561 research outputs found

    Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information

    Get PDF
    In this paper we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view image sequence. In contrast to prior motion information based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology by a successive iterative merge process. The iterative merge process is guided by a skeleton distance function which is generated from a novel object boundary generation method from sparse points. Our main contributions can be summarised as follows: (i) Unsupervised complex articulated kinematic structure learning by combining motion and skeleton information. (ii) Iterative fine-to-coarse merging strategy for adaptive motion segmentation and structure smoothing. (iii) Skeleton estimation from sparse feature points. (iv) A new highly articulated object dataset containing multi-stage complexity with ground truth. Our experiments show that the proposed method out-performs state-of-the-art methods both quantitatively and qualitatively

    Hierarchical generative modelling for autonomous robots

    Full text link
    Humans can produce complex whole-body motions when interacting with their surroundings, by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control in the setting of autonomous robotic operations. We approach this problem by hierarchical generative modelling equipped with multi-level planning-for autonomous task completion-that mimics the deep temporal architecture of human motor control. Here, temporal depth refers to the nested time scales at which successive levels of a forward or generative model unfold, for example, delivering an object requires a global plan to contextualise the fast coordination of multiple local movements of limbs. This separation of temporal scales also motivates robotics and control. Specifically, to achieve versatile sensorimotor control, it is advantageous to hierarchically structure the planning and low-level motor control of individual limbs. We use numerical and physical simulation to conduct experiments and to establish the efficacy of this formulation. Using a hierarchical generative model, we show how a humanoid robot can autonomously complete a complex task that necessitates a holistic use of locomotion, manipulation, and grasping. Specifically, we demonstrate the ability of a humanoid robot that can retrieve and transport a box, open and walk through a door to reach the destination, approach and kick a football, while showing robust performance in presence of body damage and ground irregularities. Our findings demonstrated the effectiveness of using human-inspired motor control algorithms, and our method provides a viable hierarchical architecture for the autonomous completion of challenging goal-directed tasks

    Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel

    Full text link
    This paper describes the design, implementation and testing of a suite of algorithms to enable depth constrained autonomous bathymetric (underwater topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth and a bounding polygon, the ASV will find and follow the intersection of the bounding polygon and the depth contour as modeled online with a Gaussian Process (GP). This intersection, once mapped, will then be used as a boundary within which a path will be planned for coverage to build a map of the Bathymetry. Methods for sequential updates to GP's are described allowing online fitting, prediction and hyper-parameter optimisation on a small embedded PC. New algorithms are introduced for the partitioning of convex polygons to allow efficient path planning for coverage. These algorithms are tested both in simulation and in the field with a small twin hull differential thrust vessel built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field Robotic

    A functional electrical stimulation system for human walking inspired by reflexive control principles

    Get PDF
    This study presents an innovative multichannel functional electrical stimulation gait-assist system which employs a well-established purely reflexive control algorithm, previously tested in a series of bipedal walking robots. In these robots, ground contact information was used to activate motors in the legs, generating a gait cycle similar to that of humans. Rather than developing a sophisticated closed-loop functional electrical stimulation control strategy for stepping, we have instead utilised our simple reflexive model where muscle activation is induced through transfer functions which translate sensory signals, predominantly ground contact information, into motor actions. The functionality of the functional electrical stimulation system was tested by analysis of the gait function of seven healthy volunteers during functional electrical stimulationā€“assisted treadmill walking compared to unassisted walking. The results demonstrated that the system was successful in synchronising muscle activation throughout the gait cycle and was able to promote functional hip and ankle movements. Overall, the study demonstrates the potential of human-inspired robotic systems in the design of assistive devices for bipedal walking

    A non-invasive human-machine interfacing framework for investigating dexterous control of hand muscles

    Get PDF
    The recent fast development of virtual reality and robotic assistive devices enables to augment the capabilities of able-body individuals as well as to overcome the motor missing functions of neurologically impaired or amputee individuals. To control these devices, movement intentions can be captured from biological structures involved in the process of motor planning and execution, such as the central nervous system (CNS), the peripheral nervous system (in particular the spinal motor neurons) and the musculoskeletal system. Thus, human-machine interfaces (HMI) enable to transfer neural information from the neuro-muscular system to machines. To prevent any risks due to surgical operations or tissue damage in implementing these HMIs, a non-invasive approach is proposed in this thesis. In the last five decades, surface electromyography (sEMG) has been extensively explored as a non-invasive source of neural information. EMG signals are constituted by the mixed electrical activity of several recruited motor units, the fundamental components of muscle contraction. High-density sEMG (HD-sEMG) with the use of blind source separation methods enabled to identify the discharge patterns of many of these active motor units. From these decomposed discharge patterns, the net common synaptic input (CSI) to the corresponding spinal motor neurons was quantified with cross-correlation in the time and frequency domain or with principal component analysis (PCA) on one or few muscles. It has been hypothesised that this CSI would result from the contribution of spinal descending commands sent by supra-spinal structures and afferences integrated by spinal interneurons. Another motor strategy implying the integration of descending commands at the spinal level is the one regarding the coordination of many muscles to control a large number of articular joints. This neurophysiological mechanism was investigated by measuring a single EMG amplitude per muscle, thus without the use of HD-sEMG and decomposition. In this case, the aim was to understand how the central nervous system (CNS) could control a large set of muscles actuating a vast set of combinations of degrees of freedom in a modular way. Thus, time-invariant patterns of muscle coordination, i.e. muscle synergies , were found in animals and humans from EMG amplitude of many muscles, modulated by time-varying commands to be combined to fulfil complex movements. In this thesis, for the first time, we present a non-invasive framework for human-machine interfaces based on both spinal motor neuron recruitment strategy and muscle synergistic control for unifying the understanding of these two motor control strategies and producing control signals correlated to biomechanical quantities. This implies recording both from many muscles and using HD-sEMG for each muscle. We investigated 14 muscles of the hand, 6 extrinsic and 8 intrinsic. The first two studies, (in Chapters 2 and 3, respectively) present the framework for CSI quantification by PCA and the extraction of the synergistic organisation of spinal motor neurons innervating the 14 investigated muscles. For the latter analysis, in Chapter 3, we proposed the existence of what we named as motor neuron synergies extracted with non-negative matrix factorisation (NMF) from the identified motor neurons. In these first two studies, we considered 7 subjects and 7 grip types involving differently all the four fingers in opposition with the thumb. In the first study, we found that the variance explained by the CSI among all motor neuron spike trains was (53.0 Ā± 10.9) % and its cross-correlation with force was 0.67 Ā± 0.10, remarkably high with respect to previous findings. In the second study, 4 motor neuron synergies were identified and associated with the actuation of one finger in opposition with the thumb, finding even higher correlation values with force (over 0.8) for each synergy associated with a finger during the actuation of the relative finger. In Chapter 4, we then extended the set of analysed movements in a vast repertoire of gestures and repeated the analysis of Chapter 3 by finding a different synergistic organisation during the execution of tens of tasks. We divided the contribution among extrinsic and intrinsic muscles and we found that intrinsic better enable single-finger spatial discrimination, while no difference was found in regression of joint angles by dividing the two groups of muscles. Finally, in Chapter 5 we proposed the techniques of the previous chapters for cases of impairment due both to amputation and stroke. We analysed one case of pre and post rehabilitation sessions of a trans-humeral amputee, the case of a post-stroke trans-radial amputee and three cases of acute stroke, i.e. less than one month from the stroke event. We present future perspectives (Chapter 6) aimed to design and implement a platform for both rehabilitation monitoring and myoelectric control. Thus, this thesis provides a bridge between two extensively studied motor control mechanisms, i.e. motor neuron recruitment and muscle synergies, and proposes this framework as suitable for rehabilitation monitoring and control of assistive devices.Open Acces

    FACMAC: Factored Multi-Agent Centralised Policy Gradients

    Get PDF
    We propose FACtored Multi-Agent Centralised policy gradients (FACMAC), a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces. Like MADDPG, a popular multi-agent actor-critic method, our approach uses deep deterministic policy gradients to learn policies. However, FACMAC learns a centralised but factored critic, which combines per-agent utilities into the joint action-value function via a non-linear monotonic function, as in QMIX, a popular multi-agent Q-learning algorithm. However, unlike QMIX, there are no inherent constraints on factoring the critic. We thus also employ a nonmonotonic factorisation and empirically demonstrate that its increased representational capacity allows it to solve some tasks that cannot be solved with monolithic, or monotonically factored critics. In addition, FACMAC uses a centralised policy gradient estimator that optimises over the entire joint action space, rather than optimising over each agent's action space separately as in MADDPG. This allows for more coordinated policy changes and fully reaps the benefits of a centralised critic. We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks. Empirical results demonstrate FACMAC's superior performance over MADDPG and other baselines on all three domains
    • ā€¦
    corecore