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In this work we present the explicit expression of all rectangular

Toeplitz matrices B, C which verify the equation BBH + CCH = aI

for some a > 0. This matrix equation arises in some signal pro-

cessing problems. For instance, it appears when designing the even

and odd components of paraunitary filters, which are widely used

for signal compression and denoising purposes. We also point out

the relationship between the above matrix equation and the poly-

nomial Bézout equation |B(z)|2 + |C(z)|2 = a > 0 for |z| = 1. By

exploiting this fact, our results also yield a constructive method for

the parameterization of all solutionsB(z), C(z). Themain advantage

of our approach is thatB andC are builtwithout needof spectral fac-

torization. Besides these theoretical advances, in order to illustrate

the effectiveness of our approach, some examples of paraunitary

filters design are finally given.
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1. Introduction

In this paper we will solve the following matrix equation problem:

Problem 1. Given L ∈ N and a > 0, find all rectangular complex Toeplitz matrices B, C ∈ CL×(2L−1)

of the type

B =

⎛
⎜⎜⎜⎜⎜⎝

b0 b1 · · · bL−1 0 · · · 0

0 b0 b1 · · · bL−1

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 b0 b1 · · · bL−1

⎞
⎟⎟⎟⎟⎟⎠ ,
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C =

⎛
⎜⎜⎜⎜⎜⎝

c0 c1 · · · cL−1 0 · · · 0

0 c0 c1 · · · cL−1

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 c0 c1 · · · cL−1

⎞
⎟⎟⎟⎟⎟⎠

such that

BBH + CCH = aI, (1)

where I is the identity matrix of order L.

The parameter L is themaximum number of nonzero row components of B or C.Note that Problem
1 can be also generalized for Toeplitz matrices B, Cwith the same structure but with a greater number

of rows p� L (in that case, B, C ∈ Cp×p+L−1 and I is the identity matrix of order p), but thenwewould

obtain solutions with the same rows (b0, . . . , bL−1) and (c0, . . . , cL−1) as in the case p = L of Problem

1. The reason is that both BBH and CCH are Toeplitz matrices of size p, and their entries are the scalar

products of the rows of B and C), respectively. Due to their structure, we only need to consider its L

central diagonals, since the rest are null.

In other words, we can just consider Problem 1, because its solutions B, C have the same rows than

the corresponding solutions of the generalized problem defined for matrices with more than L rows.

Therefore, the results here obtained can be eventually applied to a great variety of cases.

Easily, Problem 1 can be reformulated as

Problem 2. GivenL ∈ Nanda > 0,findall complexvectorsb = (b0, . . . , bL−1)andc = (c0, . . . , cL−1)
such that

L−1−k∑
j=0

bjbj+k +
L−1−k∑
j=0

cjcj+k =
{
a if k = 0,

0 if k = 1, . . . , L − 1,
(2)

where the superscript − denotes complex conjugation.

Thus, Problem 2 is equivalent to the matrix Problem 1, and it is stated in terms of the unknown

vectors b and c. Notice that the left hand side of Eq. (2) involves the sum of the autocorrelation of

vector b and the autocorrelation of vector c.
To solve any of these problems, our key idea is to relate them with an apparently very different

approach: the theory of complex paraunitary filterbanks. Filterbanks are widely used in all signal

processing areas; in particular, paraunitary filters are required for signal compression applications,

since they yield unitary transforms. For this reason, many design techniques have been addressed in

the literature [1–8]. However, most results focus on real paraunitary filters, but not in complex ones.

Complex filters also play an important role in Signal Processing (moreover, in Image Processing, since

their real and imaginary parts yield bidimensional filters for digital images). Hence, the complex case

is interesting not only from the theoretical point of view, but also for its applications.

In this work we will provide a new procedure for the design of paraunitary complex filters. Addi-

tionally, it will constitute the desired general solution of the initial matrix Problems 1 and 2.

The paper is organized as follows: in Section 2, the problem will be restated as a polynomial

equation, denoted as Problem3. In Section 3,wewill introduce orthogonal paraunitary filters and their

most important properties, which are necessary to follow the development of our work. Moreover, we

will prove that the filter approach is equivalent to any one of such problems. In Sections 4 and 5

we will provide our new results on the general explicit expressions of both complex orthogonal and

paraunitary filters, respectively. It will also be shown how to obtain the solutions of Problem 1 or 2

or 3 by means of the already designed complex paraunitary filters. By exploiting this equivalence, the

original problem is finally solved in Section 6. Simple illustrative examples are also given in Section 7,

before the conclusions of Section 8.
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2. Formulation as a polynomial equation

Let us give a third equivalent statement of Problems 1 and 2:

Problem 3. Given L ∈ N and a > 0, find all complex polynomials B, C of degree at most L − 1:

B(z) =
L−1∑
k=0

bkz
k , C(z) =

L−1∑
k=0

ckz
k ,

which verify the polynomial equation on the unit torus:

|B(z)|2 + |C(z)|2 = a ∀|z| = 1. (3)

Here, B(z) and C(z) denote the polynomials whose coefficients are, respectively, the solutions b =
(b0, . . . , bL−1) and c = (c0, . . . , cL−1) of Problem 2. In fact, the equivalence between Eqs. (3) and (2)

follows from the fact that, for |z| = 1 we have that z̄ = z−1, and

|B(z)|2=
⎛
⎝L−1∑

j=0

bjz
j

⎞
⎠

⎛
⎝L−1∑

n=0

bnz
−n

⎞
⎠ =

L−1∑
n=0

L−1∑
j=0

bjbnz
j−n

=∑L−1

k=0

⎛
⎝L−1−k∑

j=0

bjbj+k

⎞
⎠ z−k +

L−1∑
k=1

⎛
⎝L−1−k∑

j=0

bn+jbj

⎞
⎠ zk.

Hence |B(z)|2 + |C(z)|2 turns out to be

L−1∑
k=0

⎛
⎝L−1−k∑

j=0

bjbj+k + cjcj+k

⎞
⎠ z−k +

L−1∑
k=1

⎛
⎝L−1−k∑

j=0

bn+jbj + cn+jcj

⎞
⎠ zk. (4)

Note that this polynomial can be written as
∑L−1

k=1 pkz
−k + ∑L−1

k=1 pkz
k up to an additive constant.

Hence, it is a constant polynomial if all its coefficients pk are zero. In other words, the polynomial of

Eq. (4) is identically equal to a if and only if (2) is fulfilled.

Eq. (3) can be considered a Bézout polynomial equation since it can be rewritten in the following

way:

Proposition 1. If B(z) = ∑L−1
k=0 bkz

k , C(z) = ∑L−1
k=0 ckz

k satisfy Eq. (3), then the Bézout identity

B (z) B̃ (z) + C (z) C̃ (z) = azL−1 ∀|z| = 1

is reached by the reciprocal polynomials of B, C, defined as:

B̃ (z)=zL−1B(z−1) =
L−1∑
k=0

bL−1−kz
k ,

C̃ (z)=zL−1C(z−1) =
L−1∑
k=0

cL−1−kz
k.

Proof. In effect, if B, C are the solutions of Eq. (3) then

B (z) B (z) + C (z) C (z) = a

and we can write, for |z| = 1,

B (z) = B(z−1) =
L−1∑
n=0

bnz
−n =

L−1∑
k=0

bL−1−kz
1−L+k = z1−LB̃ (z).
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Operating analogously with C(z) and multiplicating by zL−1, we get the result. �

In Section 6 we will give the general explicit expression for the polynomial solutions of Problem 3;

to this end, we will make use of the filter approach introduced in the next Section.

3. Paraunitary filter approach

Let us start with the definition of orthogonal and paraunitary complex filters:

Definition 1. An orthogonal complex filter of lengthM is a complex vectorh = (h1, h2, . . . , hM)with

h1hM /= 0, which is orthogonal to its even shifts:

∀k = 1, . . . , �M/2� − 1

M−2k∑
n=1

hnhn+2k = 0. (5)

From the definition, the length M of the orthogonal filter must be even: if M is odd, then for

k = (M − 1)/2 the inner product of h and its 2kth shift would be h1hM = 0, so either h1 or hM would

be zero, and it contradicts the definition. Hence, the length M is an even number: from now on, let

M = 2L.

Definition 2. A paraunitary complex filter of length 2L is an orthogonal complex filter h = (h1, h2,
. . . , h2L) with unit Euclidean norm:

∀k = 0, . . . , L − 1

2L−2k∑
n=1

hnhn+2k =
{
1, if k = 0;
0, if k /= 0.

Let us mention some equivalences for paraunitary filters that will be used in this work:

Lemma 1. The following statements are equivalent:
• The vector h = (h1, h2, . . . , h2L) of length 2L is a paraunitary complex filter.
• The polynomial H(z) = ∑2L

n=1 hnz
n−1 satisfies, for every |z| = 1,

|H(z)|2 + |H(−z)|2 = 2.

• Polynomials Heven and Hodd, whose coefficients contain the even and odd components of h :
Heven (z) =

L∑
n=1

h2nz
n−1 Hodd (z) =

L∑
n=1

h2n−1z
n−1

verify the polynomial equation on the unit torus

|Heven(z)|2 + |Hodd(z)|2 = 1 ∀|z| = 1. (6)

Proofs of these equivalences are easily derived in an analogous way to the proof given in Section 2.

Finally, our idea is to compare the solutions of Problem 3 (Eq. (3)) and the solution of Eq. (6):

Corollary 1. Polynomials B(z), C(z) of degree less than L are solutions of the Eq. (3) if and only if

B (z) = √
aHeven (z) , C (z) = √

aHodd (z),

where Heven,Hodd are the polynomials whose coefficients are the even and odd components of any complex

paraunitary filter h of length 2L.

This is one of the main results of this work: it suffices to build all such complex paraunitary filters

in an explicit way. This will be done in the next Section.
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4. General explicit expression for complex orthogonal filters

In this Section we will first obtain a general explicit parameterization of all complex orthogonal

filters, similar to the one obtained in [7,8] for real filters. We begin by writing the orthogonality

condition of Eq. (5) of a filter of length M = 2L, for any k = 1, . . . , L − 1, as:

∑
nodd

hnhn+2k = − ∑
neven

hnhn+2k.

For instance, if k = L − 1 we have that h1h2L−1 = −h2h2L; since h1 /= 0, h2L /= 0 (otherwise, the

length of the filter is less than 2L), there is be a complex number a1 such that

a1 = −h2L−1

h2L
= h2

h1
.

In other words, h2, h2L−1 can be derived from h2L , h1:

h2 = a1h1 h2L−1 = −a1h2L.

Now the key question arises: can we always write the even components of the filter by means of the

odd ones, and viceversa? Our first result proves that the answer is yes; moreover, it provides our first

characterization for orthogonal complex filters. To this aim, we will use the following notation: for

any set of complex numbers (a1, . . . , am), let us denote by T(a1, . . . , am) the Toeplitz lower triangular

matrix of ordermwhich contains these numbers in its first column, that is:

T (a1, . . . , am) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0

a2 a1 0
. . .

...

a3 a2 a1
. . .

...
...

. . .
. . .

. . . 0

am · · · a3 a2 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, we will denote A = T(a1, . . . , aL−1) for such Toeplitz lower triangular matrix of order

L − 1.
Now we are in conditions to provide our first main result:

Theorem 1. The complex vector h = (h1, h2, . . . , h2L) is an orthogonal complex filter of length 2L if and

only if there exist L − 1 complex numbers a1, . . . , aL−1 such that, for any k = 1, . . . , L − 1 :

h2k =
k∑

j=1

h2k+1−2jaj ,

h2L+1−2k = −
k∑

j=1

h2L−2k+2jaj.

Or, in an equivalent matricial way:⎛
⎜⎜⎜⎝

h2
h4
...

h2L−2

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

h1
h3
...

h2L−3

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

h3
...

h2L−3

h2L−1

⎞
⎟⎟⎟⎠ = −AH

⎛
⎜⎜⎜⎝

h4
...

h2L−2

h2L

⎞
⎟⎟⎟⎠ . (7)
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Proof. Eq. (5) may be easily rewritten matricially as

−T (h1, h3, . . . , h2L−3)

⎛
⎜⎜⎜⎜⎜⎜⎝

h2L−1

h2L−3

...

h3

⎞
⎟⎟⎟⎟⎟⎟⎠ = T (h2L , h2L−2, . . . , h4)

⎛
⎜⎜⎜⎝

h2
h4
...

h2L−2

⎞
⎟⎟⎟⎠ ,

where we have used our notation for lower triangular Toeplitz matrices. As h1 · h2L /= 0, both matri-

ces are nonsingular; besides, their inverses are also lower triangular Toeplitz matrices; finally, such

matrices always commute, so we can state that

−
(
T (h2L , h2L−2, . . . , h4)

)−1

⎛
⎜⎜⎜⎜⎜⎜⎝

h2L−1

h2L−3

...

h3

⎞
⎟⎟⎟⎟⎟⎟⎠

= (T (h1, h3, . . . , h2L−3))
−1

⎛
⎜⎜⎜⎝

h2
h4
...

h2L−2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1
a2
...

aL−1

⎞
⎟⎟⎟⎠ ,

where (a1, . . . , aL−1) denotes any of these identical products. Note that the first coefficient a1 verifies

a1 = −h2L−1/h2L = h2/h1. Let us show that the whole vector verify Eq. (7): we now have

−T (h2L , h2L−2, . . . , h4)

⎛
⎜⎜⎝

a1
...

aL−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
h2L−1

h2L−3

...
h3

⎞
⎟⎟⎟⎠ , (8)

T (h1, h3, . . . , h2L−3)

⎛
⎜⎜⎝

a1
...

aL−1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h2
h4
...

h2L−2

⎞
⎟⎟⎟⎠ . (9)

Sowehave shown that it is possible to express eachodd coefficient of thefilter bymeansof its following

even coefficients, and each even coefficient bymeans of its former odd coefficients. Moreover, Eqs. (8),

(9) can be rewritten as

−T (a1, . . . , aL−1)

⎛
⎜⎜⎜⎝

h2L
h2L−2

...
h4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
h2L−1

h2L−3

...
h3

⎞
⎟⎟⎟⎠ ,

T (a1, . . . , aL−1)

⎛
⎜⎜⎜⎝

h1
h3
...

h2L−3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h2
h4
...

h2L−2

⎞
⎟⎟⎟⎠ .

Tofinish, in the top identity it suffices to reverse theorder of the equations, and reverse the components

of the vector (h2L , . . . , h4); this is achieved by multiplication of the antidiagonal permutation matrix

P. As A = T(a1, . . . , aL−1) is a Toeplitz matrix, then it is easy to deduce that
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PAP = A
t = AH ,

which concludes the proof. �

Corollary 2. h = (h1, h2, . . . , h2L) is an orthogonal complex filter if and only if there exist L complex

numbers a1, . . . , aL such that

h2L+1−2k = −
k∑

j=1

h2L−2k+2jaj ∀k = 1, . . . , L − 1, (10)

h2k =
k∑

j=1

h2k+1−2jaj ∀k = 1, . . . , L. (11)

Proof. The first L − 1 equations of (11) are just the first set of equations of Theorem 1. For the last one

(the one with k = L) set

aL = h2L − aL−1h3 − · · · − a1h2L−1

h1

(which is well defined because h1 /= 0) and, then

aLh1 + aL−1h3 + · · · + a1h2L−1 = h2L.

which is precisely Eq. (11) for k = L. �

4.1. Design procedure of orthogonal complex filters

Nowwewill obtain a new explicit expression for all orthogonal complex filters. Notice that the two

identities of Corollary 2 present some kind of redundancy: the coefficient h2L appears as a parameter

in Eq. (10) and as an unknown in (11). By exploiting this redundancy, we will generate h using only

external independent parameters, such as a1, . . . , aL . This will then lead us to find the desired design

method for all orthogonal complex filters.

To this end, by means of the parameters (a1, . . . , aL), we just build:

• the lower triangular Toeplitz matrix A already defined in this Section:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0

a2 a1 0
. . .

...

a3 a2 a1
. . .

...
...

. . .
. . .

. . . 0

aL−1 · · · a3 a2 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

• and three column vectors of length L − 1:
a = (a2, a3, . . . , aL)

t

d =
(
I + AAH

)−1
a

e = −AHd

⎫⎪⎪⎬
⎪⎪⎭ , (12)

where d is well defined because I + AAH is always an invertible (positive definite) matrix.

For the sake of simplicity, from now on we will denote the vectors of length L − 1:
heven = (h4, h6, . . . , h2L−2, h2L)

t ,

hodd = (h3, h5, . . . , h2L−3, h2L−1)
t ,

which contain the even and odd indexed coefficients of h except for h1, h2.
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Now we are finally ready to express all the components of the filter by means of h1 and the L

parameters. This is one of the main results of this paper, which constitutes the first parameterization

of all orthogonal complex filters:

Theorem 2. h is an orthogonal complex filter of length 2L if and only if their components are of the form:⎛
⎜⎜⎝

h1
hodd

h2
heven

⎞
⎟⎟⎠ = h1

⎛
⎜⎜⎝

1

e

a1
d

⎞
⎟⎟⎠ , (13)

where the vectors d, e are built from the parameters a1, . . . , aL by means of Eq. (12).

Proof. We start by writing Eq. (11) as:(
h2

heven

)
=

(
h1a1
h1a

)
+

(
0

Ahodd

)
⇔

{
h2 = a1h1
heven = h1a + Ahodd

(14)

and Eq. (10) as

hodd = −AHheven (15)

so it suffices to substitute (15) into (14):

heven = h1a − AAHheven

⇔
(
I + AAH

)
heven = h1a

⇔heven = h1

(
I + AAH

)−1
a = h1d.

We just finally have hodd = −AHheven = −h1A
Hd = h1e. �

Remark 1. We have derived that, by choosing L arbitrary complex parameters (a1, . . . , aL) and one

arbitrary nonzero number h1, the whole set of orthogonal complex filters h of length 2L can be

parameterized. In other words, these filters are characterized by means of just L + 1 parameters.

And this representation is unique: different sets of parameters always yield different filters, so there is

no redundancy in this parameterization.

Recall from Section 2 that the even and odd components of orthogonal filters are associated to the

polynomials

Heven(z) = L−1∑
k=0

h2k+2z
k = h1B (z)

Hodd(z) = L−1∑
k=0

h2k+1z
k = h1C (z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ ,

where the polynomials B and C are

B (z) = a1 +
L−1∑
k=1

dkz
k , C (z) = 1 +

L−1∑
k=1

ekz
k. (16)

Remark 2. Hence, we have just provided a procedure to design the solutions of the polynomial equa-

tion

|B(z)|2 + |C(z)|2 = 1

|h1|2 ∀|z| = 1,

which is the same as Eq. (3). Moreover, we conclude that the general solution of Eq. (3) is the one given

in Eq. (16), up to a factor.
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5. General expression for paraunitary complex filters

In this Section we will impose the orthogonal complex filter to be unitary. This way, we obtain the

first general parameterization of paraunitary complex filters:

Theorem 3. h is a paraunitary filter if and only if its components can be written as⎛
⎜⎜⎝

h1
hodd

h2
heven

⎞
⎟⎟⎠ = eiα√

1 + |a1|2 + dHa

⎛
⎜⎜⎝

1

e

a1
d

⎞
⎟⎟⎠ . (17)

where eiα is an arbitrary unitary complex number.

Proof. It suffices to impose the vector h of Eq. (13) to have unit norm:

1 = |h1|2
(
1 + |a1|2 + ‖e‖2 + ‖d‖2

)
and so, this condition determines h1 (up to an unitary complex number). By using the relationship

between d and e we can simplify this expression:

‖e‖2 + ‖d‖2=eHe + dHd = dHAAHd + dHd

=dH
(
AAH + I

)
d = dHa � 0

so the unitary condition is

|h1|2 = 1

1 + |a1|2 + dHa
. �

Notice that the paraunitary complex filters are expressed directly via L parameters a1, . . . , aL and

one complex unitary number eiα . Unlike other approaches [1,3], our procedure requires no iteration

process: hence, Eq. (17) directly provides the simplest general expression for paraunitary complex

filters. This constitutes one of the main results of this paper.

6. Solution of the original polynomial equation

The above results lead us to the desired explicit solution of the polynomial Problem 3. Recall that

this problem has already been solved bymeans of Remark 2, up to a normalizing factor. Let us give the

general solution in this Section; we solve it first for a = 1:
Theorem 4. Two polynomials of complex coefficients B0(z) and C0(z) of degree at most L − 1 satisfy the

polynomial equation on the unit torus

|B0 (z)|2 + |C0 (z)|2 = 1 (18)

if and only if they can be written as

B0 (z)=Heven(z) = eiα√
1 + |a1|2 + dHa

⎛
⎝a1 +

L−1∑
k=1

dkz
k

⎞
⎠ ,

C0 (z)=Hodd(z) = eiα√
1 + |a1|2 + dHa

⎛
⎝1 +

L−1∑
k=1

ekz
k

⎞
⎠ ,

where a, d, e are defined in Eq. (12), by means of L independent parameters.
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Proof. Lemma1assures that the solutionsof thepolynomial equation (18) aregivenby thepolynomials

Heven and Hodd associated to a paraunitary filter. By exploiting the general expression of paraunitary

complex filters provided by Eq. (17), we directly derive this result. �

Now we provide the expression of the general solution:

Corollary 3. For a > 0, all the polynomials B, C of degree < L which verify the polynomial equation

|B (z)|2 + |C (z)|2 = a ∀|z| = 1

are explicitly given by

B (z)=√
aB0 (z) =

√
aeiα√

1 + |a1|2 + dHa

⎛
⎝a1 +

L−1∑
k=1

dkz
k

⎞
⎠

C (z)=√
aC0 (z) =

√
aeiα√

1 + |a1|2 + dHa

⎛
⎝1 +

L−1∑
k=1

ekz
k

⎞
⎠ ,

where a, d, e are vectors defined by Eq. (12), and can be explicitly parameterized by choosing L arbitrary

complex parameters a1, . . . , aL via our design method.

Remark 3. The main advantage of our approach is that B(z) are C(z) are built directly, without need

of spectral factorization or root finding procedure, unlike most procedures in the literature [2,5,6].

7. Design example

Let us build all the orthogonal complex filters of length 2L = 4 : according to our results, it just

suffices to choose L = 2 complex parameters a1, a2. In this case, A = a1, a = a2 and

d = a2

1 + |a1|2 , e = − a1a2

1 + |a1|2
are also complex numbers, not vectors. Hence, the explicit expression of such filters are:

h =
⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ = h1

⎛
⎜⎜⎝

1

a1
e

d

⎞
⎟⎟⎠ = h1

1 + |a1|2

⎛
⎜⎜⎜⎝

1 + |a1|2
a1

(
1 + |a1|2

)
−a1a2
a2

⎞
⎟⎟⎟⎠ .

Notice that this general expression for orthogonal complex filters of length 4 also includes the set of

filters of minor length: in fact, when choosing a2 = 0 we would obtain all orthogonal filters of length

2. Our procedure yields the parameterization of all orthogonal complex filters of length at most 2L.

For the paraunitary case, just an additional normalization step would be required.

7.1. Application to the solution of a polynomial equation

Let us find the whole set of polynomials B, C of degree � 1 which verify the equation

|B(z)|2 + |C(z)|2 = a > 0 ∀|z| = 1.

By using our proposed approach, as B, C contain L = 2 coefficients, we associate them with the even

and odd components of a paraunitary complex filter h of length 2L = 4. Thus, polynomials B(z), C(z)
are explicitly given by Corollary 3:
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B(z)=
√

aeiα√
1 + |a1|2 + dHa

(a1 + dz) ,

C(z)=
√

aeiα√
1 + |a1|2 + dHa

(1 + ez) .

In this Section we have obtained their final expression:

B (z)=β
(
a1

(
1 + |a1|2

)
+ a2z

)
,

C (z)=β
(
1 + |a1|2 − a1a2z

)
,

where β is a normalizing factor. Therefore, they are uniquely determined via a1, a2; the multiplicative

factorβ is also computed bymeans of them, in order tomatch the quantity a in the original polynomial

Equation (3).

7.2. Application to the rectangular Toeplitz solutions of a matrix equation

The previous example also yields all the rectangular complex Toeplitz matrices B, C which are

bidiagonal, and fulfill the matrix equation

BBH + CCH = aI.

Indeed, we obtain that such matrices are, up to a factor β , the ones whose rows are of the form:

Rows of B :
(
. . . , 0, 0, a1

(
1 + |a1|2

)
, a2, 0, 0, . . .

)
,

Rows of C :
(
. . . , 0, 0, 1 + |a1|2 ,−a1a2, 0, 0, . . .

)
for any set of complex numbers a1, a2.

8. Conclusions

Some matrix equations can be investigated by using approaches from other disciplines. In this

paper, filterbank theory has helped us to solve certain Toeplitz matrix equations. To this end, we have

presented new results on complex orthogonal and paraunitary filters. Moreover, we have provided a

novel parameterizationof all complexorthogonal andparaunitaryfilters. This characterizationnotonly

yields theexplicit general solutionof thepreviousmatrix equations, but also solves their corresponding

Bézout polynomial identities. Our proposed procedure is direct, simple, non redundant, non iterative,

and does not require any spectral factorization technique.
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