82 research outputs found

    Role of anticausal inverses in multirate filter-banks. II. The FIR case, factorizations, and biorthogonal lapped transforms

    Get PDF
    For pt. I see ibid., vol.43, no.5, p.1090, 1990. In part I we studied the system-theoretic properties of discrete time transfer matrices in the context of inversion, and classified them according to the types of inverses they had. In particular, we outlined the role of causal FIR matrices with anticausal FIR inverses (abbreviated cafacafi) in the characterization of FIR perfect reconstruction (PR) filter banks. Essentially all FIR PR filter banks can be characterized by causal FIR polyphase matrices having anticausal FIR inverses. In this paper, we introduce the most general degree-one cafacafi building block, and consider the problem of factorizing cafacafi systems into these building blocks. Factorizability conditions are developed. A special class of cafacafi systems called the biorthogonal lapped transform (BOLT) is developed, and shown to be factorizable. This is a generalization of the well-known lapped orthogonal transform (LOT). Examples of unfactorizable cafacafi systems are also demonstrated. Finally it is shown that any causal FIR matrix with FIR inverse can be written as a product of a factorizable cafacafi system and a unimodular matrix

    Linear phase paraunitary filter banks: theory, factorizations and designs

    Get PDF
    M channel maximally decimated filter banks have been used in the past to decompose signals into subbands. The theory of perfect-reconstruction filter banks has also been studied extensively. Nonparaunitary systems with linear phase filters have also been designed. In this paper, we study paraunitary systems in which each individual filter in the analysis synthesis banks has linear phase. Specific instances of this problem have been addressed by other authors, and linear phase paraunitary systems have been shown to exist. This property is often desirable for several applications, particularly in image processing. We begin by answering several theoretical questions pertaining to linear phase paraunitary systems. Next, we develop a minimal factorizdion for a large class of such systems. This factorization will be proved to be complete for even M. Further, we structurally impose the additional condition that the filters satisfy pairwise mirror-image symmetry in the frequency domain. This significantly reduces the number of parameters to be optimized in the design process. We then demonstrate the use of these filter banks in the generation of M-band orthonormal wavelets. Several design examples are also given to validate the theory

    Multichannel spectral factorization algorithm using polynomial matrix eigenvalue decomposition

    Get PDF
    In this paper, we present a new multichannel spectral factorization algorithm which can be utilized to calculate the approximate spectral factor of any para-Hermitian polynomial matrix. The proposed algorithm is based on an iterative method for polynomial matrix eigenvalue decomposition (PEVD). By using the PEVD algorithm, the multichannel spectral factorization problem is simply broken down to a set of single channel problems which can be solved by means of existing one-dimensional spectral factorization algorithms. In effect, it transforms the multichannel spectral factorization problem into one which is much easier to solve

    Minimal structures for the implementation of digital rational lossless systems

    Get PDF
    Digital lossless transfer matrices and vectors (power-complementary vectors) are discussed for applications in digital filter bank systems, both single rate and multirate. Two structures for the implementation of rational lossless systems are presented. The first structure represents a characterization of single-input, multioutput lossless systems in terms of complex planar rotations, whereas the second structure offers a representation of M-input, M-output lossless systems in terms of unit-norm vectors. This property makes the second structure desirable in applications that involve optimization of the parameters. Modifications of the second structure for implementing single-input, multioutput, and lossless bounded real (LBR) systems are also included. The main importance of the structures is that they are completely general, i.e. they span the entire set of M×1 and M×M lossless systems. This is demonstrated by showing that any such system can be synthesized using these structures. The structures are also minimal in the sense that they use the smallest number of scalar delays and parameters to implement a lossless system of given degree and dimensions. A design example to demonstrate the main results is included

    General solution of certain matrix equations arising in filter design applications

    Get PDF
    In this work we present the explicit expression of all rectangular Toeplitz matrices B,C which verify the equation BBH +CCH = aI for some a > 0. This matrix equation arises in some signal processing problems. For instance, it appears when designing the even and odd components of paraunitary filters, which are widely used for signal compression and denoising purposes. We also point out the relationship between the above matrix equation and the polynomial B´ezout equation |B(z)|2 +|C(z)|2 = a > 0 for |z| = 1. By exploiting this fact, our results also yield a constructive method for the parameterization of all solutions B(z),C(z). The main advantage of our approach is that B are C are built without need of spectral factorization. Besides these theoretical advances, in order to illustrate the effectiveness of our approach, some examples of paraunitary filters design are finally given

    Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices

    Get PDF
    A technique is developed for the design of analysis filters in an M-channel maximally decimated, perfect reconstruction, finite-impulse-response quadrature mirror filter (FIR QMF) bank that has a lossless polyphase-component matrix E(z). The aim is to optimize the parameters characterizing E(z) until the sum of the stopband energies of the analysis filters is minimized. There are four novel elements in the procedure reported here. The first is a technique for efficient initialization of one of the M analysis filters, as a spectral factor of an Mth band filter. The factorization itself is done in an efficient manner using the eigenfilters approach, without the need for root-finding techniques. The second element is the initialization of the internal parameters which characterize E(z), based on the above spectral factor. The third element is a modified characterization, mostly free from rotation angles, of the FIR E(z). The fourth is the incorporation of symmetry among the analysis filters, so as to minimize the number of unknown parameters being optimized. The resulting design procedure always gives better filter responses than earlier ones (for a given filter length) and converges much faste

    A new general expression for 2-channel FIR paraunitary filterbanks

    Get PDF
    This paper provides a new explicit expression for all real FIR paraunitary filters. From this we derive a new procedure for the design of the L components of any 2-channel FIR orthogonal L-tap filter. The input of this algorithm is any set of L/2 free parameters. Moreover, our procedure provides a parameterization of all orthogonal filters directly, with no need for iterations. For the special case of low-pass paraunitary filters, we obtain a fast new design algorithm. Simplified expressions for the frequency response of paraunitary filters are also provided. In addition to these improvements, our results also yield exact solutions of a particular set of Bézout polynomial equations

    A new synthesis procedure for linear-phase paraunitary digital filter banks

    Get PDF
    In this paper, a new design algorithm is presented for a family of linear phase paraunitary filter banks with generalized filter length and symmetric polarity. A number of new constraints on the distributions of filter length and symmetry polarity among the channels are derived. In the algorithm, the lengths of the filters are gradually reduced through a cascade of lattice structures. The derivations for filter banks with even and odd number of channels are formulated in a unified form.published_or_final_versio
    corecore