4,074 research outputs found

    A communication-less parallel algorithm for tridiagonal Toeplitz systems

    Get PDF
    AbstractDiagonally dominant tridiagonal Toeplitz systems of linear equations arise in many application areas and have been well studied in the past. Modern interest in numerical linear algebra is often focusing on solving classic problems in parallel. In McNally [Fast parallel algorithms for tri-diagonal symmetric Toeplitz systems, MCS Thesis, University of New Brunswick, Saint John, 1999], an m processor Split & Correct algorithm was presented for approximating the solution to a symmetric tridiagonal Toeplitz linear system of equations. Nemani [Perturbation methods for circulant-banded systems and their parallel implementation, Ph.D. Thesis, University of New Brunswick, Saint John, 2001] and McNally (2003) adapted the works of Rojo [A new method for solving symmetric circulant tri-diagonal system of linear equations, Comput. Math. Appl. 20 (1990) 61–67], Yan and Chung [A fast algorithm for solving special tri-diagonal systems, Computing 52 (1994) 203–211] and McNally et al. [A split-correct parallel algorithm for solving tri-diagonal symmetric Toeplitz systems, Internat. J. Comput. Math. 75 (2000) 303–313] to the non-symmetric case. In this paper we present relevant background from these methods and then introduce an m processor scalable communication-less approximation algorithm for solving a diagonally dominant tridiagonal Toeplitz system of linear equations

    A weakly stable algorithm for general Toeplitz systems

    Full text link
    We show that a fast algorithm for the QR factorization of a Toeplitz or Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A. Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx = A^Tb, we obtain a weakly stable method for the solution of a nonsingular Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented
    corecore