the use of tailored training imagery outperforms state-of-the-art approaches on this challenging dataset. 1
    • ā€¦
    corecore