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Abstract

The recent fast development of virtual reality and robotic assistive devices enables to augment
the capabilities of able-body individuals as well as to overcome the motor missing functions of
neurologically impaired or amputee individuals. To control these devices, movement intentions can
be captured from biological structures involved in the process of motor planning and execution,
such as the central nervous system (CNS), the peripheral nervous system (in particular the spinal
motor neurons) and the musculoskeletal system. Thus, human-machine interfaces (HMI) enable
to transfer neural information from the neuro-muscular system to machines. To prevent any risks
due to surgical operations or tissue damage in implementing these HMIs, a non-invasive approach
is proposed in this thesis.

In the last five decades, surface electromyography (sEMG) has been extensively explored as a
non-invasive source of neural information. EMG signals are constituted by the mixed electrical
activity of several recruited motor units, the fundamental components of muscle contraction. High-
density sEMG (HD-sEMG) with the use of blind source separation methods enabled to identify
the discharge patterns of many of these active motor units. From these decomposed discharge
patterns, the net common synaptic input (CSI) to the corresponding spinal motor neurons was
quantified with cross-correlation in the time and frequency domain or with principal component
analysis (PCA) on one or few muscles. It has been hypothesised that this CSI would result from
the contribution of spinal descending commands sent by supra-spinal structures and afferences
integrated by spinal interneurons.

Another motor strategy implying the integration of descending commands at the spinal level
is the one regarding the coordination of many muscles to control a large number of articular
joints. This neurophysiological mechanism was investigated by measuring a single EMG amplitude
per muscle, thus without the use of HD-sEMG and decomposition. In this case, the aim was to
understand how the central nervous system (CNS) could control a large set of muscles actuating
a vast set of combinations of degrees of freedom in a modular way. Thus, time-invariant patterns
of muscle coordination, i.e. muscle synergies, were found in animals and humans from EMG
amplitude of many muscles, modulated by time-varying commands to be combined to fulfil complex
movements.

In this thesis, for the first time, we present a non-invasive framework for human-machine
interfaces based on both spinal motor neuron recruitment strategy and muscle synergistic control
for unifying the understanding of these two motor control strategies and producing control signals
correlated to biomechanical quantities. This implies recording both from many muscles and using
HD-sEMG for each muscle. We investigated 14 muscles of the hand, 6 extrinsic and 8 intrinsic. The
first two studies, (in Chapters 2 and 3, respectively) present the framework for CSI quantification
by PCA and the extraction of the synergistic organisation of spinal motor neurons innervating the
14 investigated muscles. For the latter analysis, in Chapter 3, we proposed the existence of what we
named as motor neuron synergies extracted with non-negative matrix factorisation (NMF) from
the identified motor neurons. In these first two studies, we considered 7 subjects and 7 grip types
involving differently all the four fingers in opposition with the thumb. In the first study, we found
that the variance explained by the CSI among all motor neuron spike trains was (53.0±10.9)% and
its cross-correlation with force was 0.67± 0.10, remarkably high with respect to previous findings.
In the second study, 4 motor neuron synergies were identified and associated with the actuation
of one finger in opposition with the thumb, finding even higher correlation values with force (over
0.8) for each synergy associated with a finger during the actuation of the relative finger.

In Chapter 4, we then extended the set of analysed movements in a vast repertoire of gestures
and repeated the analysis of Chapter 3 by finding a different synergistic organisation during the
execution of tens of tasks. We divided the contribution among extrinsic and intrinsic muscles and
we found that intrinsic better enable single-finger spatial discrimination, while no difference was
found in regression of joint angles by dividing the two groups of muscles. Finally, in Chapter 5 we
proposed the techniques of the previous chapters for cases of impairment due both to amputation
and stroke. We analysed one case of pre and post rehabilitation sessions of a trans-humeral
amputee, the case of a post-stroke trans-radial amputee and three cases of acute stroke, i.e. less
than one month from the stroke event. We present future perspectives (Chapter 6) aimed to design
and implement a platform for both rehabilitation monitoring and myoelectric control.



Thus, this thesis provides a bridge between two extensively studied motor control mechanisms,
i.e. motor neuron recruitment and muscle synergies, and proposes this framework as suitable for
rehabilitation monitoring and control of assistive devices.
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Nomenclature

ADM Abductor digiti minimi (muscle)

APB Abductor pollicis (muscle)

BCI Brain-computer interface

BSS Blind source separation

CKC Convolution kernel compensation

CNS Central nervous system

CSI Common synaptic input

DI Dorsal interosse-ous/i (muscle)

DoF Degree of freedom

DwNMF DoF-wise NMF

ECR Extensor carpi radialis (muscle)

ECU Extensor carpi ulnaris (muscle)

EDC Extensor digitorum communis (muscle)

EMG Electromyograph-y/ic

EXT Extensor (muscle group)

FCR Flexor carpi radialis (muscle)

FCU Flexor carpi ulnaris (muscle)

FDI First dorsal interosseous (muscle)

FDS Flexor digitorum superficialis (muscle)

FLX Flexor (muscle group)

fMRI Functional magnetic resonance imaging

FPB Flexor pollicis brevis (muscle)

HD − sEMG High-density surface EMG

HMI Human-machine interface

IED Inter-electrodic distance

IPT Intervation pulse train

ISI Inter-spike interval

M1 Primary motor cortex

MCP Metacarpophalangeal (joint)
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MFR Mean frequency

MN Motor neuron

MNS Motor neuron synergy

MSE Mean squared error

MVC Maximal voluntary contraction

NMF Non-negative matrix factorization

OPP Opponens pollicis

PC1 First principal component

PCA Principal component analysis

PIP Proximal interphalangeal (joint)

PNR Pulse-to-noise ratio

PreM − In Premotor interneuron

R2 Coefficient of determination or of reconstruction

SDR Smoothed discharge rate

SST Smoothed spike trains

STA Spike-triggered average

SV D Singular value decomposition

THE Thenar (muscle group)

TMR Targeted-muscle reinnervation

XC Cross-correlation
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3.7 Number of identified motor neuron synergies and muscle synergies. Synergy recon-
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input to NMF. Mean (thick lines) and standard deviation (shaded areas) of the R2

averaged across subjects are represented on the top, while the corresponding mean
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Chapter 1

Introduction

1.1 Objectives of the PhD project and Thesis structure

Dexterity in daily movements is a fundamental aspect of a satisfying life. Walking and running are
necessary to move from a place to another, while object manipulation is needed to interact with
the external environment. Impairment in motor control, due to a trauma, a neuro-degenerative
disease or a stroke, can seriously compromise the quality of life and the independence of a person.
Possible solutions to augment the movement capabilities of motor-impaired individuals can be
provided by the recent improvements in robotics (prostheses and exoskeletons), virtual reality, the
new generation of wheelchairs, and other assistive devices. Some of these technologies could also be
used to augment the normal capabilities of healthy able-body people, in the perspective of human
augmentation. Finally, robotics and virtual reality can be used also for rehabilitation and training.
Thus, the main issue still to solve, as we show in this chapter, is how to control with proficiency
these devices.

A suitable and convenient way to achieve the aforementioned goal is controlling external devices
and communicating movement intentions by contracting muscles. For this purpose, a human-
machine interface (HMI) can be conceived to be used by able-bodied people to dexterously control
virtual reality, software applications and video games. For people impaired by a neurodegenerative
disease, stroke or trauma, a neuromuscular HMI can be useful to quantify the improvement during
rehabilitation in terms of muscle strength exertion and muscle coordination. Moreover, it can
provide an intuitive controller for exoskeletons or electro-stimulating devices. Finally, for amputees,
an HMI based on neuromuscular activity is already commonly used to control robotic prostheses,
although presenting several limitations, as we explain below in this chapter. In all these three
cases, we require a completely non-invasive technique, to avoid surgical procedures and enable the
wearer to be free to put on and off this neural interface when she desires. Moreover, we would
require as much selectivity as possible in terms of neural information captured by this system,
although it is not directly connected with muscles or nerves.

Thus, enabling humans to communicate and transfer their movement intentions intuitively
with machines, by interfacing non-invasively their nervous system with a digital device, is the final
aim of this PhD project (Figure 1.1). To achieve it, we propose a non-invasive neural interface
based on the electrical activity produced by the motor neurons innervating the muscles of the user.
The electrical signal recorded to implement this neural interface is produced by the sum of the
electrical activity of many motor units in each muscle and defined as electromyographic (EMG)
signal. Here, we consider only the non-invasive recording of EMG by placing electrodes over the
skin covering the investigated muscles, defined as surface EMG (sEMG). We adopt a high-density
distribution of electrodes, in total 384, over 14 muscles of the hand, both extrinsic and intrinsic,
and we decompose these signals in the constituent trains of motor unit action potentials. We
chose to focus on the hand because of its importance for a great number of daily tasks, such as
manipulation and communication. Moreover, the hand also presents many degrees of freedom and
many muscles in a small volume, enabling to cover as many muscles as possible with a high-density
distribution of electrodes. The study conducted here on the hand could be replied to other body
districts as well.

By high-density sEMG (HD-sEMG), we extract the neural information originating from many
parts of the central nervous system (CNS), sent to motor neurons. This is possible by decomposing
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Figure 1.1: High-density surface EMG (HD-sEMG) constitutes a non-invasive neural interface.
HD-sEMG contains the neural information originating from different parts of the central nervous
system. This neural information can be extracted and separated from EMG by decomposition,
to identify the constituent trains of motor unit action potentials. Each motor unit can then be
associated with the spinal motor neuron by which the motor unit is innervated. Discharge patterns
of pools of motor neurons enable to infer motor control strategies at the spinal level and provide
control signals for different electro-mechanical devices and virtual reality.

the HD-sEMG signals recorded from many muscles and then factorising the discharge patterns of
the identified motor neurons in a unique pool, to infer descending motor control strategies embed-
ded at the spinal and supraspinal level. Thus, we provide a non-invasive way to investigate the
motor neuron patterns containing the intentions of movements of all the main muscles actuating
the hand. The novelty of this framework is that, for the first time, a high number of motor neurons
innervating several muscles is observed and their firing patterns analysed to provide meaningful
control signals to prostheses, orthoses and other devices. These control signals must be obtained
by a dimensionality reduction of the discharge patterns of the identified motor neurons, because
the number of DoFs to control, i.e. wrist and finger joints, is smaller than the number of motor
neurons. This dimensionality reduction computed by factorization techniques emphasises the nat-
ural dimensionality reduction performed at the spinal and supraspinal level. These factorization
methods provide a quasi-unsupervised way to extract control signals from neural information, by
only selecting adequately the tasks to observe during a training phase of these algorithms. In this
thesis, these control signals extracted from low-pass filtered motor neuron spike trains, are always
compared, to test their effectiveness, to biomechanical features recorded during the tasks, either
grip forces or kinematics of forearm, hand and fingers.

We present the framework in Chapter 2, by analysing motor neurons controlling extrinsic and
intrinsic muscles of the hand during seven different grip types. We show that the first principal
component obtained by the smoothed discharge patterns of these motor neurons efferent to different
muscles explains more than one half of the total information and that it positively correlates
with exerted force measured during all the grips. In Chapter 3, we investigate the synergistic
organization of motor neurons from multiple hand muscles by assessing the existence of few synaptic
inputs coordinating the activity of many motor neurons. From a paradigmatic point of view, we
consider the motor neuron, not the muscle, as the basic element of synergistic motor control.
The main methodological difference among the first two chapters is in considering respectively a
quantification of the global common synaptic input to hand muscles during different grips (Chapter
2) and how this synaptic input is organised in different modulating signals coordinating group of
motor neurons across different grip types (Chapter 3). From a methodological point of view, we

14



use two different factorization algorithms, and we consider respectively motor neurons identified
within each task and across different tasks. In both cases, the dimensionality reduction is conducted
among the identified motor neurons from all the investigated muscles and neural primitives are
correlated with the exerted force. In Chapter 4, we use the same HD-sEMG setup as in Chapters
2 and 3, but recording movement instead of force, with a new protocol, which involves many
different gestures of the hand and the wrist. The protocol investigates the flexion-extension of all
fingers and the wrist, and the combined actuation of these joints to achieve even complex gestures.
In this study, kinematics is recorded by using motion capture and recording up to 18 hand and
wrist markers. The same paradigm of motor neuron synergies is assessed in this case by adapting
the method to much longer recordings. Each motor neuron is tracked across around 50 different
gestures, with recordings 17 times longer than in Chapter 3, for a total of 1200 s.

As mentioned above, the two main potential user types of the presented framework are healthy
people, implementing ways to communicate more dexterously with machines through gestures,
and motor-impaired people. We provide in this thesis results obtained with this framework for
acute/sub-acute post-stroke patients and an example of the adaptation of the framework in the
case of trans-radial or trans-humeral amputees in Chapter 5. We also evaluate in Chapter 5, the
design aspects of HMIs based on HD-sEMG and decomposition, intended for recovering dexterous
control or for gesture identification, by comparing the data presented in all the previous chapters to
provide different options of implementation, oriented to accomplish different needs and purposes.
A final brief Chapter 6 resumes all the aspects presented in this thesis.

1.2 Physiological, anatomical and functional aspects of hand
control

In the following sections, first a description of the physiology of the human neuro-muscular system
at different levels is provided. Then, we focus on the particular case of the hand, by examining its
anatomy and biomechanical functions.

1.2.1 Motor control

The electrical activity constituting an sEMG signal is produced by the muscle fibres and transmit-
ted through the volume conduction constituted by the muscle tissue, the interposed tissue layers
and the electrode-skin interface. These muscle fibres are grouped in motor units and each of them
is the ensemble of a group of muscle fibres innervated by one motor neuron and the motor neuron
itself (Figure 1.2.a). Thus, sEMG contains the neural information sent by the central nervous
system through motor neurons [Farina et al., 2004b].

Neurons in the central and peripheral nervous systems generate action potentials (or spikes) and
communicate each other by modulating the action potential discharge rate. An action potential is
the change in cellular membrane potential originated from an alteration of the electro-chemicals
equilibrium in the neuronal cell. At rest, intra-cellular potential is polarised with respect to the
extra-cellular environment at around -70 mV, maintained steady by the action of the sodium-
potassium pump. If the depolarization, i.e. the decrease of negative charge in the cell due to
external stimuli received through synapses by other neurons exceeds a certain threshold (-55 mV),
a further fast depolarization occurs by the opening of gated sodium ion channels, which enables the
entering of Na+. The consequent positive feedback has the effect to quickly bring the intercellular
potential of the neuron to a peak of 35mV. This triggers the re-polarization of the cell by closing
the gated sodium ion channels and opening the potassium ion channels to expel K+ ions and
bringing back the potential to -70 mV (relatively slow with respect to the rapid increase of the
action potential depolarization). These spikes can be generated successively only after a refractory
period following the action potential generation which impedes the generation of another spike.

Spikes travels across the myelinated axons which depart from each neuron cell body to reach
the terminal axons and transmit the neural signals through synapses. The neuromuscular junction
is a particular synapse that connects the termination of a motor neuron with a muscle fibre. The
depolarization caused by the spikes arriving from motor neurons opens voltage-gated ions channel
which depolarises the neuromuscular synaptic end bulb and this triggers the release of a neuro-
transmitter, acetylcholine. Acetylcholine, released out of the end bulb, reaches the sarcolemma and
enables the opening of voltage-gated sodium channels, which triggers an action potential genera-
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tion very similar to the neural one. Muscular action potentials travel along muscle fibres and the
consequent depolarization triggers the release of calcium ions stored in the sarcolemma. Calcium
ions finally enable the cross-bridge cycling of myosin and actin filaments, the constituting elements
of mechanical muscle contraction.

For our study, the three most important aspects about motor unit recruitment and their gen-
erated electrical activity are that:

1. since one motor unit contains several muscles fibres (a number depending on the type of
muscle) innervated by the same motor neuron, all the fibres of the muscle unit fires syn-
chronously generating one unique motor unit action potential by summation, which can be
recorded from outside the motor unit;

2. since the twitches caused by single action potential are summed to proportionally increase
the contraction force up to a saturation of the force contraction defined as tetanus, the higher
is the firing rate of the recruited motor neurons and their number, the higher is the exerted
force produced by muscle contraction (Figure 1.2.b);

3. motor unit action potential propagation, starting from the innervation zone, i.e. the space
where are located the neuromuscular junctions, occurs in opposite directions for the two
sides of the fibre originating from the same neuromuscular junction to the respective opposite
tendons [Merletti et al., 1999a].

The last point implies that with a bipolar EMG configuration (Figure 1.2.a), i.e. the spatial
difference between two electrode recordings, when recording over the innervation zone, mutual
cancellation of these opposite propagating action potentials may occur [Merletti et al., 1999a].
The fundamental importance of HD-sEMG is the possibility to observe the electrical activity of
the same motor units from different points of view, the position of the innervation zone, the action
potential propagation, the end-fibre effects at the muscle-tendon junction, thus measuring more
accurately the electrical muscular activity [Farina et al., 2004b], [Merletti et al., 2010].

Neural information arriving to muscles is the final output of a complex computational process
originating by the relation of many areas of the cerebral cortex, producing movement intentions in
the primary motor cortex (M1), then adjusted and mediated by the cerebellum, the basal ganglia
and other parts of the central nervous systems [Lemon, 2008]. This neural information is then sent
through spinal pathways to spinal interneurons which coordinate the activation of alpha-motor
neurons innervating muscles [Fetz et al., 2002], [Lemon, 2008]. Spinal interneurons also integrate
the feedback received by tactile and proprioceptive sensors to provide a sensory-motor control to
the musculoskeletal system [Fetz et al., 2002].

At the cortical level, the somatotopic paradigm for M1 organization sustains that topograph-
ically separated and ordered functional areas, although extensively overlapped, exist for the con-
trol of different parts of the body [Schieber, 2001], [Indovina and Sanes, 2001]. In particular, it
has been extensively investigated whether M1 presents a somatotopic organization also for the
control of the hand [Schieber, 2001]. Imaging techniques as fMRI has been used to confirm
this debated theory ([Beisteiner et al., 2001], [Schellekens et al., 2018]). Other studies, conducted
through imaging, provide alternative frameworks for the somatotopic organization of M1 for hand
control. [Ejaz et al., 2015] show that the topology of cortical finger representations is shaped by
daily hand use and that the spatial patterns are variable among subjects, while [Leo et al., 2016]
presents evidence that a synergistic control of groups of hand muscles is coded at the cortical level
(see next section dedicated to synergistic control).

Other supraspinal structures in CNS, proven to contribute to hand motor control, are red
nuclei [Mewes and Cheney, 1994] and cerebellum [Marty et al., 2018], [Spampinato et al., 2017].
Descending pathways send commands to pre-motor interneurons in the spinal cord, which integrates
also afferent sensory feedback, to recruit motor neurons [Fetz et al., 2002], [Lemon, 2008].

At the spinal level, modules of interneurons both excite and inhibit the nuclei of the motor neu-
rons [Takei and Seki, 2010], [Takei and Seki, 2013a], producing different types of tonic or phasic
activity of hand muscles [Takei and Seki, 2013b], [Fetz et al., 2002]. In particular, these studies,
conducted invasively by recording and stimulating the cervical spinal cord (C5-T1) in primates,
focus on precision grip and dexterous hand control enabled by spinal structures, by providing at
least four main important results. The first important result is the empirical demonstration that
pre-motor interneurons in primates (thus hypothetically in humans) are fundamental for preci-
sion grip control [Takei and Seki, 2010]. This is not obvious, since it is extensively demonstrated
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Figure 1.2: Neuromuscular control pathways and motor control mechanisms. a) Different parts
of the central nervous system contribute to provide control signals to pools of motor neurons
of different muscles. Each motor neuron innervates the muscle fibres of the respective motor unit
inside a muscle. A bipolar surface EMG signal is represented in the figure, constituting the mixture
of the electrical activity of the simultaneously recruited motor units in the volume conduction. b)
Representation of discharge patterns of motor neurons from different muscles and force exerted
by the thumb and the other finger in opposition during a grasp. The six colours of the spike
trains represented in the figure correspond to the 6 electrode grids placed over the forearm and
the hand (the setup and the dataset is described in Chapter 2). The force exerted by each muscle
is proportional to the number of recruited motor units and the firing rate of each motor unit.

that corticomotoneuronal direct pathways control hand muscles and that when compromised, for
example after a stroke, dexterity can be severely lost [Lemon, 2008]. The second result is that
post-spike effects of pre-motor interneurons to motor neurons were demonstrated to be distributed
simultaneously to more than one muscle and particularly post-spike facilitation was directed to
intrinsic muscles, while extrinsic were majorly inhibited [Takei and Seki, 2010]. These divergent
spinal commands to more than one muscle are a fundamental aspect in muscle synergy theory (see
below the dedicated section) and were hypothesised by [Fetz and Cheney, 1980] with the concept
of "muscle field". Third, this observation on phasic (movement) and tonic (posture) activities is
extended to the correlation with biomechanical measures, i.e. static and dynamic forces and the
derivative of these forces in the time. Finally, the last important result is the temporal and spatial
correlation between these post spike effects and the muscle synergies [Takei et al., 2017], extracted
by factorization of EMG signals concurrently recorded (see the section below).

Since this PhD project is entirely focused on the neuro-muscular control of hand muscles and its
technological implications for HMI, the studies of Takei and Seki are particularly interesting and
constitute the neuroscientific background on which we built our hypothesis in Chapter 3. In fact,
we attempt to infer the control at the spinal level by observing complex discharge patterns of motor
neurons efferent to hand muscles, the same topic Takei and Seki investigated by invasive techniques
in primates. We try in this thesis to infer spinal strategies for motor neurons recruitment by fac-
torizing pools of motor neurons innervating different muscles obtained by decomposition. So far,
spinal motor control studies are still mainly conducted by invasive insertion of electrodes into the
spinal cord of primates [Takei and Seki, 2010], [Takei and Seki, 2013a], while current neuroimaging
techniques are mainly used for human supraspinal structures [Leo et al., 2016], [Ejaz et al., 2015],
[Pavlova et al., 2015]. Functional MRI for spinal structure is a promising emerging technique
[Giove et al., 2004] which was not considered so far for motor control structure at the spinal level.
Thus, evidences of the spinal control of hand muscles are currently available only from primates. In
the next sections, we introduce the investigation of descending commands by HD-sEMG decompo-
sition and factorization and the muscle synergies theory, concluding with a final section dedicated
to the hand.
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Figure 1.3: Muscle synergy computation by non-negative matrix factorization (NMF) and phys-
iological interpretation. By recording one bipolar EMG channel from a large number of muscles
representative of the main actuators of the investigated joints, i.e. fingers during different grips, it
is possible to separate two different non-negative matrices from the EMG bipolar envelopes. The
multiplication of these two matrices can return the original envelope dataset. The first matrix
contains the weights corresponding to the participation of each muscle into time-invariant muscle
synergies, while the second provides the time-varying modulation of each muscle synergy (acti-
vation signals). A muscle synergy vector estimates the information codified in a spinal module
to coordinate a group of muscles, while an activation signal is hypothesised to be the descending
spinal command activating a module.

1.2.2 Inferring central descending commands from motor unit discharge
patterns

Motor units are neuromechanical transducers that convert trains of action potentials into force
[Heckman and Enoka, 2012]. Since each motor neuron receives its synaptic input from spinal in-
terneurons, inferring the interneuronal recruitment strategies is possible by the analysis of a pool of
firing motor units [Heckman and Enoka, 2012], [Negro and Farina, 2011b], [Farina et al., 2014b].
In fact, by assuming that spinal interneurons receive commands from the brain, the cerebellum,
other supraspinal structures and afferent pathways [Lemon, 2008], it is reasonable that motor neu-
ron recruitment patterns might reflect information about supraspinal motor control strategies.

The first studies to infer a common synaptic input (CSI) to a pool of motor neurons consisted
in correlations in time and frequency domains of pair of motor unit spike trains by computing
correlation either in time or in frequency domain [De Luca et al., 1982], [Nordstrom et al., 1992],
[Huesler et al., 2000], [Johnston et al., 2005], [Winges et al., 2008]. However, these time and fre-
quency domain measures revealed in general to estimate a low amount of motor unit synchroniza-
tion and it was demonstrated that they are influenced by non-linear properties of motor neuron
activity [Negro et al., 2016b]. Moreover, correlation techniques are affected by the type of sam-
pling and filtering of spike trains [Negro and Farina, 2012]. Thus, these techniques do not quantify
correctly the total amount of CSI received by a pool of motor neurons but can be used only
for relative comparisons [Negro et al., 2016b]. A new phenomenological model was proposed by
[Negro et al., 2016b] to infer the bandwidth of CSI associated to force generation, i.e. lower than
5 Hz. According to this model, each motor neuron receives both an independent synaptic input
due to individual synaptic fluctuation and a CSI shared with the other motor neurons in the pool
[Negro et al., 2009].

To completely quantify CSI in a pool of motor neurons, principal component analysis (PCA)
was proposed by [Negro et al., 2009] by focusing on low-frequency fluctuations which are in the
same bandwidth of the exerted force. In this way, it is possible to find a common component
during the observation of many motor neurons concurrently activated, obtained by decomposition
of multichannel EMG, either invasive or not. PCA provides as many components as the number of
factorised signals, ordered by the percentage of the total explained variance. These components are
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reciprocally uncorrelated, thus orthogonal, and are described by two matrices. The first squared
matrix provides for each component a column array representing the participation of each source,
i.e. each low-pass filtered motor neuron spike train, into the common component. The other ma-
trix has one of the two dimensions equal to the number of observations of the source, in our case
the samples of the digitalised decomposed EMG, while the other is the number of components.
Thus, this second matrix contains time-varying components. The explained variance of the first
principal component (PC1) explains a percentage of the total variance increasingly with the num-
ber of considered motor units, since it quantifies the common drive from CNS to the considered
motor neurons pool [Negro et al., 2009],[Farina et al., 2014b]. By PCA on a pool of motor units
on abductor digiti minimi muscle during little finger abduction, [Negro et al., 2009] obtained an
average 44.2± 7.5% of explained variance for the PC1. This PC1 cross-correlated in time domain
with the force 62.7± 10.1%.

Before the conduction of the studies presented in this thesis, there were three main gaps in
the literature to analyse pools of concurrently activated motor units. First, the application of a
factorization algorithm such as PCA provided a PC1 explaining a high percentage of variance for
motor neurons of one muscle only. In fact, while spectral coherence was applied for more than
one muscle either in the lower limb [Laine et al., 2015] or in extrinsic and intrinsic hand muscles
[Del Vecchio et al., 2019], PCA or other factorization algorithms were not tested in pools of motor
neurons efferent to many muscles. Second, the PCA or other factorization methods were applied
only on one task at a time by not tracking the same motor neuron across tasks. It is clear that, both
for understanding better the motor control principles of the human musculoskeletal system and to
apply these principles to bio-inspired human-machine interfaces, the global quantification of de-
scending commands to pool of motor neurons should be investigated in tasks involving many joints,
potentially useful in the daily life. For this reason, by focusing on the hand, we consider as tasks
seven grips in the first two studies, while in the third study different gestures and wrist movements.
Third, in terms of inferring central descending commands received by motor neurons, the observa-
tion of a synergistic organization among motor neurons was missing. This means that, although
we demonstrate that within each task there is one main neural primitive describing the common
behaviours of motor neurons to many muscles (Chapter 2, published in [Tanzarella et al., 2020]),
across different tasks these commands are proven to be more than one (Chapter 3). We attempt
to demonstrate in this thesis that there must be different common components, each one which
is assumed to represent a different spinal interneuron module, modulated by spinal or supraspinal
structures, which co-activate multiple motor neurons of different muscles.

This last aspect related to modularity in motor control is better explained in the following
section, by introducing the muscle synergy theory and relating it, for the first time, with the
investigation of pools of motor neurons to many muscles.

1.2.3 Muscle synergy theory and modularity of motor control

The CNS strategies to control the different hierarchical levels of the musculoskeletal system have
been broadly investigated from many different points of view. It has been suggested that it could be
a combination of both parallel and hierarchical levels, which would imply the recruitment of single
motor units, individual muscles and groups of muscles to produce highly coordinated biomechanical
output [Tresch and Jarc, 2009]. In fact, the musculoskeletal system presents many joints actuated
by an even larger number of muscles, which are synergistically activated during movement. This
implies the simultaneous control of many DoFs.

To provide an explanation of the dimensionality reduction performed by CNS for neuromuscular
control, a modular paradigm was firstly formulated by [Bizzi et al., 1991]. Modularity would con-
sist of distinct groups of interneurons, which activate sets of muscles as a unit [Bizzi et al., 1991].
This modular structure of the neuro-muscular system would describe how descending commands
from CNS are combined to coordinate muscles, for the generation of a large number of movements
[Bizzi and Cheung, 2013].

A fixed activation pattern of a group of muscles modulated by motor output generated by spinal
cord modules is defined as muscle synergy [Bizzi et al., 2008]. Each muscle synergy represents an
interneuron module embedded in the spinal cord codifying for a certain contribution level of a
muscle [Bizzi and Cheung, 2013], as represented in Figure 1.3 for hand muscles. Each synergy is
modulated by an activation coefficient, which represents the descending neural commands by the
CNS. The products of each activation coefficient and the respective muscle synergy are combined

19



to compose even very complex movements [Bizzi et al., 2008].
Spinal modules were empirically demonstrated in spinalised frogs that were stimulated by ion-

tophoresis [Saltiel et al., 2001]. By applying selective stimulation of the spinal cord and concur-
rently measuring muscle activity with EMG, it has been possible to identify invariant patterns of
muscle activation (muscle synergies) coded by spinal neural modules [Bizzi et al., 2008], in frogs
[Cheung et al., 2005], cats [Krouchev et al., 2006], and monkeys [Takei et al., 2017]. The primary
motor cortex was also interfaced by [Overduin et al., 2015] for synergy investigation. In fact, neural
modules which send common commands to multiple muscles [Bizzi et al., 2008] were hypothesised
to be mainly located in the brain stem and spinal cord [Tresch et al., 2002], [Roh et al., 2011], but,
in monkeys, also from primary motor neurons [Holdefer and Miller, 2002]. In humans, muscle syn-
ergies were investigated for lower limb tasks during walking [Chvatal and Ting, 2013], [Ting and McKay, 2007],
and for upper limb, such as reaching [D’Avella et al., 2006], [Kaboodvand et al., 2013], and in im-
paired individuals [Cheung et al., 2009a], [Gizzi et al., 2011]. Models of neural origins of muscle
synergies were formulated also for the hand motor control [Santello et al., 2013], as explained in
detail in the next subsection. Finally, muscle synergies were also evaluated for myoelectric control
[Jiang et al., 2014] providing a new control paradigm based on dimensionality reduction aimed to
control multiple DoFs [Ison et al., 2015].

Muscle synergies have been modelled as either time-invariant or time-varying [D’Avella and Lacquaniti, 2013].
We consider in the studies presented in this thesis only the first case and we very briefly mention
below in this section the description of the latter.

Time-invariant muscle synergies are vectors codifying for a specific balance of muscle activation
fixed during the time and modulated by time-varying activation coefficients. The product between
the matrix of synergy vertical vectors, having as length the number of muscle considered, and
the matrix of the horizontal activation coefficient vectors, having as length the number of time
samples considered, return the matrix of the temporal myoelectric activity of each considered
muscle (Figure 1.3).

Mathematically, let be E the matrix of the myoelectric features experimentally observed, with
dimension M x L, where M is the number of observed muscles and L is the number of recordings
samples, E can be decomposed in two matrices [Lee et al., 2001]:

E = WH + e (1.1)

where W is the time-invariant synergy matrix, with dimension M x N, and H is the activation
coefficient matrix, with dimension N x L, and e is the residual error due to the noise. N is the
number of identified synergies and we explain below how it is chosen. The algorithm is explained
more in detail, with the updating multiplicative rules to compute it [Lee et al., 2001] in Chapter
3.

The myoelectric activity matrix E, decomposed in the matrices W and H, is usually consti-
tuted by one bipolar EMG signal for each muscle, band-pass filtered in the surface EMG inter-
esting band, rectified and then low-pass filtered, as represented in Figure 1.3 for the 14 muscles
of the hand investigated in this thesis. To find muscle synergies underlying the generation of dif-
ferent tasks, myoelectric signals representing different tasks are usually concatenated to extract
modular control strategies across tasks [Chvatal and Ting, 2013] and each channel is normalised
by the maximum presented across all the tasks [Chvatal and Ting, 2013], [D’Avella et al., 2006],
[Cheung et al., 2009a].

The most suitable factorization algorithm to find common neural information, either from the
envelopes of multi-channel EMG signals or from smoothed discharge rates of decomposed motor
units, can be defined in terms of the percentage of reconstruction of the original signal from the lin-
ear combination of the extracted components [Tresch et al., 2006]. [Tresch et al., 2006] compared
PCA, NMF, independent component analysis (ICA) and other algorithms by experimentally eval-
uating different aspects of the different algorithms for a muscle synergy extraction purpose. While
for PCA orthogonality between the weights (or coefficients) is inherent in the transformation (PCA
is the projection of a dataset onto the orthogonal axes of a lower-dimensional linear space), for
NMF both independence and non-negativity of the weights -but not orthogonality- are forced in
an iterative process of optimization [Lee et al., 2001]. Thus, PCA describes the variability of the
data along the orthogonal directions which are the dimensions of the data covariance, while NMF
provides non-negative, independent and sparse components [Lee et al., 2001] which are proved to
be more representative of the real components which compose the dataset [Tresch et al., 2006].
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Figure 1.4: Representation of the muscles actuating the hand and the main fingers and wrist DoFs,
by distinguishing the ones investigated in this thesis (in bold) by the others. In the figure exactly
30 muscles are represented. Extensor carpi radialis is represented twice, one as a whole muscle
(as we consider it in this thesis) and one by dividing it into two parts, longus and brevis, by
indicating these three notations with a common symbol (*). The represented DoFs in the figure
are 19: 4 DoFs for the thumb (PIP and MCP flexion/extension, abduction/adduction and thumb
opposition), 3 flexion/extension DoFs for the other four fingers, flexion/extension of the wrist,
radial/ulnar deviation and forearm pronation/supination.

1.2.4 Neuromechanics of the human hand

Human hand enables to interact flexibly with a large number of objects and by producing a vast
repertoire of gestures for communication, exceeding the dexterity of every other anthropomorphic
primate [Courtine et al., 2007]. It enables both extremely strong grips, for example during the
execution of an horizontal bar gymnastic exercise, and highly precise manipulation, as the one of
a painter or a pianist. Different hand models recognise between 19 [Zarzoura et al., 2019] and 27
[ElKoura and Singh, 2003] DoFs for the human hand, while muscles involved are around 30, by
counting them in an anatomy atlas (Figure 1.4). This opens the question about how the central
nervous system may cope with the control of all the possible combinations enabled by a high
number of actuators and items to actuate, with respect to other body districts.

The first evidence of motor primitives underlying human hand control was provided by com-
puting by PCA 15 hand joint angles by analysing a total of 57 hand grips [Santello et al., 1998]. In
this study, it was found that the first two components could account for more than the 80% of the
global variance. [Weiss and Flanders, 2004] correlated muscle synergies with kinematics synergies
by measuring 17 joint angles during 52 different hand shapes (26 grips and 26 deaf language letters)
and by recording 7 bipolar sEMG signals. As mentioned above, a so small number of muscles (6,
because FDI was recorded by 2 bipolar channels) cannot lead to a complete understanding of syner-
gistic motor control of the hand. However, it is fundamental, as did by [Weiss and Flanders, 2004],
to expand maximally the examined number of gestures, to map synergistic control across a greater
portion of the total possible range of movement of the hand.
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For this reason, we observed in Chapters 2 and 3 seven grips involving every single finger
and some combination finger in opposition with the thumb, while in Chapter 4 we enlarged the
variety of finger and wrist movement by also asking the single actuation of this joints. We are
aware that an extensively mapping of muscle synergies across 33 different gestures by observing
11 muscles with bipolar fine-wire intramuscular EMG recordings has been already conducted by
[Ajiboye A B and Weir, 2009]. The authors identified both inter-subjects and subject-dependent
synergies. Nonetheless, as we explained above, our effort is to investigate directly the coordination
of motor neurons, instead of considering each muscle as a whole. We discuss the biases introduced
by EMG both below in the subsection about decomposition and Chapter 3, by also presenting in
that chapter the results of the comparison between the synergistic organization of motor neurons
and muscle synergies.

A complete review of all the efforts to investigate the synergistic motor control of the hand is
provided by [Santello et al., 2013]. In this review, fundamental for the theoretical background of
this thesis, hand synergies are analysed from four points of view: kinetic, kinematics, muscle and
neural synergies. In particular, neural synergies has been studied from a cortical, subcortical or
spinal point of view (as mentioned above), but so far it was not possible to concurrently observe a
large pool of motor neurons efferent to the main muscles of the hand, both extrinsic and intrinsic.
As explained above, before the studies of this thesis, the concurrent activity of a pool of motor units
to quantify a common input has been extensively investigated by correlation in time and frequency
domain of pairs of motor units [Johnston et al., 2005], [Johnston et al., 2010], [Winges et al., 2008],
[Del Vecchio et al., 2019] or with PCA for one muscle at time [Negro et al., 2009], but never by
factorization across many muscles and several tasks, as did in [Tanzarella et al., 2020] and related
in Chapter 2.

In this thesis, we try to identify directly in the motor neuron discharge patterns the neural hand
synergies, by connecting them with models proposed by [Santello et al., 2013] supported by the
studies of Takei and Seki ([Takei and Seki, 2010], [Takei and Seki, 2013a], [Takei and Seki, 2013b],
[Takei et al., 2017]). We provide a comparison with classical muscle synergies in Chapter 3 and we
compare it with kinetic and kinematic variables to quantify the estimation of biomechanic quantities
through neuro-muscular synergies. Since our aim is not the creation of a complete model to map
the hand synergies at every level, we focus mainly on the neuro-muscular primitives instead of
biomechanic primitives to propose a non-invasive EMG-based framework for HMI, rehabilitation
and myoelectric control.

The hand muscles and the DoFs considered in this thesis are represented in Figure 1.4. It
is possible to observe that we have chosen the most superficial extrinsic muscles (muscles in the
forearm) which are possible to observe in a non-invasive way with HD-sEMG. A future expansion of
the framework with invasive recordings may eventually introduce more completeness of information
[Negro et al., 2016a], but it would add much more technical complexity, in terms of procedures to
insert needles, qualified experts to conduct the experiments, eventual uncomfortable sensation or
even pain, and potential failure of the invasive electrode fixing [Muceli et al., 2015].

1.3 High-density surface EMG for Human-Machine Inter-
faces

1.3.1 High-density surface EMG

EMG is the recording of the concurrent electrical activity of active motor units, filtered by the
interposing tissues and algebraically summed together [Merletti et al., 2010]. This biopotential
contains information to estimate neuromuscular properties, such as contraction force, electric mus-
cle fatigue, motor unit properties and muscle coordination. EMG can be recorded either invasively,
by using concentric bipolar needles or fine-wires electrodes, or non-invasively, by placing electrodes
over the skin, i.e. sEMG [Merletti and Parker, 2004], [Merletti and Farina, 2016].

The main limit of invasive EMG is that only one or few motor units at a time can be detected,
in a very narrow volume conduction. Conversely, sEMG enables to observe the concurrent activity
of many motor units in a larger volume conduction, even though the signal is low-pass filtered by
the interposed tissue layers between the muscle and the electrodes [Merletti et al., 2010]. Another
important advantage of sEMG is its non-invasiveness itself, avoiding uncomfort and pain, and
enabling a broader range of movements.
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The classical bipolar montage over the muscle belly has been proved to be potentially mislead-
ing if the electrodes are not placed correctly, also considering the location of the muscle innervation
zone [Barbero et al., 2012]. Thus, expanding the number of observations of the same muscle enables
to obtain more complete information about muscle functions and properties, such as the position
of the innervation zones, of tendons and estimation of conduction velocity [Merletti et al., 2010]. A
2D high-density distribution of sEMG electrodes (HD-sEMG) provides an imaging representation of
the muscle electrical activity under the covered skin surface, enabling to represent myoelectric activ-
ity in spatial maps or surfaces [Vieira et al., 2010]. HD-sEMG also permits to find anatomical prop-
erties of pinnated muscles, such as the gastrocnemius [Mesin et al., 2011], [Gallina et al., 2013].

Recording HD-sEMG presents many technical challenges, common both to surface EMG in
general and to the particular high-density configuration. We mention below the four more im-
portant drawbacks we faced in carrying out the experiments for this project, both at the physical
acquisition and at the digital processing level.

First, skin-treatment and the management of the electrode-skin interface is fundamental to
obtain reliable EMG recordings [Merletti et al., 2010], [Hewson et al., 2003]. Skin must be cleansed
with alcohol, after having shaved the skin over which the electrodes have to be applied, to remove
dead epidermic cells which can increase the skin-electrode impedance. Conductive pastes or gels
are needed to enhance the conductance between skin and electrode but, at the same time, it
is important to avoid the presence of conductive substances between two different electrodes to
prevent short circuits. For wearable applications, a dry-electrode solution is needed and several
commercial solutions are available (MyoArm Band, Athos EMG suit, etc...). We suggested that a
quality of the signal useful for decomposition can be obtained even with a dry-electrode solution,
to adapt in the future our framework to a wearable device [Tanzarella et al., 2019], but this still
needs to be extensively and statistically demonstrated.

Second, grounding correctly the EMG amplifier prevents the presence of net interference, other
kinds of electromagnetic noise and the potential saturation of the amplifier itself [Merletti et al., 2010].
For the experiments presented in this thesis, the EMG amplifier was always connected to grounds
close to the volume of recording, with wet bracelets over the wrist, as it is recommended to place
the EMG ground is a bony part [Merletti et al., 2010].

Third, even if the subject is perfectly grounded and with careful preparation of the skin,
noise may affect EMG recordings. Net interference is usually the worst problem, especially with
monopolar recording. The digital removal of net interference is possible either with notch filtering
around 50 Hz (60 Hz in USA), or by spectral interpolation at net frequency [Mewett et al., 2004].
Usually, high-pass filtering of the signal between 10 and 30 Hz is enough to filter out movement
artefact, while to remove cardiac signal coupled to ECG a high-pass filter at at least 30 Hz is
needed [Willigenburg et al., 2012]. Then, a low pass cut-off frequency lower than one half of the
sampling frequency is mandatory to avoid aliasing during the digital sampling of the signal (for
the well-known Nyquist law).

Finally, the fourth problem with HD-sEMG may be the presence of crosstalk, i.e. the electrical
activity from muscles close to the investigated one. By the use of a single differential recording
configuration, or with a single differential digitally implemented (as in Chapter 3), it is possible to
reduce the amount of crosstalk, even though it is not possible to extinguish it [Farina et al., 2004c].
However, since cross-talk is mainly due to non-propagating components generated at the extinc-
tion of the potentials at the tendon regions [Farina et al., 2004c], [Farina et al., 2004b], it can
be reasonably removed with EMG decomposition and other blind source separation techniques
[Farina et al., 2004a].

The main features which are possible to be extracted by sEMG can be grouped by time and fre-
quency domain features. Among time-domain variables there are MAV, RMS, ARV [Zecca et al., 2002],
while frequency domain features are computed by the use of fast Fourier transform (FFT) and can
be mean frequency or median frequency, fundamental for the study of muscle fatigue [Merletti et al., 1992].
With arrays of electrodes (at least three) it is possible to quantify muscle fibre conduction velocity
by cross-correlation, spectral matching [Kevin c. Mc Gill, 1984] or spatial filters [Farina and Merletti, 2003].
For this thesis, we mainly worked directly on decomposed motor unit spike trains, but in Chapter
3, for a comparison with bipolar EMG we computed a simple envelope, i.e. the low-passed rectified
signal. This enables to not downsample as for RMS, ARV or MAV, since we wanted the same time
support.
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1.3.2 How to extract neural information from HD-sEMG by decompo-
sition

The importance of decomposition to separate neural information into EMG signal

Since HD-sEMG enables to observe different mixtures of the same motor units, by observing their
activity from different recording points, blind source separation (BSS) techniques can be used to
decompose the signals in the constituent train of motor units action potentials.

The decomposition process separate the constituent neural information contained in the EMG
signals from the motor unit action potential templates, due to the conduction volume properties
[Farina et al., 2014b]. This neural information of the firing occurrences of each motor units re-
flects the neural commands sent to each motor neuron, as explained above, thus it is the product
of interneuron integration of spinal and supraspinal commands [Fetz et al., 2002], [Lemon, 2008],
[Takei and Seki, 2010].

As explained above, the CSI of a pool of motor units enable to infer this central commands
[Negro and Farina, 2011b], [Farina et al., 2014b]. [Dideriksen and Farina, 2019] demonstrated that
the rectified sEMG signal, commonly used to infer the synaptic input to a pool of motor neurons,
is affected by a loss of amplitude due to the cancellation of motor unit action potentials, since
they are algebraically summed together into EMG signals. Moreover, crosstalk, the activity of
other muscles interfering with the activity of the muscle under investigation, cannot be completely
removed with common signal processing techniques [Farina et al., 2014b], while decomposition can
decouple the propagating information of the motor unit action potentials from the non-propagating
information contained in the crosstalk [Farina et al., 2014b]. This aspect is discussed in Chapter
3.

Decomposition algorithms before the use of BSS methods

[LeFever et al., 1982] attempted for the first time to reduce the computational efforts to automat-
ically decompose multichannel intramuscular EMG (a custom three-channel bipolar needle) with
modern template matching techniques and probability distribution of occurrence of a spike. In this
work, authors attempted to solve also the problem of superposition which is the time overlapping of
two or more action potentials firing closely in the time. A similar investigation was also attempted
with EMG linear electrode arrays by [Masuda and De Luca, 1991] and [Merletti et al., 1999b]. A
more sophisticated tool to compute template matching among motor unit action potentials and
solve superposition was proposed by [Mcgill et al., 1985]. Twenty years later a toolbox, EMGLAB
[McGill et al., 2005], was openly provided to the scientific community and it was adopted to vali-
date future implemented decomposition algorithms [Holobar et al., 2014], [Clarke et al., 2020].

Template matching was then improved, with the aim of a multichannel decomposition. A clas-
sification algorithm based on pseudo-correlation distance resulted to be relatively highly accurate,
averagely 96 % for 4 pulse trains, 75 % for 12 pulse trains from one single intramuscular EMG
channel, and computational efficient [Florestal et al., 2006]. A multi-channel (4 bipolar fine-wires
recordings) version of this algorithm was implemented by pointing out the limits in terms of pro-
portionality of the number of channels and the processing time in the training phase of the classifier
[Florestal et al., 2009]. De Luca et al. 2006 for the first time demonstrated the feasibility of multi-
channel surface EMG automatic decomposition with an accuracy between 70 and 90 %, by using
a custom four-channel surface electrode.

Artificial neural networks were tested to compute unsupervised template matching with a cus-
tomised back-propagation algorithm and performance was attested between 85% and 90% for one
EMG channel recorded with a bipolar needle [Hassoun et al., 1994]. The first attempt to decom-
pose one single sEMG channel with an unsupervised ART2 network is only demonstrative and
does not report any accuracy evaluation [Xu et al., 2001].

All these algorithms presented the limit of being mainly conceived for intramuscular recording,
except the algorithm of [De Luca et al., 2006]. A second limit was the limited number of decom-
posed channels (maximum 4 [Florestal et al., 2009], [De Luca et al., 2006]) and so covering a small
volume conduction, poorly representative of the total amount of motor units present in the investi-
gated muscles. In fact, sEMG presents a poor spatial resolution [Rau and Disselhorst-Klug, 1997]
and is affected by low-pass filtering of the interposed tissues, so good discrimination of motor unit
action potentials from a single channel is difficult to perform [Gazzoni et al., 2004].

[Gazzoni et al., 2004] for the first time decomposed HD-sEMG by combining continuous wavelet
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Figure 1.5: Representation of the motor unit identification process in HD-sEMG. The action
potential templates corresponding to the identified firing for two motor units are indicated with
different colours into the represented EMG signals. Below, the innervation pulse trains (IPTs)
for the two motor units are represented in the same time interval of the EMG signals and the
identified firing times are marked in their corresponding IPTs value. On the right, the spike trigger
average (STA) of the two motor units along 30s-long signal recording is represented. In the STA,
one averaged action potential template for each channel of the electrode grid is represented in the
corresponding channel position.

transform with a multi-channel ART network, constituted by many interrelated ART2 networks
[Carpenter and Grossberg, 1987]. However, this algorithm was not conceived to solve the super-
position problem and the authors pointed out that it was suitable only on specific muscles and
experimental conditions. The authors also suggested that a limit was inherent in the approach
based on segmentation and classification. They suggested a BSS method was necessary to decom-
pose HD-sEMG signals. Holobar and Zazula [Holobar and Zazula, 2007b] solved this problem, by
presenting the algorithm explained below.

Convolution Kernel Compensation (CKC) decomposition algorithm

Our effort here is to simplify the mathematics behind this algorithm by resuming the most impor-
tant equations, by presenting the algorithmic steps intuitively and by using a graphical representa-
tion in Figure 6 to enable the reader to easily understand the main inputs and outputs. This sub-
subsection uses the same concepts explained in Holobar and Zazula [Holobar and Zazula, 2007b]
and reviewed recently by [Farina et al., 2016].

Convolution Kernel Compensation (CKC) decomposition algorithms is a BSS method, con-
stituting an extension of BSS methods used previously on EMG for other purposes, such as the
separation of nonstationary components and crosstalk [Farina et al., 2004a]. CKC needs to process
a great number of redundant observations of the mixed activity of the same motor units, to separate
the contribution of each single motor unit activity constituting the original EMG signals. For this
type of BSS, the sources are supposed to be independent on each other, but there is not any infor-
mation about their behaviour, thus they need to be separated blindly [Holobar and Zazula, 2007a].
The number of observations M must always be higher than the number of sources N to separate
[Farina et al., 2008].

As well HD-sEMG is fundamental for CKC decomposition algorithm, CKC decomposition
algorithm (in general a BSS algorithm in general) is the best way to decompose many redun-
dant inputs. In fact, template matching algorithm would suffer of the problems of superpositions
[Gazzoni et al., 2004] and it would be challenging and inefficient to run them simultaneously on
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tens or hundreds of channels by tracking the same motor unit across different channels, but at the
same time separating different templates within each channel [Florestal et al., 2009].

To understand the concept of convolution kernel, it is necessary to start from the mathematical
model of the discrete HD-sEMG signal, which can be seen as a Multiple-Input-Multiple-Output
(MIMO) system. Each EMG channel xi[n], where n is a sample in the discrete domain, is the sum,
for all the identifiable motor units, of the convolutions between each motor unit binary spike train
(modelled as a train of Dirac’s deltas) and the respective motor unit action potential waveform h.
In formulas

xi[n] =

N∑
j=1

L−1∑
l=0

hij [l]δj [n− l] + ωi[n] , i = 1, ...,M, (1.2)

where hij is the observation of h for the channel i and for the motor unit j, M is the number
of channels, N the number of motor units, and L is the length of h in samples.

To compute efficiently such a convolution, equation 1.2 can be expressed in matrix form by ex-
tending the delayed repetitions of each EMG channel [Holobar and Zazula, 2007b]. The extension
factor K must be large enough to satisfy the condition KM > N(L + K). Thus, in matrix form
1.2 becomes

x̄ = Ht̄+ ω̄[n], (1.3)

where x̄ is the extended observation vector, expressible as

x̄[n] = [x1[n], x1[n− 1], ..., x1[n−K + 1], ..., xM [n], x1[n− 1], ..., xM [n−K + 1]], (1.4)

t̄ is the extended observation of the pulses, expressible in the form

t̄[n] = [t1[n], t1[n− 1], ..., t1[n− L−K + 2], ..., tN [n], t1[n− 1], ..., tN [n− L−K + 2]] (1.5)

H is defined as mixing matrix, containing a number of M × N convolution kernels Hij , in the
matrix form, H11 · · · H1N

...
. . .

...
H1M · · · HMN

 (1.6)

Each convolution kernel Hij hase size K × (L+K − 1), and is expressible as
hij [0] · · · hij [L− 1] 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 hij [0] · · · hij [L− 1]

 (1.7)

Each convolution kernel for each EMG channel M and each motor unit N is a sparse ma-
trix mostly activated in a band of values, centred around the diagonal, and this band is large L
[Holobar and Zazula, 2007b]. Finally, ω̄ is the extended noise vector, with the same dimension of
x̄. The t vector, whose t̄ is the extended observation, is the vector of the innervation pulse trains
[Holobar and Zazula, 2007a] which are the pulse sequence containing the information about the
motor unit firing times. IPTs are the output of the decomposition obtained by the deconvolution
of the mixing matrix with the original HD-sEMG signals x, as explained below. By choosing the
IPTs values over a certain threshold, as explained below, the firing timings are finally extracted
for each motor unit. This operation is represented in Figure 1.5 with the IPTs of two motor units
in the same time intervals of some EMG channels during a HD-sEMG recording.

Thus, the aim of the algorithm at the computational level is compensating iteratively these
convolution kernels to maximise the number of identified motor unit spike trains and maximizing
the number of true positive identified spikes for each train [Holobar and Zazula, 2007b].

After having explained the essential model behind the algorithm, the algorithm can be described
in 9 steps [Holobar and Zazula, 2007b].
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1. Compute the activity index (Ind), which quantifies globally the spike train activity, as

Ind[n] = x̄T [n]C−1
x̄x x̄[n], (1.8)

with Cx̄x = E[x̄[n]x̄T [n]] which is the covariance matrix of the extended observation.
Intuitively, this matrix with size M ×M will present high values for pairs of reciprocally
similar observations and low values for pairs of different observations. The covariance matrix
is used for example to compute principal component analysis (PCA), by computing the
eigenvalues and eigenvectors of this matrix which constitute a basis of orthogonal vectors of
the input signals, maximally uncorrelated each other [Bishop, 2006].

2. Since the Ind will present peaks which are assumed to correspond to motor unit spiking
activity, it is possible to compute Ind for points where its activity is higher. Let be n0 a
point of Ind close to its median value, it is possible to compute the value

νn0 [n] = x̄T [n0]C−1
x̄x x̄[n] (1.9)

which represent a pulse sequence which exalt the contributions only from the pulse trains
that are active during n0, ignoring the activity of all other trains.

3. Now the aim is to find all the spikes relative to the spike train present at time n0, by finding
randomly an instant of νn0

[n] higher than a noise threshold. Let be this instant n1 and the
relative pulse sequence νn1

[n], computed as in 1.9. At this point, we look for all nr instants
so that νn0

[n]νn1
[n] be greater than a noise threshold.

4. In the same way as computed in 1.9 at time n0, for all nr instants found at the previous step,
the number of spikes of each pulse train νnr [n]. Among the so computed pulse trains, only
the trains over a certain threshold of pulses are taken.

5. The estimator of each pulse train is estimated with the computation

t̂j [n] = cTx̄tjC
−1
x̄x x̄[n] (1.10)

where cx̄tj is the average of the elements of x̄ at the time intervals identified as pulse train
occurrences (see [Holobar and Zazula, 2007b] for details).

6. A classification process enable to recognise the new pulse sequence as a new or previously
identified one.

7. The Ind is updated by putting to 0 the values corresponding to already identified spiked at
the current iteration.

8. The process is repeated from 2 to 9 until Ind is a zero vector.

CKC has been extensively tested in many different muscles during different tasks [Holobar et al., 2009],
[Holobar et al., 2010] and also for the study of neurological diseases such as tremor [Holobar et al., 2012].
A parameter for assessing the accuracy of decomposed pulse trains was proposed, the Pulse-to-
Noise-Ratio for each j-th motor unit spike train is computed as

PNR(t̂j [n]) = 10 log

(
E(t̂2j [n]|t̂j [n]≥r)

E(t̂2j [n]|t̂j [n]<r)

)
, (1.11)

where the numerator and the denominator inside the log are respectively the squared value of the
pulse trains where the motor unit is supposed to discharge ( t̂j [n] ≥ r ) or not ( t̂j [n] < r ) and r
is a threshold dependent on a heuristic penalty function proposed in [Holobar et al., 2012].

As represented in Figure 1.5, for each motor unit, each EMG channel is windowed around the
firing time occurrences, in the figure with 35-ms-wide epochs, and then the so obtained templates
are averaged to have one action potential template for each EMG channel to be represent in the
channel spatial configuration into the electrode grid. This spike trigger average (STA) is useful to
localise the motor unit under the electrode grid.
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New perspectives of HD-sEMG-based decomposition algorithms

The four most important trends for the evolution of EMG decomposition are: enabling a real-time
decomposition for biofeedback and myoelectric control based on motor unit discharge pattern; de-
composing non-isometric contraction; tracking motor units across different experimental sessions;
and taking advantage of the interaction with advanced computation techniques such as ICA, ma-
chine learning and deep learning. These four aspects are all fundamental for an extension of the
framework presented in this thesis and for its practical application.

Online decomposition is emerging recently [Glaser et al., 2013], [Barsakcioglu et al., 2020], [Chen et al., 2020].
It implies two phases, one offline training phase to shape the mixing matrix to identify a pool of
motor units, and an online phase when the EMG stream is convolved with the mixing matrix in
real-time to provide spike trains as output. The first problem of online decomposition is that there
cannot be time to adjust and constrain too much the decomposition output, which usually can be
affected by error and need to be edited by an expert operator [Vecchio et al., 2020]. Secondly, it
is assumed that the position between electrodes and muscles does not change, and even the joint
position of the investigated body district does not change. Otherwise, the shape of the motor units
action potentials would change due to a change of the volume conduction and the distance between
the active motor units and the electrodes.

The second challenge in EMG decomposition is motor unit identification during dynamic con-
tractions. Since it is assumed that the same motor unit is discriminated by a certain action
potential shape, both in the case of template matching or BSS, it becomes difficult to find a robust
criterion to track the same motor units for changes in shape of the investigated muscle. However,
such a criterion has been proposed for cyclic dynamic contraction at moderate or slow variations,
by implying a gradual change in the motor unit action potential templates. Then, by decomposing
the signal in different consecutive epochs for different joint angles, to track motor units during a
change in muscle shape [Glaser and Holobar, 2019]. [De Luca et al., 2015] firstly used this crite-
rion on repetitive biceps brachii contraction with a decomposition algorithm based on template
matching and machine learning techniques [Nawab et al., 2010]. [Glaser and Holobar, 2019] pro-
posed a similar method on thigh muscles with a knee angle excursion from 100 to 160 degrees (at
180 degrees, fully extended elbow) with slow or moderate steady velocity. They extended CKC in
a framework to manage several epochs during joint angle excursion to track motor units.

The third frontier of EMG decomposition is tracking motor units across different recording
sessions. Changes in electrode position, in muscle properties and in some experimental condi-
tions across sessions could compromise the recognition of the same active motor units across
the sessions. However, this was tested across multi-day recordings separated by one or two
weeks for vastus lateralis and medialis muscles by tracking around the 40% of active motor units
[Martinez-Valdes et al., 2017], [Del Vecchio and Farina, 2020]. In this thesis, we consider mainly a
single session per subject, but we track motor units across several task conditions. Instead of using
the method based on spike-triggered average (STA) similarity as in [Martinez-Valdes et al., 2017],
we suggest an innovative method based simply on concatenating multiple EMG recordings and
considering the concatenated signals as a unique recording. Thus, we decompose these concate-
nated signals so that the decomposition algorithm itself tracks motor units based on their action
potential shapes. This method could be tested for multiple sessions.

Finally, the next frontier is based on the new algorithmic techniques which are fastly emerging.
[Negro et al., 2016a] integrated the CKC algorithm with ICA and k-means clustering to decompose
both sEMG and intramuscular EMG. Finally, the newest deep learning techniques have been very
recently applied to EMG decomposition in [Clarke et al., 2020] and [Urh et al., 2020]. Artificial
intelligence techniques are likely to solve also the three main challenges listed above, by learning
from labelled datasets or finding patterns into data with unsupervised learning.

1.3.3 Surface EMG for interfacing the human nervous system with ma-
chines

Neural interfaces can be classified by two main parameters, invasiveness and selectivity, as proposed
by Navarro et al. [Navarro et al., 2005] for peripheral neural interfaces. Figure 1.6 is inspired by
the scheme in Navarro et al. [Navarro et al., 2005] by integrating also brain-computer interfaces
(BCI) and EMG and presents different neuro-muscular interfaces. The three main body districts
considered in the figure are muscles, nerves and brain.
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Figure 1.6: A selective and completely non-invasive human-machine interface is provided by HD-
sEMG decomposition, which provides information about the descending neural commands from
the central nervous system (CNS) to muscles. By factorising the discharge patterns obtained by
decomposition, it is additionally possible to estimate the control strategies of the CNS to coordinate
pools of motor neurons actuating several muscles. Thus, the observation of motor neurons pools
from several muscles increases the selectivity of HD-sEMG by enabling this technique to be com-
parable, in terms of selectivity, with more invasive techniques, such as implanting electrodes over
the epimysium, inside the muscle belly, around or inside nerves, and interfacing directly electrodes
with the cerebral cortex. This figure is inspired by the one of Navarro et al. [Navarro et al., 2005]
(Figure 2 in the paper) by including more interfacing techniques, at different levels of the CNS.

At the muscle level, alternative the the common concentric bipolar needles [LeFever et al., 1982]
or fine-wire electrodes [Kamavuako et al., 2014a], an high-density invasive EMG electrode with 16
channels [Poppendieck et al., 2015] has been already developed and tested [Muceli et al., 2015],
[Negro et al., 2016a] by also be integrated with HD-sEMG to increase the number of observable
motor units [Negro et al., 2016a]. Invasive EMG sensors enable to record also from deep muscle,
unreachable with sEMG. Since a safe and stable solution for long-term percutaneous connectors has
not been developed, fully implanted systems may provide an alternative solution for amputees and
for osseointegrated prostheses [Bergmeister et al., 2017]. Implanted EMG sensors can be either
epimysial [Bergmeister et al., 2016] or intramuscular [Weir et al., 2009]. The IMES technology
represented in the figure provides a fully embedded circuit in the sensor for analogue processing,
digitization and wireless communication, but it records only one bipolar channel per sensor in a
narrow volume conduction of around 1 cm [Weir et al., 2009].

Accessing neural information from nerves means recording signals with the same sample fre-
quency needed for invasive EMG, i.e. around 10kHz [Rossini et al., 2010], always higher than com-
mon sEMG sample frequency (between 1 to 3 kHz). Electroneurographic (ENG) signals can be
recorded either with electrode cuffs or with intrafascicular electrodes [Ortiz-Catalan et al., 2012],
as represented in Figure 1.6. Although a single-subject study reported an accuracy greater than
85% with an intra-fascicular implant period of 4-weeks [Bergmeister et al., 2016], the use of inter-
faces with nerves presents critical challenges, in terms of tissue damages caused by electrodes and
critical surgical operations [Navarro et al., 2005].

By considering the brain directly, selectivity in BCI depends a lot on the type of interface with
the brain. Electrical recording on the scalp, electroencephalography (EEG), contains the contri-
bution of many thousands of neurons and presents a poor-spatial resolution [Wolpaw et al., 2000].
Conversely, electrocorticography (ECoG) is promising in terms of selectivity and accuracy [Benabid et al., 2011],
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[Branco et al., 2019], [Musk, 2019], presenting at the same time the greater level of invasiveness
possible for interfacing with the CNS.

It is reasonable to assume that, the more the neural information is accessed closer to the CNS
and the brain, the more this information codifies for commands associable to task execution and
joint actuation. By following this assumption, reviews in the literature about neural interfaces
([Navarro et al., 2005], [Schultz and Kuiken, 2011], [Loeb, 2018]) proceed generally from muscle
and peripheral nervous system to spinal and brain recordings. This assumption may be question-
able both from an informative and a practical point of view.

From an informative point of view, with more invasive techniques, although it is possible to
have access directly to the sources of signals, the number of observed sources is reduced, while
less invasive techniques record a mixture of many more sources, eventually separable by BSS
techniques. To increase the selectivity by guaranteeing the absence of invasiveness, in this thesis
we propose a framework based on decomposition and factorization, to infer the neural information
routed by pre-motor interneurons at the spinal level. In fact, since the information of each motor
neuron is amplified by the number of fibres innervated in the relative motor unit, the muscle can
be considered a natural spatial amplifier of the neural information [Farina et al., 2017a].

From a practical point of view, improvements for developing robust and biocompatible percuta-
neous electrodes or fully implanted sensors still need to be carried out [Schultz and Kuiken, 2011].
New fully implantable devices, for example for EMG recordings, are still in a research phase in
terms of biocompatibility and long-term stability [Weir et al., 2009],[Bergmeister et al., 2016] and
not yet available on the market. Furthermore, high invasiveness implies major risks of tissue
damage either during the implantation of the device [Navarro et al., 2005].

Thus, this thesis aims to provide a neural interface that does not imply any surgery, is relatively
easy to wear and remove, and at the same time is sufficiently selective to infer central descending
commands for motor control. We unleash the full potential of HD-sEMG, processed with the
combination of non-linear (CKC) and linear (NMF) dimensionality reduction techniques, to make
it a real alternative option to more invasive devices, which could be considered in many cases (as
represented in Figure 1.6, encircled in red).

In a future perspective, a fully non-invasive framework as the one presented in this thesis
may constitute an extendable platform to join also invasive techniques to increase the amount of
neural information extracted [Negro et al., 2016a]. For example, high-density thin-film invasive
EMG electrodes and implantable epimysial electrodes may be integrated into the framework, for
different short- or long-term recordings.

1.4 Clinical perspectives of HMI in rehabilitation and robotic
limb control

1.4.1 Myoelectric dexterous control for amputees

The recent evolution of techniques for an intuitive and robust myoelectric control

Myoelectric control for amputees is an established technique that emerged during the first years
after World War II and developed since 1950 [Childress, 1985]. The idea of taking advantage of the
natural coupling between the mechanical and electrical activity of the muscle has been seen since
the beginning as an extraordinary opportunity to join directly the movement intention developed
in the brain cortex with machines [Battye, C. K., Nightingale, A., Whillis, 1955].

Decades later, although a great development in robotics, advanced electromyography, electron-
ics, computing and machine learning has been carried out, myoelectric control translation in clinics
and in the availability of reliable commercial solutions still suffers from significant drawbacks to
overcome [Roche et al., 2014],[Vujaklija et al., 2016],[Vujaklija et al., 2017]. The myoelectric con-
trol available in commercial prostheses has been so far a change-in-state control, from simple
on-off control to the use of most sophisticated finite-state machines [Roche et al., 2014]. This usu-
ally implies the co-contraction of a couple of antagonist muscles to change the DoF to control and
the use of this couple of EMG channels to, for each channel, one direction of the selected DoF
[Farina and Aszmann, 2014].

Research in myoelectric control algorithms is trying to fill the gap between research solutions
and reliability mainly with pattern recognition algorithms [Cloutier and Yang, 2013], which can
lead to simultaneous control of more than one DoF at a time with parallel classifiers [Young et al., 2012].
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However, pattern recognition still presents the limit of the classification of a certain state with-
out controlling proportionally the activation of such a state, so it is not possible to control pro-
portionally and simultaneously multiple DoFs [Roche et al., 2014]. The use of linear regression,
eventually enhanced by a probabilistic model, enables a proportional and simultaneous control
[Smith et al., 2015]. With this technique, the predicted kinematic performance of the investigated
limb during several tasks is regressed from the measured myoelectric activity. The use of prob-
ability weights in linear regression myoelectric control has been proved to improve the ability to
discriminate individual DOFs, enabling at the same time the simultaneous control of multiple DOFs
[Smith et al., 2015].

Ison and Artemiadis [Ison and Artemiadis, 2014] provided an insightful review about the rela-
tionship between recognition of distinct myoelectric patterns codifying for single or multiple DoFs
and the proportional control of multiple DoFs. In particular, they found in NMF and synergis-
tic control a way to enable both at the same time, i.e. a synergy-based simultaneous propor-
tional control of multiple degrees of freedom. This bio-inspired (as explained above in the section
about muscle synergies) myoelectric control paradigm was firstly presented by [Jiang et al., 2009].
[Jiang et al., 2009] suggested a DoF-wise NMF which consists in the extraction of two synergies
for the control of one DoF, one synergy per each direction. It is clear that here the term "syn-
ergy" does not imply a physiological concept inherent in human motor control. Instead, it is an
adaptation of the concept of synergistic control for interfacing the human neuro-musculoskeletal
system with a robotic system which is actuated usually by rotating motors, unlike muscle system
which is a complex redundant system of only-pulling actuators. Nonetheless, as well for muscle
synergies, DoF-wise NMF enables a synergistic combination of multiple DoFs to be controlled in
an intuitive way [Jiang et al., 2009], [Ison et al., 2015]. By comparing DoF-wise NMF with lin-
ear regression and artificial neural networks, it was found that, although the last two correlate
better with kinematic measures when the correlation is performed offline, they present all similar
performances during online control [Jiang et al., 2014]. The main most important advantage of
NMF compared with supervised algorithms such as regression, is that it is quasi-unsupervised, re-
quiring only the supervised choice of the pattern to show the algorithm during the training phase
[Ison and Artemiadis, 2014]. Finally, [Berger and D’Avella, 2014] implemented a myoelectric force-
control algorithm that combined NMF with linear regression, thus performing an unsupervised
dimensionality reduction followed by a synergy-based force regression.

In the thesis, we compare classical NMF with DoF-wise NMF in Chapter 4 for kinematics
estimation. The great difference with current literature is that we compute it for the first time with
motor neuron discharge patterns of multiple muscles, instead of amplitude time-domain features
of EMG signals. Moreover, we focus on fingers and wrist movements, differently from Jiang, Ison,
Berger and other research teams investigating this topic.

Surgical operations to improve myoelectric control and interfacing with prostheses

The near-future trends in bionic limb interfacing heads toward bionic limb reconstruction, which is
the progressive closer integration between amputees and robotics limbs for the restoration of the lost
capabilities after amputation [Farina et al., 2014d], [Aszmann et al., 2016], [Cutrone and Micera, 2019].
In this thesis we do not focus on a close-loop HMI based on sensory feedback [Saunders and Vijayakumar, 2011],
[Cutrone and Micera, 2019], [Mastinu et al., 2020], which is one of the most important frontiers in
advanced bionic limb reconstruction. Nonetheless, we introduce here two other fundamental tech-
niques and we provide in Chapter 5 single-subject pilot results, before and after a rehabilitation
period, where these two techniques are combined together.

The first technique is targeted muscle reinnervation (TMR), which is the redirection of the
remaining efferent nerves of the amputated part of the limb to the residual muscles in the stump
[Farina et al., 2014d]. In this way, the residual muscles in the stump, no more biomechanically
functional, become biological amplifiers of the neural activity formerly directed to the missing limb
([Kuiken et al., 2009], [Farina et al., 2014d]. This is particularly important for the restoration of
functions at the hand and wrist level for transhumeral amputees, who miss residual forearm mus-
cles, usually targeted in transradial amputees with EMG electrodes. Although the core of this
thesis focuses on the coordination of extrinsic and intrinsic hand muscles, both together and sep-
arately, we want to complete the framework by considering also the case whether the nerves to
these muscles, but not the muscles themselves, are still present after amputation. This is possible
for transradial amputees after having quantified in healthy participants the amount of informa-
tion obtained with extrinsic muscles only instead of having also intrinsic information (Chapter 2
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and 4). For transhumeral amputees, with TMR it is possible to redirect nerves formerly inner-
vating intrinsic muscles to residual parts of biceps and triceps, as we present for one subject in
Chapter 5. Moreover, in Chapter 5 is also presented a single-subject pilot data collection, im-
plying the use of TMR for post-stroke patients, for elective amputation and bionic substitution
[Aszmann et al., 2016].

The second important technique we deal with, combined to TMR in Chapter 5, is osseoin-
tegration, which is the permanent fixation of a metallic implant in the bone at the stump level,
which enables to stably bond a prosthetic limb [Brånemark et al., 2001], [Salminger et al., 2018].
Osseointegration is primarily conceived for biomechanic stability of the stump-prosthesis coupling,
but it also facilitates long-term implantation of peripheral electrodes, either inside nerves or in-
tramuscular, for sensory-motor closed-loop control of bionic limbs [Ortiz-Catalan et al., 2014]. We
describe more in detail the issues we faced in terms of HD-sEMG recordings with osseointegrated
amputee participants in Chapter 5.

Motor neuron discharge patterns for dexterous control of bionic limbs

[Bergmeister et al., 2017] firstly suggested a framework based on TMR, multichannel implantable
EMG and decomposition for advanced myoelectric control. The rationale behind multichannel
EMG decomposition applied to reinnervated amputees is broadening the decoding of neural in-
formation embedded in EMG signal by separating neural information inside EMG by decompo-
sition [Farina et al., 2014d], [Farina et al., 2014a]. In this way, it would be possible to control
the most advanced last-generation robotic hands, which provide single-finger control actuation
[Laffranchi et al., 2020].

The first results for decomposition of TMRmuscles in amputees were shown in [Farina et al., 2014d]
and [Kapelner et al., 2015] for different movement intentions involving the wrist and the fingers
with amputees at the gleno-humeral level or with a disarticulated shoulder. A representative num-
ber of motor units with a high level of accuracy were identified and the presence of a prevalent CSI
among the identified motor units was assessed [Farina et al., 2014a]. However, overlaps in motor
unit localization by spike-triggered average and RMS maps suggested that patterns codifying for
different tasks may not always be separable [Kapelner et al., 2015]. A more sophisticated pro-
cessing after decomposition was provided in [Farina et al., 2017b], by implementing classification
with support vector machines (accuracy > 97% in task discrimination), direct control which over
and unsupervised subspace mapping by PCA. Finally, [Farina et al., 2017a] demonstrated that the
CSI in reinnervated trans-humeral amputees is comparable with that of the physiological innerva-
tion, although spectral coherence showed a lower correlation at some frequencies in TMR than in
physiological conditions. This finding allows the design of advanced myoelectric control based on
physiological basics.

In Chapter 5 we present a single-case pilot for transhumeral amputees, by comparing two
different sessions with rehabilitation in the meantime. Decomposition is applied on EMG signals
concatenated for different tasks so that we can track the same motor unit across different tasks.
In this way we observe mainly the discharge patterns across tasks instead of spatial localization
patterns with spike-triggered average, resulting in good discrimination of different tasks involving
wrist and fingers. We finally apply NMF for implementing dimensionality reduction and assessing
motor neuron synergistic behaviour in TMR amputees for dexterous hand control.

1.4.2 Post-stroke rehabilitation

Cerebral stroke affects generally one hemisphere of the cerebral cortex, potentially damaging
different cortical areas, in particular the somatosensory area and motor cortex [Dietz, 2012],
[Ward et al., 2003], [Gemperline et al., 1995].

To evaluate the level of motor impairment, Fugl-Meyer assessment was conceived to comprehend
five different domains: motor, sensory, balance, range of motion, joint pain [Sullivan et al., 2011].
The assessment involves both upper and lower limbs. The higher is the level of motor impairment,
the lower is the score, separately for upper and lower extremities. Thus, the score is positively
correlated with the functional ability in performing daily tasks, with a maximum of 66.

Different sensor measurements can evaluate and provide biofeedback of the motor performances
of a post-stroke patient, such as inertial sensors, motion capture, force or torque measurements
and biopotentials. In particular, EMG was largely adopted to measure the level of muscle electri-
cal activation to estimate the exerted force or the movement kinematics [Tang and Rymer, 1981],
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[Zhou et al., 2013], [Hara et al., 2004]. Single motor unit measurements with EMG concentric nee-
dles provided information about anomalous discharge patterns [Rosenfalck and Andreassen, 1980],
[Young and Mayer, 1982], [Gemperline et al., 1995].

With the decomposition of HD-sEMG signals from FDI, it was found that the firing rate range
in post-stroke patients is significantly lower than in control participants [Li et al., 2015]. Although
a linear relation can be found between firing rate and the corresponding exerted force both in
post-stroke and in control participants, the slope of the regression line is significantly lower for
post-stroke impaired people [Li et al., 2015]. In terms of recruitment strategy, again in the FDI
muscle, it was found that the “onion skin” firing pattern, consisting in an increase of the firing rate
of the already recruited motor unit with respect to motor unit recruited later, might be inverted
in post-stroke impaired individuals [Hu et al., 2006]. These, and other findings about motor unit
recruitment in post-stroke conditions [Hu et al., 2006], [Chou et al., 2013], [Murphy et al., 2018],
[Williams et al., 2020], suggest that the motor control balance is disrupted after stroke at different
central and peripheral nervous system levels [Williams et al., 2020].

In terms of motor primitives and muscle coordination for upper limb impairment after stroke,
muscle synergies were suggested as clinical biomarkers to be correlated with Fugl-Meyer assessment
[Cheung et al., 2012]. By studying the coordination of a group of muscles, in a number between 12
and 16, actuating the upper limb, wrist and hand excluded, it was found that for healthy people
or post-stroke patients with a Fugl-Meyer score greater than 30, stability in terms of patterns and
number of muscles synergies across seven different tasks can be found [Cheung et al., 2009a]. This
was interpreted with a rationale implying that muscle synergies are codified in the spinal cord
and modulated by signals produced in the motor cortex. Thus, while the motor cortex can be
even severely damaged, muscle coordination patterns prescribed in the spinal cords are preserved
[Cheung et al., 2012]. Indeed, great variability in activation coefficient was found, assuming that
these coefficients are prescribed by motor cortical commands. However, for a Fugl-Meyer score
lower than 30, two opposite phenomenons were observed: merging and fractionation of muscle
synergies in the affected arm with respect to the unaffected one [Cheung et al., 2012]. This was
interpreted by the authors as different muscle synergy modulation to compensate for a severe deficit
of motor control.

In all these cases only chronic post-stroke patients were considered. Since the acute phase, the
one around a week after the stroke, is the most critical part when rehabilitation results are more
beneficial [Coleman et al., 2017], it would be investigated more, to prevent as much as possible
the loss of motor functionality during the transit toward the chronic phase. A pilot study for
assessing muscle synergies in the post-stroke acute phase suggests that muscle synergies also in
acute stroke are qualitatively comparable, although a significant variability across patients was
found [Tropea et al., 2013]. This study was conducted with patients with mild impairment and
Fugl-Meyer score over 30.

In the pilot study presented in Chapter 5, as a preliminary finding oriented to apply our
framework in post-stroke rehabilitation, we combine three main efforts for advanced rehabilitation
of stroke:

• motor unit decomposition of many muscles controlling the hand, most extrinsic and intrinsic,
as concurrently active motor neurons to all these muscles in post-stroke patients, were never
observed;

• factorization of the discharge patterns of these motor neurons across all the muscles and
across five-finger grasps in three different conditions;

• experiments with acute/sub-acute post-stroke patients who almost were not able to move
their hand or perform imperceptible movements.

The aim in terms of future perspective is 1) developing a myoelectric control for hand exoskele-
tons to help acute/sub-acute patients to perform simple operations with the plegic hand, and 2)
quantifying motor neurons synergistic behaviour during rehabilitation to correlate it with motor
improvement and with Fugl-Meyer score.

1.5 Summary
This thesis presents a non-invasive neural interface based on the electrical activity of the motor
neurons of multiple muscles. Our investigation is mainly focused on hand control, although the
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framework and the methodological aspects are aimed to be applied to other body districts.
A first novelty is considering the individual contribution of single motor neurons spike trains,

instead of the rectified myoelectric quantities commonly used for myoelectric control both in the
commercial applications and in most of the works presented in the literature. The main novelty is
considering motor neurons of several muscles, i.e. 14 hand muscles both extrinsic and intrinsic.

To extract few control signals from the activity of many motor neurons, a dimensionality
reduction technique is needed. Among these techniques, PCA was used so far to quantify the
common synaptic input of a pool of motor neurons innervating a muscle, while NMF was used
to quantify muscle coordination presumably prescribed by interneuronal circuitry at the spinal
levels. For the studies in this thesis, we adopt both of these techniques for inferring the common
neural information shared by motor neurons of multiple muscles. For the first time, we investigate
by NMF the synergistic organisation of a pool of motor neurons innervating several muscles and
we compare the so-called Motor neuron synergies with muscle synergies obtained by the same
muscles. We test motor neuron synergies in healthy participants both during grip with different
combinations of fingers and during a vast repertoire of gestures. Finally, we apply our framework
to different cases of motor impairment.

In this thesis, neither we consider any of the aspects related to the design and implementation
of assistive devices from an electrical and mechanical point of view, nor do we test online the
algorithms used for our analysis since we are aware of the further difficulties which would be
introduced by these two technical aspects. Instead, we want to answer the scientific question
about how much information we can infer about the output of spinal and super-spinal structures
to motor neurons to use this neural information as control signals. From a technological point
of view, the interesting aspect of our framework is the non-invasiveness of the neuromuscular
recordings, with all the consequent advantages explained above. Thus, we want to indicate to
the developers of myoelectric control algorithms which features and which algorithms they should
consider for effective control of external devices.
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Chapter 2

Non-invasive framework for the
analysis of motor neurons controlling
the intrinsic and extrinsic hand
muscles

2.1 Introduction

In this chapter, an analysis of the simultaneous activity of motor neurons controlling up to 14 hand
muscles, both extrinsic and intrinsic, is shown for the first time. These results were published in
the Journal of Neural Engineering [Tanzarella et al., 2020]. We conducted this study by a fully
non-invasive framework based on HD-sEMG, signal decomposition and factorisation (PCA), as
explained in Chapter 1. The goal was to demonstrate a low dimensional control of motor neurons
across a large number of muscles and a common synaptic input among pools of motor neurons
innervating these muscles. This analysis was limited to few muscles and it was never shown whether
motor neurons innervating up to 14 muscles could present the same proportion of common synaptic
input with respect to the case of one or few muscles (see Chapter 1, Subsection Inferring central
descending commands from motor units discharge patterns). We tested this hypothesis of low
dimensional control among motor neurons of a large pool of muscles by observing 7 different grip
types, involving different combinations of fingers.

We focused on the hand since it is a complex neuromuscular-skeletal system controlled by nu-
merous muscles, both extrinsic (inside the forearm) and intrinsic (inside the hand), and because
of its fundamental role in interacting with the environment. Due to hand musculoskeletal com-
plexity and limits in EMG acquisition technology, few studies have investigated the activation
of both extrinsic and intrinsic muscles responsible for hand movements ([Huesler et al., 2000],
[Weiss and Flanders, 2004], [Ajiboye A B and Weir, 2009]). [Ajiboye A B and Weir, 2009] com-
bined both invasive and non-invasive EMG recordings to analyse the motor control strategies
behind the activation of intrinsic and extrinsic muscles. However, EMG signal presents a mixture
of the electrical activity of multiple recruited motor units and each identifiable motor unit spike
train is convolved by a motor unit action potential which depend on the volume conduction, i.e. by
the system comprehending the electrodes, the interposed tissues and the active motor units. Thus,
EMG provides only an approximation of the efferent command (neural drive) sent from the central
nervous system (CNS) to the muscles ([Farina et al., 2004b], and see Chapter 1, Section Inferring
central descending commands from motor units discharge patterns). This neural information can
be more accurately estimated by investigating the recruitment and firing patterns of motor units,
the biological transducers between neural commands and muscular force exertion.

Before this study, motor unit analysis has been applied on a limited number of muscles.
A single-muscle motor unit analysis was conducted on different intrinsic muscles, such as the
first dorsal interosseous (FDI) [Enoka and Fuglevand, 2001] and abductor digiti minimi (ADM)
[Negro et al., 2009], typically using invasive recordings, either needles or bipolar fine-wire elec-
trodes. Although the studies by [Huesler et al., 2000], [Weiss and Flanders, 2004] and [Del Vecchio et al., 2019]
all attempted to estimate single motor unit activity from multiple intrinsic and extrinsic muscles,
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they presented limits with respect to the complete analysis reported in this study. In the case of
[Huesler et al., 2000] and [Weiss and Flanders, 2004], these limits were related to the observation
of few subjects (four and five respectively), few muscles (7 in [Huesler et al., 2000]) or few fingers
(only index and thumb in [Weiss and Flanders, 2004]). [Del Vecchio et al., 2019] used HD-sEMG
and decomposition for a simultaneous observation of intrinsic muscles, by involving only thumb
and index, thus not observing the full biomechanical functionality of the hand. Moreover, they
obtained only an indirect estimation of the common synaptic input, by cross-correlation in the
frequency domain (spectral coherence) of different permutations of motor unit pairs.

Differently from all these previous studies, we here involved all the fingers of the hand, and we
extended the observation both to a) FDI and ADM (usually analysed separately in the literature),
b) the three muscles composing the thenar (in [Del Vecchio et al., 2019] the grid position did
not assure the recording of all these three muscles), and c) dorsal interossei, which we recorded
for the first time with HD-sEMG. This unprecedented motor unit analysis on these 8 intrinsic
hand muscles was conducted with the simultaneous activation of the two most superficial extrinsic
muscles responsible for finger flexion and extension, plus the four muscles responsible for the wrist
actuation. Finally, we wanted to conduct a direct estimation of the common synaptic input among
the motor neurons innervating all these muscles, thus we applied PCA on their smoothed spike
trains as was done in [Negro et al., 2009] for ADM motor units only. It is remarkable that in this
study we found comparable results of [Negro et al., 2009], even though ADM was simultaneously
recorded with other 13 muscles.

In the perspective of this PhD project, the aim of the proposed framework goes beyond the
analysis conducted in this chapter, and it is used also in the next two studies (Chapter 3 and
4) and applied to the case of acute/sub-acute patients in Chapter 5. This framework enables a
temporal observation of the estimated common synaptic input among the investigated muscles,
as well as a spatial discrimination of the location of the electrical activity of single motor units.
This framework is aimed for future applications in hand rehabilitation (as preliminarly shown in
Chapter 5) and its electrode configuration can be transferred in a wearable device suitable for
rehabilitation technologies, as proposed at the end of Chapter 5. We also examined the case of
whether this electrode configuration could be separated in only intrinsic or only extrinsic muscles,
to design either a glove or a bracelet for myoelectric control and motor neuron observation. Thus,
both here and in Chapter 4 we also analyse the individual contribution of these two groups of
muscles.

2.2 Methods

2.2.1 Subjects

Seven healthy men (age 27.0± 2.2 yrs; weight 79.0± 8.3 kg; height 180.1± 5.0 cm) participated in
the experiment after signing an informed consent form. The study protocol and procedures were
conformed to the Imperial College London Research Ethics Committee (approval no. 18IC4685)
and the requirements of the Declaration of Helsinki.

2.2.2 EMG electrode configuration

The setup used in this experiment presents an unprecedented complexity and it was presented for
the first time in the paper published about this study in [Tanzarella et al., 2020] and is represented
in Figure 2.1.a. A total of 384 EMG electrodes covered intrinsic and extrinsic hand muscles,
grouped in six grids of 64 surface EMG electrodes each. Each grid was constituted by a 13 ×
5 layout, with one electrode missing at the corner (OT Bioelettronica, Torino, Italy). Two 13
× 5 grids with 8-mm inter-electrode distance (IED) were placed respectively over the extrinsic
extensor muscles (EXT), i.e. extensor carpi ulnaris, extensor digitorum communis and extensor
carpi radialis, and the extrinsic flexor muscles (FLX), i.e. flexor carpi ulnaris, flexor digitorum
superficialis and flexor carpi ulnaris. Four grids with 13 × 5 electrodes at 4-mm IED were placed
over intrinsic muscles, respectively over FDI, the other three dorsal interossei (DI), the thenar
(THE) and the ADM. Table 2.1 reports the muscles under each electrode grid and the acronyms
associated with the relative muscles.

The following instructions are aimed to replicate this setup and are fundamental for the con-
sistency of the presented framework, also for the next chapters. After a deep study of hand muscle
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Figure 2.1: Experimental setup and protocol. (a) Electrode grid placement over the first dorsal
interosseus, II–IV interossei, abductor digiti minimi, thenar, extensor digitorum communis, and
flexor digitorum superficialis muscles. (b) The custom hand-dynamometer with two force sensors,
one for the thumb and one for different combinations of fingers. (c) The different grip types tested,
combining different fingers in opposition with the thumb. (d) Example of the sinusoidal force cue
followed by the subjects. This figure was published in [Tanzarella et al., 2020].

anatomy, the muscle belly was located through palpation by asking each subject to repeatedly
move the fingers. To be sure to cover all the four compartments of these muscles of the extensor
and flexor digitorum, the subject was asked to move in particular the little and the index finger.
Before placing the electrodes, the skin over the forearm and the hand was shaved and cleansed
with alcohol to minimise electrode-skin impedance. To fix each grid to the skin, a disposable
bi-adhesive foam layer was attached to the grid, filled with conductive paste, and then the other
adhesive surface of the foam was attached to the skin. The grid was then secured further with tape.
This operation took around ten minutes and could be avoided with a future wearable adaptation
of the setup, as argued further in the Discussion.

The two grids on the extrinsic muscles were placed respectively on the dorsal (extensor muscles,
EXT) and ventral (flexor muscles, FLX) sides of the forearm. The ulna bone was used for both
grids as an anatomical reference, to be sure to cover also the extensor carpi ulnaris and the flexor
carpi ulnaris, respectively. In fact, due to their length (about 100 mm), the EXT grid could
then extend also over the extensor digitorum communis and the extensor carpi radialis, while the
FLX grid could extend over the flexor digitorum communis and the flexor carpi radialis. Due to
anatomical variability, in the case of thinner forearm, the EXT grid could eventually reach also the
brachioradialis with its last 5-electrode array, while in the case of ticker forearm the flexor carpi
radialis could be eventually covered partially, although always reached. Thenar muscles (THE) is
a muscle group composed of three muscles, opponens pollicis, abductor pollicis brevis, and flexor
pollicis brevis. To be sure to cover all these three muscles, we placed the grid to have its shortest
side along the thumb metacarpal bone and then be extended on the palmar side. Thus, the longer
axis of the grid was transversal with respect to muscle fibres (see 2.1.a). This is an important
difference with respect to the placement adopted in [Del Vecchio et al., 2019], which covered only
the central part of the thenar, with the longer axis along the muscle fibres. the grid over the II, III
and IV dorsal interossei (DI) was mounted in the middle between the index metacarpal bone and
the little metacarpal bone, equidistant from the wrist and the knuckles. Finally, the ADM with
a grid along the muscle fibres and the FDI was covered with a grid aligned along the the dorsal
side of the thumb metacarpal bone, in between the thumb and the index finger. Thus, a total of
14 muscles were recorded.
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Grid acronym Recorded muscles
FDI First dorsal interosseous
DI II, III, IV dorsal interossei

ADM Abductor digiti minimi
THE Opponens (OPP), flexor pollicis brevis (FPB), abductor pollicis brevis (APB)
EXT Extensor carpi ulnaris, extensor digitorum communis, extensor carpi radialis
FLX Flexor carpi ulnaris, flexor digitorum superficialis, flexor carpi radialis

Table 2.1: Muscles under the EMG electrode grids. Acronyms are associated to the relative
muscles. This table was published in [Tanzarella et al., 2020].

The electrode grids were cabled to a 400-channel EMG amplifier (Quattrocento, OT Bioelet-
tronica, Torino, Italy) through 64-channel impedance-adapters with a gain of 5 V/V (the white
boxes represented in Figure 2.1.b). The cabling operation was another time-onerous part, and the
positioning of the flat cables represented in Figure 2.1.b was critic, with the relative small volume
of the forearm and the hand with respect to the encumbrance of the 6 cables (an aspect solvable
with a future portable wireless HD-sEMG amplifier, see Discussion). EMG signals were recorded
in monopolar derivation, amplified with a gain of 150, band-pass filtered between 10 and 900 Hz,
sampled at 2048 Hz and A/D converted to 16 bits. Two conductive bracelets were placed over the
wrist of the tested hand, one for the reference electrode of the 64-channel impedance-adapters and
one for the reference of the 400-channel amplifier.

Two load sensors (ATI Industrial Automation, Apex, NC) measured the two forces exerted
respectively by the thumb and the other combination of fingers in opposition, recorded through a
12-bit A/D converter board (sampling frequency 2048 Hz, PCI6225, National Instruments, Austin,
TX). I designed and developed a 3D-printed custom-made hand support, represented in Figure
2.1.b, constituted by two plastic handles for positioning the thumb and the combination of the
other fingers according to the grip types to execute, represented in Figure 2.1.c. The two load cells
were embedded coaxially, respectively one for each plastic handle.

Finally, the setup was also constituted by a custom-made GUI developed in MATLAB (The
MathWorks Inc, Naticks, MA, USA) and presented in detail in Appendix B. This GUI was then
improved for the experiments described in the next chapters, and scaled in complexity during the
entire PhD project, in particular for the experiments of Chapters 4 and 5. However, at the time of
this experiment, it was already able to associate graphically each group of channels to each EMG
grid, interface and connect with the EMG amplifier and the force measurement board, represent
online the 384 recorded EMG signals by recording simultaneously the force channels, saving all
the data, and representing the cue and the target to implement a force-control biofeedback (with
MVC calibration included), necessary for the protocol explained below. These cues were flexibly
changed by changing the protocol in an Excel file, importable in the GUI in an interactive way.

2.2.3 Protocol

We chose to investigate 7 grip types (Figure 2.1.c), so that there could be a grip for each single
finger in opposition with the thumb (INDEX, MIDDLE, RING and LITTLE grip in Figure), plus
3 grips involving more than two fingers. These latter 3 grip types were respectively a 5-finger
palmar grip (GRASP) and tripod grip (IND-MID), commonly used in daily life activities, whilst
an unusual grasp with thumb, index and little (IND-LIT) was asked to enlarge the complexity of
the dataset. This protocol aimed to have a complete representation of finger control of the whole
hand, although it was limited in hand-shaping complexity due to the setup itself, with the custom-
made manipulandum (Figure 2.1.b) and the requirement of maintaining isometric contraction for
EMG decomposition, so not performing complex grips used in daily-life.

Subjects sat in a comfortable posture with the forearm constrained. This assured that the
wrist was kept in a neutral position, to relax muscles during the rest condition and to be sure that
all the contractions performed in the experiment were isometric. The force profile to follow by
the subjects was represented by the custom-made GUI in a screen placed in front of the subject.
The protocol consisted in performing the 7 grip types described above, by modulating sinusoidally
the contraction, as indicated by a 30 s-long sinusoidal force profile in the peak-to-peak range
10%−20% of the maximum voluntary contraction (MVC) (Figure 2.1.d) with a frequency of 1 Hz.
The biofeedback represented on the screen was the average of the forces measured by the two load
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cells. Before starting the experiment MVC was measured, by taking the highest recorded force
among two attempts of producing the maximal force for each finger combination, with a rest of 1
min between attempts. Each 30-s-long sinusoidal contraction was preceded and followed by a 5-s
ramp contraction to reach the target level (15%MVC) and return to the rest position (null force),
respectively. The sequence of grips was randomised and between each recording a rest of 2 min
was asked to the subject.

2.2.4 Signal processing
Convolution kernel compensation (CKC) algorithm ([Holobar and Zazula, 2007a]) was used to de-
compose EMG signals digitally filtered between 20 and 500 Hz with a 4th-order Butterworth filter
into the constituent trains of motor unit action potentials. The EMG data for the 64 channels of
each grid were decomposed separately for each trial. For the analysis, only the sinusoidal part of
each recording was considered, i.e. the central 30 s. I manually inspected and validated the re-
sults of the decomposition [Vecchio et al., 2020], by removing all the motor units with an accuracy
quantified by a pulse-to-noise ratio (PNR) ([Holobar et al., 2014]) lower or equal than 25 dB (i.e.
with accuracy in the confidence interval of 0 − 70%). Also, motor units with less than 60 peaks
(i.e. with mean discharge rate of 2 Hz) were discarded. Among the selected motor units, false-
positive peaks over the physiological maximal firing rate (35–40 Hz) were removed, while evident
false-negative undetected peaks were included. This last operation was done by analyzing each
motor unit innervation pulse train (IPT) ([Holobar and Zazula, 2007a]), visualised by a dedicated
visualisation software, the same used also for the decomposition, developed by Holobar (DEMUSE,
[Holobar and Zazula, 2007b]). This operation was to be executed manually since the decomposi-
tion algorithm could provide both false-positive and false-negative which had to be validated by an
operator knowing the basics of motor unit physiology. However, the effect of each modification of
the firing times was always quantified in terms of a change of PNR after recomputing the mixing
matrix due to the manual change, by always ensuring a high level of accuracy. For each motor unit,
the mean firing rate (MFR) was computed for each recording as the mean of the multiplicative
inverse of the inter-spike interval (ISI) ([Nordstrom et al., 1992]). The computation of the MFR
was also repeated by separating two phases, respectively increasing and decreasing force. Since
the final result of the decomposition was constituted, for each motor unit, by the sequence of
time occurrences of the spikes, we wanted a binary sequence representing the spike train, long as
the original decomposed signal, 1 at each spike occurrence and 0 everywhere else. For our pur-
pose of factorising by PCA the concurrent activity of the motor neuron pool and to compare this
activity with force, a continuous signal for each motor unit was necessary. Thus, a 400-ms Han-
ning window was convolved by the spike train binary sequences to smooth them ([De Luca, 1985],
[Negro et al., 2009]) and obtain smoothed discharge rates (SDR). This SDR constituted an esti-
mation of the instantaneous firing rate, since the smaller was the local ISI the greater was the
amplitude of the SDR, at a certain interval of time.

Each motor unit was also spatially located under the relative electrode grid, by averaging the
motor unit action potentials triggered by the time occurrences of the motor unit discharges for
each EMG channel, as described in [Farina et al., 2002]. These motor unit action potentials were
segmented around each spike timing of the considered motor unit into a window of 103 samples
(50 ms). This spike-triggered average (STA) consented, for each motor unit, to have each averaged
motor unit action potential computed for each channel in the same channel position in the grid, to
have a maximal amplitude of these averaged action potentials only for some channels of the grid,
as represented in Figure 2.2.

2.2.5 Common drive quantification by PCA
The common synaptic input among the identified spinal motor neurons innervating the 14 analysed
muscles was extracted by principal component analysis (PCA) ([Negro et al., 2009], [Farina et al., 2014c]).
PCA was computed separately for each recording, on motor neuron SDR, obtained as described
above. In order to compare the information brought by extrinsic muscles vs intrinsic muscles, PCA
was computed three times among motor neurons respectively of all the muscles, only extrinsic, and
only intrinsic. Singular value decomposition PCA was applied to SDR of each recording to extract
continuous common components shared by the factorised motor neurons. Singular value decom-
position (SVD) is a matrix factorisation technique alternative to eigenvalue decomposition of the
covariance matrix ([Negro et al., 2009]), which provides a more accurate result and a more efficient
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Figure 2.2: Motor unit spatial localisation by spike-triggered average (STA). The action potential
waveforms are shown for individual motor units of the dorsal interossei (II, III and IV DI), thenar,
composed by flexor pollicis brevis (FPB), abductor pollicis brevis (APB), and opponens pollicis
(OPP), first dorsal interosseus (FDI), abductor digiti minimi (ADM) and the extensor (EXT) and
flexor (FLX) muscles groups. This figure was published in [Tanzarella et al., 2020].

computation of the PCA (Jolliffe and Cadima 2016). We can mathematically formalise the output
provided by the SVD applied to a real-valued matrix X ∈ R n×m as (Brunton and Kutz 2019):

X = UΣV T , (2.1)

where U ∈ Rn×n and V ∈ Rm×m are unitary matrices with orthonormal columns, Σ ∈ Rn×m

is a matrix with real, nonnegative entries on the diagonal and zeros everywhere else, and V T is the
transpose of V . In our case, the dimensions n and m are respectively the indexes for the number of
samples in the 30-s intervals of analysis (observations) and the number of motor units (variables).
The columns of the matrix product UΣT constitute here the time-varying components shown in
Figure 2.3.b (scores), while the columns of V represent the contribution of each motor neuron
into each component (coefficient or weights). The explained variance of each component U , the
standardised version of the PC scores, is provided by the percentage of each single value in Σ over
the trace of Σ, after sorting Σ in descendent order (Jolliffe and Cadima 2016).

2.3 Results

2.3.1 Decomposition

The number of identified motor units and MFR across the seven subjects for the seven grip types
is reported in Table 2.2 in terms of mean and standard deviation. Averagely, 6.4± 3.4 motor units
were identified per grid, with a global accuracy of the all identified motor units of PNR 30.4± 4.8
dB (> 90%). All identified motor units presented MFR 14.4±8.8 Hz, into the physiological range.
The number of identified motor units presented variability for different grip types. In general, from
intrinsic muscles the number of detected motor units was greater than from extrinsic muscles. In
Table 2.2, MFR is also separately computed during increasing and decreasing phases of the force
signal (represented in Figure 2.3), an important information in terms of motor unit recruitment
mechanism. Globally, MFR was 15.9± 9.7 Hz during increasing force (MFRI) and 13.2± 8.6 Hz
during decreasing force (MFRD). In general, for all the grip types, the mean values provided in
the table for the grids FDI, DI, ADM and EXT are lower for decreasing force (derecruitment of
motor units in phase with force) than for increasing force (recruitment of motor units in phase
with force), except for ADM in MIDDLE grip. The grids THE and FLX present more variability.
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Grids
Grips FDI DI ADM THE EXT FLX

GRASP N MUs 9.9± 3.3 8.1± 2.9 5.9± 4.0 6.0± 3.6 7.7± 3.4 7.1± 3.5
MFR (Hz) 13.6± 2.5 14.5± 3.8 13.0± 2.9 14.5± 3.6 15.2± 3.0 14.9± 2.3
MFRI (Hz) 15.5± 2.7 16.2± 3.4 14.5± 3.1 14.2± 3.3 16.9± 3.1 16.0± 4.3
MFRD (Hz) 9.9± 2.8 10.6± 3.7 10.6± 3.1 14.1± 4.7 13.1± 3.5 12.6± 3.4

INDEX N MUs 10.1± 2.5 7.3± 3.1 5.2± 3.2 5.8± 3.7 5.9± 2.1 5.4± 2.8
MFR (Hz) 14.1± 3.1 14.8± 3.0 12.0± 2.4 14.9± 2.9 16.0± 3.2 13.2± 2.1
MFRI (Hz) 16.1± 3.3 16.9± 2.8 13.1± 2.4 14.5± 3.5 17.6± 3.7 13.6± 3.7
MFRD (Hz) 11.9± 4.1 12.9± 3.3 11.6± 2.8 14.9± 4.7 14.1± 3.4 13.5± 2.4

IND-LIT N MUs 9.9± 2.2 6.0± 1.8 6.6± 3.6 9.6± 2.6 5.9± 2.9 6.0± 3.1
MFR (Hz) 12.9± 2.8 13.1± 3.1 13.9± 2.6 15.5± 3.2 14.7± 2.9 13.2± 3.2
MFRI (Hz) 14.0± 3.9 14.4± 3.8 14.8± 3.1 15.2± 3.8 16.2± 3.2 13.7± 4.3
MFRD (Hz) 11.3± 4.1 12.0± 2.8 12.7± 3.5 15.7± 4.1 13± 3.8 12.8± 3.0

IND-MID N MUs 9.3± 2.4 8.4± 2.8 4.4± 3.2 5.5± 3.6 7.9± 2.7 5.4± 3.3
MFR (Hz) 13.3± 2.4 13.9± 2.1 13.4± 3.2 14.8± 3.4 15.6± 2.6 13.7± 2.6
MFRI (Hz) 15.1± 2.5 15.9± 2.3 14.3± 3.3 14.5± 4.3 17.0± 3.0 14.5± 4.1
MFRD (Hz) 9.1± 3.3 10.0± 2.5 13.1± 4.7 15.1± 5.3 12.9± 3.1 12.2± 3.3

LITTLE N MUs 3.0± 1.3 3.9± 3.2 6.1± 3.1 5.7± 3.5 4.7± 2.1 5.3± 3.3
MFR (Hz) 10.8± 3.6 11.3± 2.1 14.2± 1.7 16.8± 3.8 14.3± 2.7 14.0± 3.2
MFRI (Hz) 12.6± 4.7 12.3± 3.0 15.2± 2.1 17.2± 4.4 15.7± 3.2 15.1± 3.5
MFRD (Hz) 9.4± 2.8 11.2± 2.4 13.5± 2.6 16.9± 4.5 13.7± 3.8 13.5± 4.2

MIDDLE N MUs 6.2± 3.6 8.0± 3.7 4.7± 4.1 7.8± 4.2 6.8± 3.4 5.0± 4.2
MFR (Hz) 12.8± 3.5 13.4± 2.1 13.0± 2.8 14.2± 3.1 14.3± 2.5 12.5± 1.8
MFRI (Hz) 14.1± 4.1 14.7± 2.4 13.1± 3.3 14.1± 3.2 15.7± 2.6 13.1± 2.3
MFRD (Hz) 11.5± 5.0 12.5± 3.1 13.5± 2.7 14.2± 4.3 13.2± 3.2 11.5± 3.0

RING N MUs 4.7± 3.6 5.6± 3.5 4.8± 4.7 6.7± 3.5 5.8± 3.9 7.2± 4.0
MFR (Hz) 11.4± 3.0 13.1± 2.8 11.1± 2.8 15.0± 3.5 14.1± 3.7 13.4± 2.3
MFRI (Hz) 12.9± 3.4 15.0± 3.1 12.0± 3.0 14.6± 3.5 15.6± 4.2 13.8± 4.4
MFRD (Hz) 9.7± 2.9 11.6± 2.6 10.5± 3.0 15.1± 3.9 13.0± 3.7 12.8± 2.7

Table 2.2: Number of identified motor neurons for each muscle for the 7 subjects and mean
frequency (MFR) in Hz. MFR is also reported by separating the increasing (I) form the decreasing
phase (D). This information is reported with mean and standard deviation values for each grip
type and each grid. This table was published in [Tanzarella et al., 2020].
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Figure 2.3: PCA applied on pools of motor neurons innervating intrinsic and extrinsic hand muscles.
(a) Example of motor unit spike trains extracted from the investigated muscles during a five-finger
grasp with a sinusoidal isometric contraction, performed by one representative subject. The exerted
force measured by the two load cells is represented as % MVC. Increasing (I) and decreasing (D)
intervals of force is represented as an example for one cycle of sinusoidal force. (b) The same spike
train pool is smoothed and PCA is applied. The first three principal components are represented
with respective values of explained variance. This figure was published in [Tanzarella et al., 2020].

2.3.2 Motor unit localisation by spike-triggered average

Motor unit localisation under the grid area is shown in Figure 2.2 by STA, with an action potential
time window equal for all grids (50 ms). Examples are presented for motor units of the II, III and
IV dorsal interossei (DI), opponens pollicis (OPP), abductor pollicis brevis (APB), flexor pollicis
brevis (FPB), the extrinsic extensor muscles (EXT) and the extrinsic flexor muscles (FLX). All
these muscles are covered by grids covering more than one muscle. Also, one example of one motor
unit respectively for FDI and for ADM, both covered by a dedicated 64-channel grid, is reported in
the figure. However, these muscles have motor units which can be in different locations depending
on the innervation zone. The association of a motor unit to a muscle for grids covering more
muscles (DI, THE, EXT and FLX) is reasonable since a) we know the anatomical position of the
muscles under the grids and b) three muscles per grid are covered transversally with respect to the
grid maximal length. Thus, STA permits an intuitive spatial separation of the motor unit activity
in three bands (we will use the same method in the next chapters). Finally, as can be seen in the
figure, for ADM, the STA can also assess the propagation of the motor unit action potentials along
the fibres [Merletti et al., 2010].
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Figure 2.4: For all seven subjects, representation of the mean and standard deviation of the
percentage of variance explained by the first ten principal components of motor neurons of muscles
grouped respectively as all muscles, only extrinsic and only intrinsic. This figure was a part of a
figure published in [Tanzarella et al., 2020].

2.3.3 Explained variance of the first PC
Figure 2.3.a represents for one subject the raster plot of a pool of motor units identified from
all the investigated muscles during a 5-finger grip. The force signal is represented as %MVC,
respectively for the thumb and the other fingers. Figure 2.3.b shows the respective motor neuron
SDR as input for the PCA. In the case shown in the figure, the explained variance for the first
principal component (PC1) was 70% of the total variance, whereas the variance explained by the
second and third components was less than 5%. This means that in this case the PC1 was highly
representative of the most of the neural information contained by the investigated pool.

Across all subjects, Figure 2.4 shows the mean and standard deviation of the variance explained
by the first 10 principal components extracted by PCA from the neural drive in 49 recordings.
PC1 represented averagely one half of the global neural information, with an explained variance
of (53.0± 10.9)% for all the motor units pooled together, (57.1± 11.3)% by pooling the extrinsic
motor units and (56.9±11.8)% by pooling the intrinsic motor units. Thus PC1 explained a variance
almost 5 times higher than the one of the second component, only (11.5 ± 4.5)% for the motor
units pooled together.

2.3.4 Force exertion estimation from the common synaptic input (PC1)
Figure 2.5 shows the association of the PC1 extracted from the identified motor units with the
force exerted in the frequency domain. Figure 2.5.a shows, for one subject, an example of how
the exerted force measured for the thumb and the other fingers can be predicted by PC1 for each
grip type. In this representative case, each cue is normalised by its maximum value, to allow a
comparison in terms of time behaviour between these two types of time-variant variables. The
common spectral information between the PC1 and the finger combination force (in opposition
with the thumb), computed by spectral coherence, is represented in Figure 2.5.b separately for
each grip, averaged across the 7 subjects. The peak at 1 Hz corresponds to the frequency of the
sinusoidal contractions performed by the subjects. As explained in the Methods, the outputs of the
PCA were obtained separately for each recording, and here we present the results averaged across
recordings.

A quantification of what is shown for a subject in Figure 2.5.a was obtained by cross-correlation
between PC1 and force as described in the Methods. Table 2.3 reports the mean and standard
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Figure 2.5: Quantitative analysis of the first principal component (PC1) among motor neurons of
extrinsic and intrinsic hand muscles. In (a), for one subject, comparison between the PC1 and the
force measured for the thumb and the other combinations of fingers. In (b), for all seven subjects,
representation of the averaged spectral coherence between the PC1 and the force developed for each
grip type between 0 and 5 Hz. A.U.: arbitrary unit. This figure was a part of a figure published
in [Tanzarella et al., 2020].

deviation across all subjects of the cross-correlation peak between finger combination force (in
opposition with the thumb) and PC1, both separately for each task and across all tasks, computed
for the central 30 s of each recording. By repeating the analysis with only the central 10 s of
recording, i.e. the most stable portion of the task, the cross-correlation values further increased
compared to the values in Table 2.3 and reached the values of 0.70± 0.14 (All), 0.68± 0.16 (Extr),
0.68 ± 0.16 (Intr), 0.67 ± 0.17 (FDI), 0.65 ± 0.17 (DI), 0.58 ± 0.23 (ADM), 0.54 ± 0.19 (THE),
0.69± 0.17 (EXT), and 0.61± 0.18 (FLX).

In Table 2.3 the mean values of cross-correlation peaks in the case of FDI and ADM are higher
for the grips involving the fingers they actuate. These are the only two muscles which can be
exclusively associated with one of the 4 fingers in opposition with the thumb. Cross-correlation
values for FDI in all the grips involving the index finger, i.e. for the grips GRASP, INDEX, IND-
LIT and IND-MID, were respectively 0.62 ± 0.09, 0.67 ± 0.13, 0.67 ± 0.05, 0.64 ± 0.12. Values
for ADM in all the grips involving the little finger, i.e. GRASP, IND-LIT and LITTLE were,
respectively, 0.48± 0.16, 0.51± 0.09, 0.62± 0.12.

GRASP INDEX IND-LIT IND-MID LITTLE MIDDLE RING
All 0.62± 0.13 0.71± 0.11 0.62± 0.14 0.67± 0.10 0.69± 0.05 0.69± 0.10 0.67± 0.08
Extr 0.60± 0.13 0.61± 0.15 0.64± 0.10 0.63± 0.13 0.66± 0.15 0.65± 0.13 0.59± 0.14
Intr 0.61± 0.14 0.69± 0.11 0.61± 0.14 0.66± 0.10 0.61± 0.10 0.68± 0.10 0.57± 0.19
FDI 0.62± 0.09 0.67± 0.13 0.67± 0.05 0.64± 0.12 0.57± 0.12 0.64± 0.11 0.49± 0.15
DI 0.60± 0.09 0.65± 0.13 0.59± 0.07 0.64± 0.10 0.47± 0.16 0.68± 0.09 0.52± 0.19

ADM 0.48± 0.16 0.28± 0.12 0.51± 0.09 0.44± 0.13 0.62± 0.12 0.39± 0.13 0.46± 0.20
THE 0.48± 0.10 0.44± 0.22 0.49± 0.13 0.52± 0.12 0.41± 0.16 0.54± 0.13 0.44± 0.16
EXT 0.57± 0.11 0.61± 0.13 0.63± 0.08 0.63± 0.12 0.61± 0.15 0.60± 0.20 0.59± 0.08
FLX 0.58± 0.12 0.52± 0.12 0.56± 0.13 0.53± 0.10 0.59± 0.21 0.57± 0.08 0.53± 0.15

Table 2.3: Mean and standard deviation of cross-correlation peaks between PC1 and finger exerted
force for each grip type (central 30 s of each recording). Results are provided by pooling motor
units differently: all, only extrinsic muscles (Extr), only intrinsic muscles (Intr), and within each
single electrode grid. This table was published in [Tanzarella et al., 2020].
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Figure 2.6: Contribution of the identified motor units in the PC1, grids vs grip types. PCA loads
are represented as mean (dark bars) and standard deviation (light bars) across the subjects, for
each grid for PC1. The averaged loads are extracted by PCA for each grip type (the rows in the
figure), i.e. each EMG recording, and then grouped by grid (columns). This figure was published
in [Tanzarella et al., 2020].

2.3.5 PCA loads

The contribution of each motor unit to PC1 can be obtained by the PCA loads, extracted for
each EMG recording across motor units from all muscles, and is represented for all the subjects in
Figure 2.6. PCA loads are represented normalised by the maximum, grouped by grid and sorted
before averaging. In Figure 2.6 some motor units contribute with a negative weight, so being
in counter-phase with respect to the PC1. However, across all subjects, the majority (78%) of
the motor units contributed to PC1 with a positive load. The greatest number of motor units
contributing with negative loads were for muscles under the grids FLX and DI, respectively with
a proportion of 26% and 21% of the total motor units.

2.4 Discussion

For the first time, the concurrent behaviour of motor neurons identified for all the most superficial
muscles actuating the hand was observed in this study. Both intrinsic and extrinsic muscles
were considered and we also compared the separated contribution of the motor neuron pools of
these two groups of muscles, by assessing equivalence of information between these two subsets.
Although CKC decomposition separates the electrical activity of different motor units mixed into
EMG signals, thus interesting the peripheral nervous system, we have the opportunity to observe
consequently the neural activity of the spinal motor neurons innervating each of these motor units.
Thus, although we can only observe a net common synaptic input among these motor neurons,
due both to descending commands at the central level and to peripheral aspects (Castronovo et
al. 2015), we obtain a higher accuracy in identifying neural information sent by the CNS than
by analysing EMG amplitudes ([Farina et al., 2004b]). In this study we confirm and expand the
results in the literature related to common synaptic input among pools of motor units of multiple
muscles. In the previous studies, either only few muscles ([Nordstrom et al., 1992], De Luca and
Erim 1994, [Negro et al., 2009]), or many muscles but a single motor unit were observed at a time
([Weiss and Flanders, 2004], [Huesler et al., 2000]). We assessed common synaptic input among
motor neurons innervating 14 muscles. We also evaluate here the implication of this framework
in future studies (as the one presented in the next chapters of this thesis) and to be applied in
different contexts, such as rehabilitation and myoelectric control.
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A low dimensionality in control of the motor neuron pool of a large number of hand muscles
was obtained with the proposed framework. Moreover, this PC1 estimated relatively well the
exerted force of the fingers in opposition with the thumb for the different grip types. Across all
the grip types, both the variance explained by the PC1 of the entire set of motor neuron spike
trains ( (53.0±10.9)%, Figure 2.4.b) and the cross correlation between PC1 and force (0.67±0.10,
Table 2.3) were remarkably high. In fact, these values were higher than the values previously
reported by [Negro et al., 2009] for a single muscle (ADM) for the abduction of the little finger,
respectively for explained variance for PC1 (44.2± 7.5)% and for the correlation between PC1 and
force (0.63± 0.10).

We have shown that PC1 indicates a prevalent common drive signal sent to all the considered
hand muscles by the central nervous system. In fact, for all these muscles, the explained variance
of the PC1 was five times greater than the one of the second component, and the explained
variance for the third component was only around 6% (< 5% for the others). Although we neither
investigated the existence of synergies associated to certain degrees of freedom or grip types, nor we
assessed the robustness of these synergies, our results already suggest the existence of a synergistic
motor neuron organisation across grip types. The existence of this synergistic organisation will
be shown in the next chapter for this data with a more sophisticated approach involving motor
neuron tracking across grip types and implication of muscle synergy theory. However, we here
already can assess how common drive explains force modulation, as represented in Figure 2.5.a.
This result constitutes a contribution in applied neurophysiology investigation, and we considered
to apply it for man-machine interface development. In fact, PC1 would provide a robust control
signal based on motor neuron activity to control grasp for robotic hands ([Bergmeister et al., 2017],
[Farina et al., 2017a]).

In this perspective of a future application of this framework for myoelectric control, we evaluated
separately the common drive to muscles respectively for intrinsic and extrinsic motor neurons. It
is clear that in the case of transradial amputee only the extrinsic muscles would be available and so
we wanted to test their prediction of the behaviour of the intrinsic motor neurons. We found that
the PC1 extracted separately from motor neurons respectively of intrinsic and extrinsic muscles
explained a very similar percent of variance. Moreover, also the cross-correlation between the
exerted force and the PC1 for the two muscle groupings resulted very similar (Table 2.3). Thus,
we can conclude that only with a subset of the muscles separated in this study is possible to
have a robust estimation of the exerted force, therefore confirming the existence of a common
drive underlying the activity of different hand muscles. In the perspective of a myoelectric control
for amputees, these results provide an interesting outcome, because they assess the possibility of
identifying the common drive to extrinsic muscles only, even if intrinsic muscles are not available.

The main drawback in the perspective of a myoelectric control with motor neurons is the high
variability in terms of motor neuron numerosity per EMG grid represented in Table 2.2. The lowest
number of identified motor neurons was in general found for the grip involving the little finger,
for all muscles except for the ADM, a muscle involved in little finger abduction and stabilisation,
with insertions in the little finger bone. The limit in the number of identified motor units is
intrinsic in HD-sEMG, since only superficial motor units can be identified. This number is only
a relatively small percentage of the total number of active motor units, which were found to be
approximately 120 for FDI (Enoka 1995) and more than 300 for ADM (Santo Neto et al 1985).
In particular for this proposed framework, each muscle was recorded with a different number of
channels. This was because some grids covered more than one muscle, as in the case of interossei,
thenar and extrinsic muscles, while FDI and ADM were recorded respectively with 64 electrodes
each. Nevertheless, despite this variability in the absolute number of identified motor neurons,
we found a consistent functional correspondence between the relative number of motor neurons
recruited for each grip and the fingers involved in the respective grip. For instance, for grips
involving the index finger (five-digits, index-little task, index-middle task, index only), the FDI
presented the greatest number of identified motor neurons. The number of motor units for the
ADM was greater for the grips involving the little finger, while the grips involving the index and the
middle finger presented the higher number of motor units for the interossei. In general, less motor
neurons were found for extrinsic muscles than for intrinsics, which might be due to the different
properties of the volume conductor between the forearm and the hand. These different properties
of the volume conductor for the different investigated muscles are also visible by looking at the
action potential waveforms obtained by STA (Figure 2.2). Their widths appear quite different,
which is likely due to the low-pass filtering effect of the interposed tissues between the electrodes
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and the muscle fibres ([Farina et al., 2004b]).
By looking to the PC1 loads represented in Figure 2.6, we can observe the contribution of the

analysed motor neurons in net common synaptic input, i.e. PC1. In grips involving index and
little finger, the negative loads for FDI and ADM indicate that their activity is in counter-phase
with respect to the PC1. As explained above, we here do not investigate the participation of motor
neurons in different synergistic organisation, since this aspect is deeply treated in the next chapter.
With this analysis based on PCA we mainly focused on the existence of high net common synaptic
input among motor neurons of many muscles, without focusing on the recruitment patterns of the
same motor neurons across different grip types, as in the next chapter.

Three further aspects important for this analysis are also fundamental for the next chapter.
First, the considered types of grasp are relatively limited. Although we considered a five-finger grip
and a three-finger grip (thumb, index and middle), other grips could be considered such as spherical
grasp or grasp of objects with different particular shapes. Moreover, some grip we chose, such as the
one involving the little and the thumb, have little relevance in daily life ([Santello et al., 1998]).
This was due both to the technical limits imposed by the setup and for guaranteeing isometric
contractions, essential for CKC decomposition accuracy. We overcame this limit in Chapter 4, by
significantly expanding the number of gestures and also involving the wrist, to analyse synergistic
organisation in daily life gestures. Second, the STA analysis represented in Figure 2.2 provides
an approximate localisation of motor units under the electrode grids, by representing the single
unit action potentials across each grid. In the next chapter, we used this feature to associate
each motor neuron to a muscle, in the case of grids covering more than one muscle. Although it
presents a limit in muscle localisation, it was successful for a functional representation of synergistic
aspects of interesting motor neurons (see Chapter 3). Third, what we define as "framework" in
this study and this thesis, is the innovative combination of already existing technologies, so that
this combination enables simultaneous observations of spinal motor neurons innervating all the
main most superficial hand muscles, both extrinsic and intrinsic, and the analysis of common
drive and synergistic behaviour among this large pool of motor neurons. In particular, the specific
directives for mounting the electrode grids and processing of the EMG signals to enable this study
of neural control of the hand, is remarkably different with respect to what is found in the literature.
This is mainly due to the inclusion of interossei for the first time, the position of the grid on the
thenar across muscle fibres, and the maximisation of EMG channels on extrinsic muscles actuating
fingers and wrist, excluding bigger muscles such as brachioradialis (flexing the elbow) and pronator
(involving only one degree of freedom, so considered secondary for the analysis in chapters 2, 3, and
4). However, we expanded this framework in terms of muscles analysed in Chapter 5, by adapting
it to three cases of motor impairment.

A last limitation of the presented framework, is constituted by the encumbrance of the elec-
tronics, both in terms of the EMG amplifier and the cables, and by the necessity to pre-gel the
electrodes. We want to encourage the translation of similar setups like the one presented here
(HD-sEMG on many muscles, with hundreds of electrodes) in a fully wearable wireless device. In
fact, for a real suitability both in prosthesis control or in rehabilitation this achievement must be
fulfilled. The amount of time spent to a) spread the conductive paste over the electrode grids, b)
adjusting in a optimal way the 6 flat cables around the hand and the forearm, and c) adjusting the
references to minimise the net interference (avoidable with a portable EMG amplifier) were globally
almost the same of the experiment by itself. As explained in Chapter 5, this constituted further
a problem in the case of experiments in hospitals with patients. Since we here and in Chapter
4 emphasise the comparison between the information contained by considering separately either
intrinsic or extrinsic muscle, we could think either to design a HD-sEMG bracelet or a HD-sEMG
glove (see picture in Chapter 4).

To conclude, the proposed framework can be applied in rehabilitation technologies and the
control signal provided by PC1 and the associated weights of motor neurons in PC1 may be
used to control different devices, such as hand exoskeletons, virtual reality, or functional electrical
stimulation (FES) for stroke rehabilitation. Finally, as proposed in Chapter 5, this framework can
also be used to extract biomarkers of recovery during rehabilitation therapy and can be adapted
to a wearable version with an interesting perspective in remote monitoring.
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Chapter 3

Synergistic organisation of spinal
motor neurons innervating extrinsic
and intrinsic hand muscles

3.1 Introduction

In the previous chapter, we presented a framework to record the concurrent activity of a large
pool of spinal motor neurons innervating a representative set of hand muscles. This framework
enables us to observe for the first time how multi-muscle motor neurons are coordinated to fulfil
different grips involving all the fingers. While in the previous chapter we presented findings on
the extraction of the common synaptic input among these motor neurons, here we investigate
synergistic organisation of motor neurons across all the seven grips presented in the previous
study. We here want to find robust synergistic patterns which underlie the execution of a broad
range of grips, looking also for similarity of these patterns among different subjects. The principles
of neuro-muscular synergistic organisation and muscle synergy theory can be found in Chapter 1
in subsection Muscle synergy theory and modularity of motor control. Here, we provide in this
introduction a further explanation and definition of the literature background about this topic,
to then state the scientific hypothesis of the study presented in this chapter. This study was
published in the Journal of Neuroscience and is here inserted in the contest of the development
of a non-invasive framework for investigating motor control of hand muscles and inferring spinal
mechanisms of motor neuron synergistic coordination.

The concept of modularity in motor control, at the basis of neuro-muscular synergistic organi-
sation, would imply the existence of modules constituted by clusters of neurons at different levels
of the central nervous system (CNS) targeting the activation of multiple muscles simultaneously
activated, each one with a different contribution. These time-invariant patterns would produce a
set of basic movements modulated and combined by commands arriving from the motor cortex
[Bizzi et al., 2008], [Bizzi and Cheung, 2013]. This motor control strategy based on modular mus-
cle coordination to achieve complex movements would explain the control of the many degrees of
freedom in the body of animals and humans. This modular organisation has been hypothesised to
be constituted by descending pathways sending neural commands to interneuronal modules mainly
at the spinal level [Bizzi and Cheung, 2013], [D’Avella et al., 2015], [Flash and Bizzi, 2016]). Also,
the role of the motor cortex [Schieber and Poliakov, 1998], [Ejaz et al., 2015], [Leo et al., 2016]
and of the cerebellum [Spampinato et al., 2017] in hand muscle synergistic coordination was di-
rectly shown in humans by functional imaging, while the contribution of the spinal pre-motor
interneurons was assessed invasively in primates [Takei and Seki, 2010], [Takei and Seki, 2013a],
[Takei and Seki, 2013b]. How this neural modular control is reflected in kinematics, kinetics and
muscular motor primitives has been debated by [Santello et al., 2013], but without including the
observation of motor neuron discharge patterns.

The investigation of synergistic muscle control was based so far on the analysis of electri-
cal muscle activities. Invariant muscle activation patterns, i.e. muscle synergies, were iden-
tified from EMG signal envelopes by dimensionality-reduction techniques and then associated
to the muscle coordination prescribed by spinal modules [Tresch et al., 2006]. Muscle syner-

48



gies have been identified by spinal electrical stimulation in frogs [Cheung et al., 2005] and cats
[Krouchev et al., 2006], or by stimulating cortico-motoneurons in monkeys [Overduin et al., 2015],
by measuring concurrently muscle activity with EMG. In humans, muscle synergies have been
assessed by factorising EMG recording from multiple muscles, both in healthy participants, dur-
ing standing posture [Torres-Oviedo and Ting, 2007], walking [Chvatal and Ting, 2013], reaching
[D’Avella et al., 2006], locomotion in newborn babies [Dominici et al., 2011], and in impaired indi-
viduals [Cheung et al., 2009b], [Gizzi et al., 2011]. During hand gestures and manipulation, motor
primitives have been identified both at the biomechanical level [Santello et al., 1998], [Della Santina et al., 2017]
and in terms of muscle coordination [Weiss and Flanders, 2004], [Ajiboye A B and Weir, 2009].
[Takei et al., 2017] directly correlated both in time and in space hand muscle synergies with in-
terneurons patterns measured invasively in primates.

The limit of using EMG envelopes is that they constitute only an indirect measure of the
overall motor neuron activity. In fact, each EMG envelope recorded from a muscle is an average of
the activity of all motor neurons innervating that muscle and provides information of the muscle
activity with a unique signal, considering the muscle as an indivisible unit. However, a great
number of spinal motor neurons innervate each single muscle. Therefore, the activity among
motor neurons innervating many muscles might provide a different information with respect to the
one obtained with EMG amplitudes across muscles [Del Vecchio et al., 2019]. Moreover, it is also
possible that subsets of motor neurons within the same motor pool may not share the same neural
inputs. Before the study we present here, the dimensionality of control of pools of motor neurons
innervating multiple muscles in complex tasks was never investigated.

In Chapter 1 in subsection Inferring central descending commands from motor units discharge
patterns, we reported how previous studies attempted to investigate synergistic aspects of motor
neurons in different muscles, by either conducting single-motor unit studies for each investigated
muscle, or assessing synchronisation of motor neurons in a pool in an indirect way, by observing
one or few muscles. From these latter studies it was found that a motor neuron pool innervating a
muscle receives a relatively large amount of common synaptic input [Negro and Farina, 2011a],
[Negro et al., 2016b]. This common synaptic input was also quantified for motor neurons in-
nervating different muscles, but only for pairs of muscles in simple tasks [Laine et al., 2015],
[De Luca and Erim, 2002]. Moreover, common input shared across pools of motor neurons of differ-
ent muscles has been never observed across different tasks [Laine et al., 2015], [De Luca and Erim, 2002],
[Del Vecchio et al., 2019]. Finally, how several motor neuron pools are spatio-temporally synergis-
tically organised across these tasks is presented in this study for the first time.

Thus, this study attempts to fill the gap between a) the knowledge of muscle coordination
prescribed by spinal modules integrating central descending inputs underling the execution of
many tasks and b) the quantification of the net common input coming from spinal modules and
received by a motor neuron pool in a single task. We expect that motor neurons of different muscles
should present a synergistic organisation across several task conditions and that the common input
to motor neurons should be organised in a number of shared components. We expect that these
components would be orders of magnitude lower than the number of investigated motor neurons.
Here we tested this hypothesis by quantifying the synergistic organisation of motor neuron output
by factorisation. We factorised the output spike trains of motor neurons innervating intrinsic and
extrinsic hand muscles while human participants exerted isometric forces with different grip types.
Then, we analysed the dimensionality of control, by identifying the common neural components
contributing to the motor neuron outputs, which we will refer to as motor neuron synergies. We
compared these synergistic patterns with muscle synergies obtained by one EMG amplitude for each
muscle, as commonly done in the literature. This comparison was conducted both in dimensionality
and in structure, and the synergistic behavior of subsets of motor neurons within a muscle was also
observed to further assess indivisibility of muscles as basic unit of synergistic control, as implied
in muscle synergy theory.

3.2 Methods

3.2.1 Subjects, experimental protocol and setup

In this chapter the same EMG data collected in the previous chapter was considered, although
with major differences in the signal processing. Thus, the same 7 subjects performing the same 7
grips with sinusoidal isometric contraction, as described in the Methods of the previous chapter,
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Figure 3.1: Experimental setup and protocol. The same EMG data of Chapter 1 were used but
decomposed and processed in a different way. (a) The 7 grip types presented in Chapter 2, with
the same acronyms. (b) The same custom hand-dynamometer with two force sensors presented in
Chapter 2. (a) Electrode grid placement over 14 hand muscles: first dorsal interosseus (FDI), II,
III, IV dorsal interossei (DI), abductor digiti minimi (ADM), flexor pollicis brevis (FPB), abductor
pollicis brevis (APB), opponens pollicis (OPP), extensor carpi ulnaris (ECU), extensor digitorum
communis (EDC), extensor carpi radialis (ECR), flexor carpi ulnaris (FCU), flexor digitorum su-
perficialis (FDS), and flexor carpi radialis (FCR). Six 64-channel electrode grids. This figure is
from [Tanzarella et al., 2021].

were considered. For details about the metrics of the subjects, the procedure of electrode grid
attachment, the experimental setup and protocol, please see the Methods of Chapter 2.

In Figure 3.1 the main aspects regarding protocol, setup and investigated muscles are resumed
to quickly remember the basics of the data collection. Seven grips (Figure 3.1.a), involving every
single finger in opposition with the thumb (INDEX, MIDDLE, RING and LITTLE) were collected,
plus three finger with multiple fingers in opposition with the thumb, i.e. all fingers (GRASP),
thumb-index-middle (IND-MID) and thumb-index-little (IND-LIT). Two load cells, mounted in a
3D-printed custom-made manipulandum force exerted by the thumb and the other combination
were used to measure the forces exerted respectively by the thumb and the other combination of
fingers (Figure 3.1.b). Eight intrinsic hand muscles were covered with 4 small 64-channel electrode
grids, respectively for first dorsal interosseous (FDI), the other three dorsal interossei (II, III, IV
DI), the abductor digiti minimi (ADM), and the three muscles of the thenar, flexor pollicis brevis
(FPB), abductor pollicis brevis (APB), opponens pollicis (OPP). Six extrinsic hand muscles were
covered with 2 big 64-channel electrode grids, respectively the extrinsic extensor group of muscles,
i.e. extensor carpi ulnaris (ECU), extensor digitorum communis (EDC), extensor carpi radialis
(ECR), and the extrinsic flexor group of muscles, flexor carpi ulnaris (FCU), flexor digitorum
superficialis (FDS), and flexor carpi radialis (FCR). Electrode grid placement is represented in
Figure 3.1.c. Both EMG signals and force were sampled at 2048 Hz.

3.2.2 Global view of the processing

While in the previous chapter we quantified the total common synaptic input for motor neurons
identified for each grip type, here we quantify the spatial and temporal organisation of this com-
mon synaptic input across all the seven grips. To achieve this goal, a motor neuron tracking
across different grip types was necessary to recognise the recruitment strategy of the same motor
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Figure 3.2: Investigation of the synergistic organisation in motor control. (a) Spinal motor neu-
rons innervating multiple muscles send commands to recruit motor units, whose electrical activity
is captured by the HD-sEMG framework. Muscular synergistic organisation can be inferred by
dimensionality reduction either directly from EMG amplitudes or from the constituent train of
motor unit action potentials identified by EMG decomposition motor neuron synergies. (b) Pre-
motor interneurons in the spinal cord (PreM-Ins) send both excitatory (EXC) and inhibitory (INH)
commands to spinal motor neurons (MNs) innervating hand muscles. PreM-Ins integrate the infor-
mation both from supraspinal and afferent pathways. This figure is from [Tanzarella et al., 2021].

neuron during different task conditions. This was accomplished by a different way to process and
decompose the EMG signals examined in the previous chapter, which is described in detail in the
next section. A second major aspect in the processing to study the spatio-temporal synergistic
behaviour of motor neurons identified across different task conditions was in terms of a dimension-
ality reduction algorithm different from PCA. In fact, non-negative matrix factorisation (NMF;
see section Synergy extraction by Non-negative Matrix Factorisation) was applied to the filtered
motor neuron spike trains. We discussed briefly the difference of these two dimensionality reduc-
tion algorithms in Chapter 1 in section Muscle synergy theory and modularity of motor control. As
shown in Figure 3.2.a, NMF was applied both to motor neuron firing patterns across grip types
and to bipolar EMG signals, one for each muscle, to identify respectively motor neuron synergies
and muscle synergies. To compare the structure of these two types of neuro-muscular primitives,
we also investigated the existence of motor neurons innervating the same muscle with alternative
synergistic behaviors with respect to the majority of the muscle pool.

Figure 3.2.b shows the difference in the information provided by motor neuron synergies with
respect to muscle synergies. For both types of synergies, their information is originated by direct
and indirect corticospinal inputs entering into the spinal cord by determining a spatio-temporal
structure of the spinal output to multiple muscles through motor neurons. The proportion of in-
direct corticospinal inputs, i.e. inputs mediated by pre-motor interneurons (PreM-INs), is higher
than the direct cortico-motoneuronal structure [Fetz et al., 2002]. Thus, motor neuron synergistic
organisation would depend mainly on the inputs received by each motor neuron from multiple
PreM-INs and motor neuron synergies would reflect the final output of this spatio-temporal spinal
interneuronal integration. Conversely, muscle synergies capture the spatial and temporal organisa-
tion of individual muscle activity obtained by one EMG amplitude per muscle. In the next section,
the advantage of motor neuron synergy identification with respect to muscle synergies is explained.

For the EMG signal concatenation needed to then track motor neurons by decomposition, we
selected only the central 10-s portion during the sinusoidal force production, by excluding the first
and the last 10-s portion of each sinusoidal contraction (see Chapter 2). By doing so, the transitions
from the ascending and the descending ramps respectively preceding and following the sinusoidal
force production were removed. To guarantee the same zero offset among different recordings,
EMG data from each grip type was band-pass filtered and the transitory part for the filtering was
cut off to assure no signal discontinuity. Thus, a 70-s long signal consisting of 384 EMG channels
(10 s for each grip type; Figure 3.3.a) was obtained by concatenation of the seven grip recordings.
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Figure 3.3: Computation of muscle and motor neuron synergies. (a) Concatenation of the cen-
tral 10 s of EMG recordings for the 7 grip types. (b) Channel selection of the concatenated
signals (see Figure 3.4.a) and rectification of the 14 bipolar channels or decomposition into motor
neuron spike trains. (c) Low-pass filtering was applied on both the results of these two non-
linear operations. The smoothed signals computed in these two different ways were factorised by
NMF to extract respectively muscle synergies and motor neuron synergies. This figure is from
[Tanzarella et al., 2021].

EMG signals were digitally filtered between 20 and 500 Hz with a 4th-order Butterworth filter
to remove low frequency trends and frequencies higher than the EMG band (noise). Different
non-linear and linear operations were applied to these pre-processed EMG signals to respectively
compute motor neuron synergies and muscle synergies (Figure 3.3). To compute muscle synergies,
14 bipolar channels from the 384 monopolar HD-sEMG channels were extracted, one for each
muscle, as further explained in section Synergy extraction by Non-negative Matrix Factorisation.
Then, the bipolar EMG signals were rectified, i.e negative values were converted to positive (Figure
3.3.b).

3.2.3 EMG decomposition

Convolution kernel compensation (CKC) motor unit decomposition (Figure 3.3.b; see section Syn-
ergy extraction by Non-negative Matrix Factorisation) was applied to obtain the neural input
received by each motor unit from the corresponding innervating motor neuron. The HD-sEMG
signals of each grid were decomposed separately into the constituent train of motor unit action
potentials by the CKC algorithm. The accuracy of motor unit identification from HD-sEMG was
assessed by pulse-to-noise ratio (PNR) [Holobar et al., 2014] as a signal-based metric. Although
the EMG signals analysed also in the previous chapter were here processed and decomposed in
a substantially different way, motor unit innervation pulse trains [Holobar and Zazula, 2007b] ex-
tracted by the algorithm were manually post-processed in the same way described in the previous
chapter, as prescribed in [Vecchio et al., 2020]. As explained in the previous section, motor neu-
rons across different grip types were tracked by decomposing the concatenated EMG signals from
all tasks for each subject.

The performance of the decomposition algorithm in identifying the same motor units across
different grip types was assessed with an analysis based on spike-triggered averaging (STA). This
kind of analysis is the technique normally used in the literature [Martinez-Valdes et al., 2017],
[Del Vecchio et al., 2019] to track the same motor unit across different tasks after decomposing
separately the EMG signals of each recording. This method scales in computational expenditure the
more the number of tasks augment, so this is why we used the alternative method of decomposing
the concatenated EMG signals. This analysis consists in performing a STA for each motor unit
and for each grip type in order to estimate the motor unit action potential waveforms. Then, the
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2D-cross-correlation between the estimated action potential waveforms is computed. We performed
this analysis to assess that the same motor unit was maximally similar in its STA action potential
waveforms across different grip types and, at the same time, that for different motor units STA
waveforms were maximally different. By testing so, the correctness of the assignment of motor
unit action potentials to the same motor unit could be confirmed, while the possibility that these
action potentials were assigned to different motor units could be rejected.

As in Chapter 2, each spike train was represented by a binary sequence, with 1 when a spike
occurred and 0 otherwise, presenting the same length of the original EMG signals. Also, as in the
previous chapter, each binary motor unit spike train was transformed into a continuous signal by
smoothing it by a 4th-order Butterworth low-pass filter with cut-off frequency of 2.5 Hz and then
normalised between 0 and 1. This frequency bandwidth corresponds to the same obtained using
a 400-ms Hanning window as in the previous chapter and in the literature [De Luca et al., 1982],
[Negro et al., 2009]. We used a Butterworth filter instead of the Hanning window to further have
consistency with the filtering of the force, filtered at 2.5 Hz as well (see below). These smoothed
discharge rates (SDR) provide an estimation of the instantaneous firing rate for each motor unit
[De Luca et al., 1982].

For each grip type, a motor neuron was considered active when at least 20 firings occurred in
the 10-s interval selected. For each task pair, the percentage of motor neurons active in two tasks
was computed.

3.2.4 Synergy extraction by Non-negative Matrix Factorisation

NMF was described mathematically and graphically in Chapter 1 in section Muscle synergy theory
and modularity of motor control. Here we explain how this algorithm was applied for comput-
ing synergistic organisation of motor neurons and of EMG amplitudes representing muscles. We
introduce in this study for the first time the term motor neuron synergies to indicate the time-
invariant weights extracted by factorisation of motor neuron SDRs and we compare them with
muscle synergies, i.e. the weights identified by NMF applied to EMG envelopes, where each enve-
lope corresponds to a muscle.

To compute muscle synergies, bipolar EMG channels for each muscle [Bizzi et al., 2008], [Cheung et al., 2009b]
were selected from each electrode grid channels by dividing the electrode grids covering more than
three muscles in bands of 4, 5, and 4 columns, consisting of 5 channels each (Figure 3.4.a). Thus,
this was done for the grids covering the extrinsic muscles, the DI, and the thenar muscles. In doing
this subdivision, a roughly equal representation in terms of channels of the main three muscles
under each grid was assumed. This was possible with the standardisation in electrode placement
according to anatomical landmarks prescribed in the previous chapter. To extract a bipolar EMG
signal, the central pair of electrodes of each divided band was chosen, so that for both the small
(4-mm IED) and large grids (8-mm IED) the equivalent bipolar IED was 16 mm. The same filter
applied to the motor neuron SDR was used for rectifying and smoothing the 14 bipolar EMG
signals. This muscle assignment, done also to associate motor neurons to muscles, as explained in
section Motor neuron synergy anatomical maps, did not present any influence in the NMF analysis
of motor neurons, since the motor neuron SDR were factorised from all the muscles as a unique
pool.

NMF uses an optimisation algorithm with a cost function to minimise constituted by the
Euclidean distance between the original signals X and the reconstruction obtained by multiplying
the matrices W and H, respectively of the synergy weights and of the activation signals (see
Chapter 1, section Muscle synergy theory and modularity of motor control). While the synergy
weights represent the time-invariant participation of each motor neuron (or muscle) to each synergy,
the activation signals represent how each synergy weight vector is modulated in time. Modulation
of more than one synergy at the same time implies the simultaneous linear combination of more
synergies. In this study, the NMF iterations were repeated 10 times for each number of extracted
synergy [Cheung et al., 2009b], i.e. from 1 to 10 synergies, initialised with different random values
for the matrices W and H.

To assess whether the EMG data without the contribution of identified motor units (residual)
could be potentially informative about synergistic motor neuron control, the same analysis of ex-
traction of muscle synergies was repeated both from the EMG signal derived from the decomposed
motor units and from the residual EMG signal. By doing so, the preservation of the synergistic
information in both these signals could be tested.
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3.2.5 Synergy dimensionality across grip types

As explained in Chapter 1, section Muscle synergy theory and modularity of motor control, muscle
synergies are expected to be less than the possible concurrent activation of the available degrees
of freedom. In our case, we assessed to which extent synergies extracted from motor neuron
and EMG data scaled in number with the observed grip types. We expected that synergies ex-
tracted from a small set of grips could predict more complex grips [Ajiboye A B and Weir, 2009],
[Muceli et al., 2010]. Among the seven grip types considered in the dataset, we examined whether
the number of extracted synergies changed when considering all the seven grips and only the 4
single-finger grips.

To quantify the reconstruction of the original signals X by the matrices W and H, either in the
case of examining 7 grips or only the 4 single-finger grips, we used the coefficient of determination
(R2) computed in [Muceli et al., 2010], computed for a number of synergies between 1 and 10. We
cross-validated 10 times the R2 computation, i.e. different W and H matrices were computed 10
times by randomly initializing the weights of W for each number of synergies, to then retain the
greatest R2 [Muceli et al., 2010].

The number of synergies was selected by detecting the change in slope of the R2 curve between
1 and 10 synergies [Cheung et al., 2005], [D’Avella et al., 2011]. To quantify this change in slope,
the Mean squared error (MSE) of a line fitting the R2 curve from each number of synergies between
1 and 9 to the maximum number evaluated, i.e., 10, was computed. A threshold of 5e-4 for the
MSE value was chosen to determine the number of synergies, as done in [D’Avella et al., 2011].

The functional role of each synergy was interpreted by quantifying the variance explained by
the synergy activation signals during the actuation of individual fingers in opposition to the thumb.
This was achieved, for each synergy, by computing the variance of the 10-s segment for each grip
type and assigning that synergy to the finger with the highest variance presented for the actuation
of the relative thumb-single finger grip. In the case of a number of synergies lower than 4 (the
number of fingers coupled with the thumb), some fingers were not represented, while in the case
of a number of synergies greater than 4 some synergies were not representative of a finger.

3.2.6 Motor neuron synergy anatomical maps

Each motor neuron was associated with each muscle according to the location of the relative motor
unit under the respective electrode grid where it was identified. This procedure was avoided for
the grids over FDI and ADM, since they presented only one muscle under the grid. As shown
in Chapter 2, motor unit location was assessed by quantifying the amplitude distribution of the
corresponding single motor unit action potentials estimated by spike-triggered averaging (STA).
Then, the grids were divided in the same bands used for extract bipolar EMG channels from HD-
sEMG, as shown in Figure 3.4.a and applied to the root mean square values of the single motor
unit action potentials across the grid obtained with the STA (Figure 3.4.b).

This association between motor neurons and muscles enabled to represent the motor neuron
synergy weights based on the synergistic contribution of each muscle. While muscle synergy weights
are usually represented with a bar graph, we represent muscle or motor neuron synergy weights
with an anatomical map (Figure 3.4.c) to enable an easier functional interpretation. In the case
of motor neuron synergies, for each synergy, the motor neuron weights associated with the same
muscle were normalised and then averaged so that the resulting value from 0 to 1 was represented
with a color scale in the anatomical map.

3.2.7 Force and synergy activation signals

The estimation of the isometric force exerted during the execution of each grip by the activation
signals obtained by NMF was computed, for each subject, by cross-correlation between these two
quantities. Each 10-s epoch of each synergy activation signal for the execution of a grip type was
cross-correlated with the respective 10-s epoch of the exerted force. For each grip, only the force
exerted by the fingers in opposition with the thumb was considered in this analysis. The peak
values of the cross-correlation function were used to assess how much a synergy estimated the force
for the actuation of a certain finger, especially in the case of the single-finger grip corresponding
to the finger associated to that synergy.
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Figure 3.4: Extraction of bipolar EMG channels from HD-sEMG and anatomical representation of
motor neuron synergistic organisation. (a) From each of the 14 investigated muscle compartments,
one 16-mm-IED bipolar channel was extracted. Each of the six electrode grids covered either one
or three muscles, as represented in Figure 3.1.c. (b) The same arbitrary division in bands for
grids covering three muscles was used to assign a motor neuron to one of the three muscles. This
was done by computing the maximal activity of the spike-triggered average (STA) for the three
bands. (c) Motor neuron synergy weights, ordered per muscle, after assignment as shown in (b),
were represented as anatomical maps by averaging the activity of motor neuron weights for each
muscle. The same representation was also used for muscle synergies. Muscle activity in the map is
represented with a normalised color scale from 0 to 1. This figure is from [Tanzarella et al., 2021].

3.2.8 Motor neuron synergistic organisation within each muscle

We assessed whether motor neurons within each muscle were recruited with a consistent synergistic
behavior. This was achieved by analysing whether motor neurons innervating the same muscle were
activated in different synergies. For this purpose, we assessed the existence of subsets of motor
neurons alternatively synergistically recruited with respect to most of the motor neurons for the
same muscles. These motor neurons were identified as the ones that presented simultaneously the
double condition of:

• being activated less than one half of the mean across all the motor neuron weights for the
synergy when the relative muscle was maximally activated,

• being activated more than one half of the mean across all the motor neuron weights for at
least another synergy.

3.2.9 Testing the effect of number of motor neurons per muscle on syn-
ergy identification

We assessed whether the number of motor neurons considered for each muscle could affect the
spatio-temporal properties of the identified motor neuron synergies. Thus, subsets containing the
same number of motor neurons per muscle were repeatedly randomly composed to compute motor
neuron synergies. These subsets consisted of a number of motor neurons between 1 and 4 per
muscle with 5 different permutations for each subset dimension. For a number of motor neurons
in a muscle lower or equal than the one required for the subset, all the motor neurons of that
muscle were considered. The same methods for synergy extraction, identification of the number
of synergies, cross-correlation between activation signals and force was applied as in the previous
analysis explained above.
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Figure 3.5: Raster plot of 69 motor neurons for one subject and exerted force. (a) Firing patterns
of motor neurons tracked across 7 grip types, with a colour-code for each muscle pool. (b) Motor
neurons firing patterns during the execution of the IND-MID grip (enlarged from (a)), represented
with normalised grip force exerted by the thumb and two fingers (index and middle fingers). This
figure is from [Tanzarella et al., 2021].

3.3 Results

3.3.1 Decomposition

Among all subjects, 379 motor neurons were identified in total, and for each subject the number was
66, 55, 35, 62, 52, 40, and 69 (see Table 3.1 for the number of motor neurons for each muscle). The
firing occurrences across subjects were identified with an accuracy quantified by a PNR of 30.7±4.6
dB, a value corresponding to an accuracy between 90 and 100% on average [Holobar et al., 2014].
The minimum number of motor neurons identified was for the muscle FPB, with only 3 motor
neurons identified across all subjects and identified only in 2 subjects (Table 3.1 ). The reason for
this scarce identification is likely to be due to the location of this muscle, the closest to the palm,
where motor unit identification is more difficult. Therefore, the findings provided for this muscle
might under-represent its actual activity.

Figure 3.5.a shows the raster plot of all the motor neurons identified from one subject across
all the grip types and grouped by muscles. For this subject, 69 motor neurons across 13 muscles
were identified in total. As visible in the figure, most motor neurons presented a phasic activity
for almost all the grip types, while some motor neurons presented tonic discharges for ADM, APB
and for extrinsic muscles during the execution of some grip types. A focus on a particular grip
type, IND-MID, is shown in Figure 3.5.b for the same motor neuron discharges shown in Figure
3.5.a. Here, also the MVC-normalised grip force exerted by the thumb and the combination of
index and middle fingers in opposition are shown. In Figure 3.5, no motor neurons were identified
for the EDC muscle, while this subject was one of the two presenting activities for the FPB.

The performance of the decomposition in tracking motor neurons across different grip types,
despite change in activity of different muscles, was quantified by computing the STA for each
motor unit and for each grip type (see section EMG signal decomposition in Methods). This
result is provided to prove that the sparse activation exhibited in the motor neuron discharge
patterns across grip types (represented for one subject in Figure 3.5 and found in all subjects)
was not due to technical limits in action potential recognition by the decomposition algorithm.
In fact, as explained in the section EMG decomposition in Methods, STA is used in the literature
to track the same motor unit across different task execution by assuming that the same motor
unit is characterized by the same motor unit action potential waveform detected in the same way
from each HD-sEMG channel. Across all subjects, the 2D-cross-correlation of the STAs within
each motor unit across grip types was 0.86 ± 0.04. Some motor units were identified in all grip
types, with a cross-correlation within motor units of 0.91 ± 0.11 for these units. These values of
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Grids
Muscles s1 s2 s3 s4 s5 s6 s7 Mean Std
FDI 12 11 6 13 8 6 13 9.9 3.1
II DI 6 6 3 7 5 1 8 5.1 2.4
III DI 6 5 2 1 1 6 3 3.4 2.2
IV DI 2 3 4 2 0 0 2 1.9 1.5
ADM 10 6 1 6 9 5 11 6.9 3.4
FPB 0 0 0 2 0 0 1 0.4 0.8
APB 4 2 0 0 4 3 4 2.4 1.8
OPP 2 2 1 8 5 5 4 3.9 2.4
ECU 4 5 2 2 3 4 6 3.7 1.5
EDC 2 5 6 8 5 2 0 4.0 2.8
ECR 2 1 2 0 1 2 3 1.6 1.0
FCU 4 3 4 6 3 2 2 3.4 1.4
FDP 4 4 0 4 7 2 9 4.3 3.0
FCR 8 2 4 3 1 2 3 3.3 2.3

Table 3.1: Number of identified motor neurons for each of the 14 considered hand muscles for a
total of 379 identified motor neurons. Values for each subject and also mean and standard deviation
across subjects are reported. This table is from [Tanzarella et al., 2021].

correlation resulted higher than the cross-correlation between different motor units (0.64 ± 0.18
across all subjects and grip types), by confirming that the action potential waveform of a motor unit
remains the same across different tasks and is different from the action potentials of other motor
units. These results prove that the sparsity in recruitment is an actual physiological phenomenon,
not due to the splitting of motor units caused by an erroneous identification by the decomposition
algorithm.

3.3.2 Sparse recruitment across grip types

As seen in Figure 3.5, in general, the identified motor neurons were active only for some grip types.
The quantification of this sparse recruitment is shown in Figure 3.6.a by the percentage of motor
neurons active in pairs of grip types. The highest number of motor neurons firing in a pair of
grip types was identified for the grips involving the index finger (GRASP, INDEX, IND-MID and
IND-LIT). The maximum was 33% between INDEX and IND-MID grips, the minimum was 22%
between IND-MID and IND-LIT grips. A relative high number of active motor neurons was also
found for IND-LIT/ LITTLE, IND-MID/ MIDDLE and INDEX/MIDDLE grip pairs, respectively
with a percentage of 25%, 22%, and 21%. For all the other grip type pairs, the percentages of
motor neurons firing in a pair of grip types were always below 20%.

The same analysis applied to motor neurons innervating each muscle is shown in Figure 3.6.b.
For FDI, the highest proportion of motor neurons active in more than one grip type was presented
for the grips involving the index finger. The maximal activity was found at 58% between GRASP
and INDEX grip pairs, while the lowest activity was 40% between IND-MID and IND-LIT.

Muscle activation was functionally coherent with finger activation. In particular, the activity of
motor neurons innervating the II DI was corresponding to the index and middle finger actuation,
ADM activity corresponded to little actuation, and some thenar and extrinsic muscles were involved
differently according to the fingers involved in the grip. These findings can be compared with the
motor neuron synergy anatomical maps presented below (Figures 3.8-3.9).

3.3.3 Synergy dimensionality

Figure 3.7 reports synergy reconstruction of the original signals by the product of the synergy
weights and activation signals. This reconstruction was quantified by the coefficient of determina-
tion (R2) as a function of the number of synergies (1 to 10) whose mean and standard deviation
(thick line and shaded area, respectively) are represented in the figure. The two types of synergies
from motor neurons and from EMG amplitudes are indicated with two different colours. In the
first column the average R2 curves from synergies identified across all grip types are shown, while
in the second column the averaged R2 curves from synergies extracted from the four single-finger
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Figure 3.6: Percentage of motor neurons firing in each pair of two grip types. Values are rep-
resented with a color scale between 0 and 80 %, the maximum value found for these results.
(a) Values for motor neurons from all muscles. (b) Values for each muscle. This figure is from
[Tanzarella et al., 2021].

grips are represented. A stark difference in R2 for motor neuron and muscle synergies was found,
with R2 values of reconstruction for EMG envelopes always higher than for the reconstruction of
motor neuron SDRs. The selected number of synergies is represented with a vertical line in the
figure. This number of synergies was defined with the change-in-slope criterion as the minimum
value of synergies corresponding to a MSE value below a threshold of 5e-4 ([D’Avella et al., 2011],
represented in the figure with a dashed red line.

With this criterion, in the case of considering all the 7 grips, 4 synergies were identified both
among motor neuron SDRs and among EMG amplitudes across all the subjects. The corresponding
value of R2 either for 4 motor neuron or muscle synergies was respectively 0.70±0.03 and 0.89±0.02.
When only the 4 single-finger grips were considered, 4 motor neuron synergies were found with a
R2 value equal to 0.78± 0.05, while 3 muscle synergies were extracted with a value of R2 equal to
0.86± 0.04. These mean and standard deviation values are reported across all subjects.

3.3.4 Muscle synergies

Activation signals and weights of the identified muscle synergies across the seven grip types for all
subjects are represented in Figure 3.8. Four synergies are represented since this was the number
of synergies identified according to the change-in-slope criterion of the R2 curve (Figure 3.7).
Figure 3.8.a represents the average activation signal across subjects after having associated each
synergy with a given finger (Section Synergy extraction by Non-negative Matrix Factorisation,
Methods). The peak of the cross-correlation function between each 10-s activation signal and the
relative segment of exerted force (XC) is reported in terms of mean and standard deviation across
all subjects for each grip type and synergy. Next to each activation signal (Figure 3.8.b), the
respective anatomical map of the synergy weights is represented. Also, the mean and the standard
deviation of the weights as bar graphs (Figure 3.8.b), where a high variability among the weights
can be observed.

When we identified muscle synergies with EMG signal reconstructed from the decomposed
motor units and the residual EMG signal by implementing the same processing, a dimensionality
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Figure 3.7: Number of identified motor neuron synergies and muscle synergies. Synergy recon-
struction R2 is represented as a function of the number of synergies provided as an input to
NMF. Mean (thick lines) and standard deviation (shaded areas) of the R2 averaged across sub-
jects are represented on the top, while the corresponding mean square error (MSE) of linear fits
are represented below. The drop of MSE below the threshold of 5e-4 (horizontal dashed red line;
[D’Avella et al., 2011]) is used to determine the minimum number of synergies to reconstruct the
original signals (vertical lines). This figure is from [Tanzarella et al., 2021].

between 3 and 4 for both reconstructed signals and the residual was found. In the case of 3
synergies (36% of the cases across subjects and the two types of signals), the synergy which was
more frequently missing was the one associated with the ring. For the reconstructed signals, the
mean cross-correlation between activation signals and force was comparable with that obtained
for the original EMG signal. This analysis confirmed that, for each synergy, the mean value of
cross-correlation with the force was highest for the single-finger grip involving the finger associated
to that synergy. In contrast, for the residual we found very weak mean cross-correlation values
with the force (<0.2) for all grips and synergies. Observations about the values of the results
provided in Figure 3.8 and comparisons with the results provided in Figure 3.9 for motor neuron
synergies are elaborated in the next subsection.

3.3.5 Motor neuron synergies

With the same representation of muscle synergies in Figure 3.8, motor neuron synergies across grip
types and averaged across all subjects are represented in Figure 3.9. Here, the findings for motor
neuron synergies are presented and are also compared with the results for muscle synergies.

First, we analyse the correspondence between the function assigned to each synergy, i.e. the
association with a given finger, and the cross-correlation with the exerted force for the INDEX
grip. The highest mean value of the cross-correlation peak for the first synergy, associated with
the index finger, is obtained for the grip involving thumb and index finger. An analogue result is
obtained for synergies associated with thumb-middle and thumb-little finger (second and fourth
synergies, respectively). In the case of the synergy associated with the ring finger (third synergy),
the highest value was found for the GRASP grip, the RING and the IND-LIT grips, with a cross-
correlation peak with the force averagely of 0.58. The delay between the activations signals and
the force was 190± 55ms, when eliminating the outliers outside 4 times the standard deviation, in
accordance with the study of [Del Vecchio et al., 2018].

By observing the anatomical representation of the weights in Figure 3.9, a greater functional
discrimination for motor neuron synergies can be observed with respect to muscle synergies in
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Figure 3.8. In particular, this can be observed for the intrinsic muscles actuating each finger.
For instance, ADM is more activated than other intrinsic muscles for the motor neuron synergies
associated with the little finger, unlike for the respective muscle synergies where intrinsic muscles
look equally activated. Similarly, FDI and II DI seem more activated for the motor neuron synergy
associated with the index finger, while dorsal interossei are differently activated in the synergies
associated with the middle and ring fingers (II and III DI more activated for middle and III DI
and IV DI more activated for ring finger).

This muscle activation cannot be observed so evidently in the respective muscle synergies. By
seeing the mean values of the cross-correlation peak with the force, a greater difference across grip
types involving one of the fingers associated with a given synergy and grips not involving that finger
was found for motor neuron synergies than for muscle synergies (Figure 3.8). This constitutes a
task-based discrimination of the functional role of each synergy. The only exception to this pattern,
evident both for motor neuron synergies and for muscle synergies, is for the synergy associated
with the ring finger, which presented the highest cross-correlation peak value for the GRASP grip
instead of the RING grip. In terms of absolute values of the mean values of the cross-correlation
peak with the force, in motor neuron synergies a higher value was presented for single-finger grips
involving the finger associated with a certain synergy. Specifically, in the motor neuron synergy
associated with the index, the mean cross-correlation value during the INDEX grip was higher
than for the respective muscle synergies. The same occurred for the MIDDLE grip and for the
LITTLE grip in the motor neuron synergies respectively associated with the middle finger and
with the little finger.

By observing the anatomical maps of the motor neuron synergies in Figure 3.9.b, it is possible
to interpret muscular activation with the finger associated to a given synergy. For instance, in the
synergy associated with the index finger, the FDI and the II DI are the most activated muscles,
together with ECR and the other extensors of the wrist. The II DI and FPB are mostly activated in
the synergy associated with the middle finger, whereas the III and the IV DI are mostly activated
in the synergy associated with the ring finger, along with OPP and APB. In the synergy assigned
to the little finger, ADM, together with OPP, APB and FCU, are the most activated muscles. This
different activation of the thenar muscles (OPP, APB and FPB) in the anatomical maps of the
four synergies is coherent with the anatomical function of these muscles: while the thumb must
flex to oppose the index and the middle fingers (first and second synergies), it must abduct and
oppose to approach the tip of the ring and little fingers (third and fourth synergies).

These results represented in the anatomical maps of the motor neuron synergies are consistent
with the motor neuron firing in two grip types in Figure 3.6. This could be expected since counting
the activated motor neurons for different combinations of fingers activated for each grip, as shown
in Figure 3.6, is strictly related to quantifying the contribution of each muscle by averaging the
contribution of the relative motor neurons in each synergy. For instance, in Figure 3.9.b, FDI and
II DI are the most activated muscles in the map representing the synergy assigned to the index
finger. Similarly, in Figure 3.6, for all the grips involving the index finger FDI motor neurons
are mostly active. Analogously, for grips where the little finger is involved, the innervating motor
neurons of the ADM are mainly activated, corresponding to the anatomical maps of the motor
neuron synergy associated with the little finger. For grips involving index and middle fingers the
motor neurons of ECU and ECR are the most active, and this corresponds to the findings in the
anatomical maps of the respective motor neuron synergies (Figure 3.9). Also the activation of
muscles of the thenar found in Figure 3.6 is comparable with the motor neuron synergy anatomical
maps, where APB is mostly active during ring actuation and OPP during ring and little actuation.

3.3.6 Association of synergies to digits
The capacity of functional discrimination among the two types of synergies was interpreted in
terms of association to each finger. To quantify this association, synergy activation signals were
evaluated in their variance explained across grip types and their correlation with force. We looked
for the synergies that correlated the most with grip force in three cases:

• force exerted during single-finger grips and synergy associated to the corresponding fingers,

• force exerted during combined-finger grips (GRASP, IND-LIT, IND-MID) and synergy asso-
ciated to the corresponding fingers,

• force exerted during grips involving fingers other than those associated with a given synergy.
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Figure 3.8: Activation signals and anatomical maps of muscle synergy weights. (a) First four syn-
ergies averaged across all subjects, after they were assigned to a given finger for each subject and
reordered accordingly (for details see section Synergy extraction by Non-negative Matrix Factori-
sation, Methods). Above each 10-s segment for a grip type, mean and standard deviation of the
peak of the cross-correlation (XC) between the activation signals and the exerted force is shown.
(b) Synergy anatomical maps are represented with a normalised color scale between 0 and 1. Also,
mean and the standard deviation of the synergy weights are represented with bar graphs. This
figure is from [Tanzarella et al., 2021].

Across all the 7 subjects, considering 4 synergies per subject, 28 synergies were analysed. These
three analyses applied to motor neuron synergies revealed respectively 17, 4 and 7 synergies. The
same analyses applied to muscle synergies revealed respectively 12, 7, 9 synergies. Therefore, motor
neuron synergies associated with a given finger were more frequently correlated with force during
the single-finger grip involving the corresponding finger than for muscle synergies. Moreover, a
motor neuron synergy associated with a finger was mostly correlated with force in a single-finger
grip in fewer cases relative to another finger. This means that we found more frequently a higher
discrimination of the actuation of each finger for motor neuron synergies than for muscle synergies.

3.3.7 Synergistic behavior of motor neurons within muscles
Alternative motor neuron synergistic organisation within each muscle is shown in Figure 3.10 by
representing the motor neuron synergy weights for all subjects. The motor neurons representing an
alternative synergistic organisation are represented in red, all the others in black. According to the
definition provided in the Methods, these motor neurons are always mostly inactive in the synergy
where the considered muscle is mainly activated, while they can be mostly active in other synergies,
eventually more than one. For instance, the fifth motor neuron of Subject 5 for ADM was mostly
active in synergies 1 and 4 (respectively associated to index and ring fingers) while was mostly
inactive for the second synergy (the little finger one) where the most of ADM motor neurons were
activated. Also, the tenth and twelfth motor neurons for FDI of Subject 1 were mostly inactive in
synergy 1 (associated to index finger) and mostly active for other synergies. These two examples
are highlighted here to show how, in muscles clearly mainly activated for specific fingers (ADM
for little finger, FDI for index finger) some motor neurons can be mostly activated for synergies
associable to other fingers, unlike the most of the motor neurons innervating these muscles. As
explained in the Methods, an arbitrary threshold was used to quantify the dichotomy "mostly
active/inactive", i.e. motor neurons active less than one half of the mean activation of the synergy
where the targeted muscle is most active and, simultaneously, active more than one half of the
mean for another synergy. We analyse further the nature of this condition in the Discussion. These
alternative synergistically organised motor neurons represented between 10 and 15% of the total
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#MN GRASP INDEX IND-LIT IND-MID LITTLE MIDDLE RING
S1/1 0.71± 0.17 0.75± 0.12 0.63± 0.22 0.63± 0.22 0.53± 0.18 0.63± 0.17 0.48± 0.18
S1/2 0.79± 0.13 0.75± 0.16 0.64± 0.23 0.74± 0.21 0.55± 0.19 0.71± 0.16 0.51± 0.19
S1/3 0.77± 0.18 0.78± 0.14 0.63± 0.22 0.76± 0.19 0.55± 0.19 0.74± 0.12 0.50± 0.24
S1/4 0.81± 0.16 0.81± 0.12 0.60± 0.20 0.82± 0.14 0.56± 0.16 0.77± 0.12 0.55± 0.22
S2/1 0.62± 0.20 0.60± 0.22 0.56± 0.16 0.70± 0.20 0.46± 0.15 0.76± 0.14 0.53± 0.20
S2/2 0.74± 0.17 0.69± 0.20 0.65± 0.20 0.76± 0.13 0.58± 0.16 0.75± 0.17 0.61± 0.21
S2/3 0.62± 0.25 0.68± 0.20 0.59± 0.18 0.68± 0.22 0.56± 0.17 0.72± 0.19 0.53± 0.18
S2/4 0.59± 0.25 0.60± 0.25 0.61± 0.22 0.66± 0.24 0.57± 0.17 0.71± 0.20 0.48± 0.18
S3/1 0.55± 0.27 0.53± 0.19 0.57± 0.20 0.57± 0.21 0.48± 0.19 0.55± 0.16 0.63± 0.23
S3/2 0.58± 0.23 0.54± 0.14 0.56± 0.22 0.62± 0.18 0.52± 0.20 0.60± 0.16 0.66± 0.19
S3/3 0.68± 0.19 0.58± 0.17 0.61± 0.20 0.67± 0.19 0.52± 0.17 0.54± 0.21 0.67± 0.20
S3/4 0.63± 0.18 0.54± 0.20 0.61± 0.21 0.67± 0.16 0.54± 0.18 0.57± 0.23 0.65± 0.22
S4/1 0.46± 0.17 0.49± 0.15 0.58± 0.22 0.53± 0.19 0.68± 0.22 0.49± 0.21 0.46± 0.17
S4/2 0.52± 0.18 0.50± 0.16 0.71± 0.16 0.61± 0.11 0.77± 0.15 0.53± 0.13 0.53± 0.18
S4/3 0.58± 0.17 0.55± 0.21 0.80± 0.11 0.66± 0.13 0.80± 0.13 0.49± 0.14 0.51± 0.17
S4/4 0.54± 0.15 0.55± 0.19 0.77± 0.13 0.62± 0.17 0.82± 0.11 0.49± 0.15 0.52± 0.18

Table 3.2: Mean and standard deviation of the cross-correlation peak between activation signals
and force for synergies extracted from subsets of motor neurons (MN) ranging from 1 to 4 MNs
per muscle (5 permutations in each case). Values are provided for each grip type, each synergy,
and each size of the MN subset per muscle (#MN). Synergies are ordered by assigned finger,
respectively Index (S1), Middle (S2), Ring (S3), Little (S4) and every four rows (corresponding
to #MN from 1 to 4) are relative to a different synergy-finger association. Results are for all
subjects. This table is from [Tanzarella et al., 2021].

across subjects, presenting a minimum of 6.4 and a maximum of 16.7%.

3.3.8 Robustness of motor neuron synergies by varying subsets of iden-
tified motor neurons

Table 3.2 reports the mean and the standard deviation of the cross-correlation between force and
activation signals is across all subjects for all the subset permutations with numerosity between 1
and 4 motor neurons per muscle, for each synergy and each grip type, as described in Methods.
These subsets were created by permuting for 5 times a number of motor neurons between 1 and 4 per
muscle and then synergies were extracted for each subset (see Methods). Across all subjects and all
sizes of the motor neuron subsets, either 3 or 4 synergies were identified for each permutation. When
a subject presented 3 synergies (38% of all cases), the ring finger was in general not represented
by a synergy, except for the third subject where the synergy associated with the index finger was
not represented. No relation could be found between this variability in dimensionality and the
dimensionality of the subsets, thus it is more likely it was due to the different activity of the motor
neurons selected at each permutation. As in the case of all motor neurons considered presented
above, the highest level of cross-correlation between the force and each synergy was found for
the single-finger grip involving the finger associated with that synergy. In general, this was not
clearly dependent by the size of the motor neuron subsets, and only for the ring finger a lower
dimensionality occurred more frequently for subset sizes greater than 2 motor neurons per muscle.

3.4 Discussion

The findings we have shown support the hypothesis of an existent synergistic organisation among
pools of motor neurons of different hand muscles, whose overall activity across different grip types is
described by a substantially smaller dimensionality than the number of the observed motor neurons.
Also, this study shows a similar synergistic structure between whole muscles and motor neuron
pools, although with motor neuron synergies we have additional information and more accurate
functional interpretation than with muscle synergies. This is not only an important outcome
for better understanding neuro-muscular synergistic control of the hand, but also to constitute a
new powerful framework for clinical research, motor control models, rehabilitation, and myoelectric
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Figure 3.9: Activation signals and anatomical maps of the motor neuron synergy weights, both
represented as in Figure 3.8. (a) First four motor neuron synergies and their cross-correlation
peak (XC) with grip force. (b) Motor neuron synergy anatomical maps. This figure is from
[Tanzarella et al., 2021].

control. We discuss below how this framework can be further extended and applied and we provide
an example of this in Chapter 4 and 5.

A first intuitive observation of the modular behavior among motor neurons is evident by looking
at the sparse activation in motor neuron discharge patterns across different grips in Figure 3.5.a.
In fact, a plausible cause of this sparsity could be the combined excitatory and inhibitory activity
of spinal interneurons towards motor neurons. This interneuronal output would differ across grip
types, as represented schematically in Figure 3.2.b, by producing the patterns represented in Figure
3.5, where the majority of the motor neurons fire only during some grip types and silent during
others. A first quantification of this phenomenon, not direct and exhaustive as factorisation, is
counting the activation of the same motor neuron across pairs of grip types, as in Figure 3.6.
These results look comparable with motor neuron synergy anatomical maps presented in Figure
3.9. Thus, recruitment of one motor neuron for some but not all grip types would be due to a
modular organisation presumably prescribed by the spinal inter-neuronal output. This should be
considered an inherent aspect of motor neuron synergistic behavior. In fact, if all motor neurons
would fire for all grip types, we would observe one main motor neuron synergy explaining the
majority of the variance of the dataset, as in the case of intra-grip factorisation in the previous
chapter, assessed by PCA.

A comparable dimensionality between motor neuron and muscle synergies was found. We tested
dimensionality in two cases, respectively by considering all grips or only the four grips involving
only one finger in opposition with the thumb. Both muscle and motor neuron activities provided a
comparable number of synergies (Figure 3.7). A comparable number of synergies (3 to 4 identified
synergies) was also obtained by selecting a subset of motor neurons per muscle, by cross-validating
across different permutations (see Table 3.2). Thus, these results confirm that the observations on
motor neuron synergies extracted from all the motor neurons and grip types were not influenced
by the different numbers of motor neurons identified per muscle. Also, a number of 3-4 muscle
synergies was found for the signal reconstructed with the decomposed motor units and for the
residual. This analysis showed that only the decomposable portion of the EMG signal contained
information related to finger force modulation.

This demonstrates the robustness in assessing low dimensionality among a number of motor neu-
rons an order of magnitude greater than the number of muscles they innervate. Higher reconstruc-
tion of original data (R2 curve) by EMG signals can be more likely due to crosstalk than to neural
information. In fact, surface EMG signals always carry a certain amount of crosstalk, in particular
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in the case of muscles of the hand and the forearm, small and closely spaced [Muceli et al., 2014].
Instead, motor unit spike trains are separated by crosstalk, and they provide only the neural
information sent from spinal motor neurons to muscles.

These results about low dimensionality of neural data to multiple muscles suggest a dimen-
sionality reduction implemented at the motor neuron level by the output of the spinal integration
implemented by interneuron modules of supraspinal and afferent inputs [Fetz et al., 2002]. For the
first time it is possible to connect the muscle synergy theory with the findings of common synaptic
input to motor neurons [Negro et al., 2009], [Del Vecchio et al., 2019], [Tanzarella et al., 2020]. In
fact, we speculate that the activation signals of each synergy can be the equivalent of the common
input to the corresponding group of motor neurons for each grip type. It is important to clarify
that we are here capturing the net common synaptic input to motor neurons pools of different
muscles, because we cannot quantify the common synaptic input to spinal interneurons, although
we can assume that they are reasonably related.

Since both motor neuron and muscle synergies inform us on the spatio-temporal coordination of
a set of muscles acting on skeletal joints, a functional interpretation of these synergies is possible.
For this reason we represented the synergy weights with an anatomical map, to find intuitively a
correspondence between the activated muscles and the corresponding biomechanical function. The
spatio-temporal information about muscle coordination is provided in Figure 3.8, by considering the
14 extrinsic and intrinsic hand muscles examined in this study. While the synergy weights describe
the spatial pattern of this coordination, activation signals describe the corresponding temporal
pattern. How groups of muscles are coordinated to generate the target force is indicated by the
correlation between activation signals and the force. By comparing Figure 3.8 with Figure 3.9,
which present synergy weights and activation signals of the motor neuron synergies, the muscles
have a more uniform activation in the muscle synergies compared to motor neurons in the motor
neuron synergies. Thus, we conclude that motor neuron synergies discriminate better the functional
role than muscle synergies in this study.

Although we can interpret the synergy functional role by the time-invariant weights, synergy
assignment to a finger was based on the maximum variance explained by each activation signal
(time-varying) during each single-finger task (see Methods). This is a more robust method for
synergy functional interpretation, since the high inter-subject variability of synergy weights. Ac-
tivation signals provide also another robust way for synergy functional interpretation by looking
at the average correlation with force. We found that motor neuron synergies were usually charac-
terised by a greater cross-correlation value with the force than muscle synergies. This functional
role is preserved even despite the number of motor neurons per muscle included in the analysis, as
shown in Table 3.2.

In all these findings motor neuron and muscle synergies present a similar structure in terms
of dimensionality, functional interpretation and force estimation so that the respective values for
these two types of synergies can be compared. However, motor neuron synergies enable to analyse
the activity of more features for the same muscles, i.e. the activity of the identified motor neurons
for each muscle. This is impossible for muscle synergies, which present a single variable for each
muscle, i.e. an EMG amplitude. Thus, we were able to investigate the synergistic organisation
of motor neurons innervating the same muscle, by questioning whether they contributed to differ-
ent synergies, by analyzing the motor neuron synergy weights. We found that whilst most motor
neurons innervating the same muscle majorly participated within the same synergy, a small per-
centage (between 6.4 and 16.7%, depending on the subject) of motor neurons of the same muscle
were alternatively synergistically activated, so they participated to other synergies (Figure 3.10).
This alternative organisation would suggest the existence of different spinal neural pathways from
interneuron modules to groups of motor neurons of the same muscles, thus implying that the CNS
controls groups of motor neurons rather than groups of muscles. Indeed, if different motor neurons
of the same muscle are recruited in different phases, the muscle is not necessarily activated as a
whole (see Discussion). This led to hypothesise that although most motor neurons of the same
pool mainly belong to a single synergy, a minority of motor neurons in the same muscle may be
controlled with a different synergistic behavior. This would mean that motor neurons inside the
same muscles are grouped in differently controlled subsets and exhibit the same behavior within
each subset [Madarshahian et al., 2020]. This does not contradict the existence of a low dimen-
sionality in the synaptic input received by the motor neurons. Although a major correspondence
between muscles and motor neuron pools was observed, which means that motor neuron synergies
reflect in general muscle synergies, exceptions were found to this general rule. These results are
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Figure 3.10: Normalised motor neuron synergy weights (from 0 to 1, where 1 is the highest weight
in the synergy) of all subjects. Motor neurons recruited synergistically in a different way with
respect to the majority of motor neurons of their muscle are coloured in red, in all the synergies
where they are more active (see Section k in Methods). Synergy weights are reordered by finger
association. This figure is from [Tanzarella et al., 2021].

worth to be assessed in future studies by extending the dataset to more tasks conditions (as we did
in Chapter 4), because they could eventually lead to the conclusion that the CNS may not control
muscles as indivisible units but control motor neurons which could eventually present a different
synergistic organisation inside the same muscle, with only a partial overlap between muscle and
motor neuron control.

With this study we provide a new perspective about synergistic muscle control, by decompos-
ing the synergistic behaviour of a muscle in the one of its constituent motor units. However, the
framework presented here is still constrained by non-invasiveness and we cannot directly observe
the whole chain determining the neural drive to muscles. Measuring all the neural structures,
both spinal, afferent and supra-spinal [Fetz et al., 2002], [Lemon, 2008], involved in this chain is
necessary for a comprehensive identification of neural synergies of the hand. Also, our framework
has no direct access to the spinal interneuronal circuitry which provides excitation and inhibi-
tion motor neurons, as investigated in non-human primates by Takei and Seki (2010, 2013a,b).
Nonetheless, it is reasonable to assume a strict relation between motor neuron synergies and in-
terneuronal patterns. In fact, [Takei et al., 2017] proposed that muscle synergies are prescribed
by muscle fields of spinal premotor interneurons grouped in clusters, by demonstrating a spatio-
temporally correlation in activity between interneuron clusters and muscle synergies. Finally, the
function of motor cortex in synergistic control is another aspect to consider. In fact, it was shown
that synergistic aspects in motor control may be prescribed by areas of the primary motor cortex
[Fricke et al., 2020], [Leo et al., 2016], [Ejaz et al., 2015], [Schieber and Santello, 2004] and inva-
sive cortical stimulation of primates further confirmed this phenomenon [Overduin et al., 2015].
It is reasonable that this and other supraspinal aspects of synergistic motor control find a final
integration at the spinal level [Fetz et al., 2002].

In Chapter 4 and 5, we propose how to apply this framework based on motor neuron synergies
to neural interfaces and myoelectric control. In fact, by assuming the possibility of extracting
control signals for robotic devices from a pool of firing motor neurons, a dimensionality reduction
should be implemented in some way from the dimensionality of the identified motor neurons to
the dimensionality of the actuators to control. This dimensionality reduction could be achieved by
a cumulative of the many involved spike trains, by averaging the SDR of many motor neurons to
produce continuous signals. However, the information brought by different subsets of motor neurons
activating during different tasks would be attenuated to emphasise one main principal component.
A cumulative motor neuron spike train could be computed for each muscle or for each electrode grid
decomposed separately, but then a further correspondence between muscle/grids and degrees of
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freedom to control should be found. An alternative way would be the use of linear regression, but it
would imply the concurrent recording of force or kinematics to regress. An unsupervised approach
could be constituted by using PCA or NMF intra-task, but then different loads/weights should
be used for each task, constraining the number of tasks provided and introducing the problem
of how to switch between tasks. Thus, using a factorisation algorithm (either PCA or NMF) or
SDR of motor neurons tracked across different tasks would provide time-invariant patterns (the
synergy weights) inherent in the execution of as many tasks as the one expected to be included
in the training phase. The synergy weights vectors inverted and multiplied to the SDR would
generate online the activation signals constituting the control signals after a post-processing for
the association between the identified synergies and the DoFs to control. Eventually the DoF-wise
NMF proposed by [Jiang et al., 2009] could be taken into account as we show in the next chapter
and as we compare with the methods of the present chapter. NMF with respect to PCA provides
only non-negative components, easier to interpret in terms of muscle activation (muscles cannot
activate negatively). Thus, as we show in the next chapters, motor neurons constitute a promising
physiology-inspired unsupervised framework to provide control signals to control external devices,
i.e. a framework for non-invasive neural interfaces for human-machine interfaces.
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Chapter 4

Motor neuron synergistic
organisation in complex dynamic
hand gestures

4.1 Introduction

In the last twenty years, muscle synergistic control and motor neuron recruitment mechanisms has
been extensively investigated, as explained in the previous chapters. In Chapter 3, we have shown
a first convergence between these two motor control mechanisms, by investigating how single motor
neurons are involved and recruited during synergistic control of 14 muscles of the hand. Before
of our study in Chapter 3, synergistic muscle control and motor neuron recruitment were treated
together in few studies, focusing either on pools of motor neurons of one or few muscles for quantifi-
cation of common synaptic input [Negro et al., 2009], [Negro and Farina, 2012], [Laine et al., 2015]
or on few motor neurons identified for different muscles with an indirect quantification of common
drive [Huesler et al., 2000], [Johnston et al., 2005], [Winges et al., 2008]. Furthermore, in these
studies motor neurons were not tracked across different tasks and were not processed with the same
techniques commonly used in muscle synergy literature, i.e. factorisation [Tresch et al., 2006],
[D’Avella and Lacquaniti, 2013]. The concepts of synergistic organisation and motor primitives
were also applied to prosthesis control algorithm [Jiang et al., 2009] and to the design of robotic
hands [Santello et al., 2013], [Santello et al., 2016].

In Chapter 3 we hypothesised to obtain a low dimensionality in the organisation of motor
neurons from different muscles, although the high dimensionality of motor neurons. We obtained
a dimensionality reduction greater than 10-fold, and we compared these so called motor neuron
synergies with synergies obtained with one EMG envelope for each muscle, i.e. muscle synergies
[Bizzi and Cheung, 2013]. We also confirmed and discussed the already well-established advantages
in decomposing single motor neuron activation from HD-sEMG [Farina et al., 2014d]. For the first
time, we have shown how motor neurons take part in synergistic control of many muscles across
different tasks and how synergistic motor neuron behaviour reflects muscle synergies. In fact, we
also observed how motor neurons of the same muscle are mainly activated consistently in the same
synergy and mostly do not present different synergistic behaviours.

However, although in Chapter 3 we considered an unprecedented complex dataset, only a rela-
tively limited range of motion and conditions was observed. In fact, in that study, a) contractions
were always isometric and constrained to be sinusoidal at a fixed frequency, b) the thumb was
always activated (different grip types), and c) the wrist was immobilised in a neutral position.
Therefore, the present chapter expands the neurophysiological studies in Chapter 2 and 3, toward
conditions closer to the daily life and faced during rehabilitation and myoelectric control of robotic
assistive devices.

The dataset examined in this chapter constitutes a unique dataset with a level of complexity
never reached in published studies of the field. The previous studies in the literature about muscle
synergistic control and motor neuron recruitment never considered so many muscles (14), so many
motor neurons (around 100 per participant), so many different tasks (around 50 different gestures)
and the tracking of each motor neuron across all these tasks, as we consider here in this chapter.
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Moreover, we here consider non-isometric contraction, by observing slow repetitions of flexion and
extension of finger and wrist joints. Across 5 participants, motor unit recruitment and motor
neuron synergies were analysed and myolectric features were compared with the joint angles of
fingers and wrist. As explained in the previous chapters, we chose to focus on the hand because
a) it presents many degrees of freedom and b) presents many muscles in a small volume. This
latter requirement is fundamental to cover as many muscles as possible with HD-sEMG electrode
grids. Also, the hand is fundamental for a great number of daily tasks, mainly for manipulation
and communication, and it is strategic to recover gesture ability for hand-impaired people.

The aim of this chapter is mapping motor neuron activity from intrinsic and extrinsic muscles
for extracting control signals useful in rehabilitation (as biomarkers [Cheung et al., 2012]) or in
control of assistive devices, such as prostheses and exoskeleton. Muscle selection (intrinsic vs
extrinsic hand muscles) is central in this analysis, with the aim of designing wearable devices
covering different parts of the hand or of the forearm. The information content expected to be
found into the motor neuron pools identified in a large datasets as the one presented here, both in
terms of number of gestures and muscles, is mainly related to synergistic organisation of these motor
neurons tracked across many task conditions. The main hypothesis formulated in this chapter is
that the low dimensional synergistic organisation found in Chapter 3, for a pool of motor neurons
controlling many muscles but considering a limited range of motion of the hand, can be found even
observing the motor neurons of the same muscles across a variety of tasks close to the entire range
of motion possible for the human hand. This hypothesis is more specific than the one in Chapter
3, although they are very similar. In fact, in Chapter 3 we showed a low dimensionality across a
narrower range of grips than the movements investigated in this study. In Chapter 3 we assumed
that the same low-dimensionality observed among 7 grip types could be found even investigating
a larger set of tasks. Here, in this Chapter, we demonstrate that assumption and we further
speculate about the hypothesis that these motor neuron synergies emerge due the dimensionality
reduction performed at the CNS level by spinal and supraspinal structures. Moreover, we here
here also stress the concept that from this inference of the descending command to pools of motor
neurons of multiple muscles, we obtain control signals suitable for human-machine interfaces and
for controlling intuitively external devices.

Thus, we analysed this dataset both to expand the previous neurophysiological investigation
and to re-think a new generation of human-machine interfaces. For this second purpose, we quan-
tify the information content of different dataset portions, i.e. intrinsic vs extrinsic muscles and
single-finger/joint vs combined-finger/joint tasks. Answering which muscles and tasks are neces-
sary to extract motor control information is strategic for the design of wearable devices applied
to rehabilitation and human-machine interfaces. In fact, minimizing the recording surface, the
number of amplified channels and the transmitted throughput, is highly critic in wearable de-
vice design. In the future perspective of a robust online EMG decomposition for motor neuron
identification (first emergent studies presented by [Glaser et al., 2013], [Barsakcioglu et al., 2020],
[Chen et al., 2020]), with this work we want to estimate the maximum possible information about
motor neuron synergistic recruitment obtainable with wearable devices, either a glove or an arm-
band.

4.2 Methods

4.2.1 Subjects

Five male healthy participants (age: 27.2 ± 3.3 yrs; weight: 74.6 ± 7.1 kg; height: 179 ± 6.7
cm) participated to the experiment after signing an informed consent form. The experiment was
approved by the Imperial College London Research Ethics Committee (no. 18IC4685) and in
conformity with the Declaration of Helsinki.

4.2.2 Setup

Kinematics of the finger and wrist joints were recorded at 250 Hz with a 8-infra-red-cameras motion
capture system (SMART-DX, BTS Bioengineering, Milan). The system and the distribution of the
infra-red-reflecting markers is represented in Figure 4.1.a. Three markers were placed over each
finger, two over the bone eminences respectively on the radius and ulna, and one over the lateral
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Figure 4.1: Experimental setup. In panel a) the 8-cameras motion capture system is represented.
Panel b) shows the HD-sEMG electrode grid placement and the passive markers placement for
motion capture. Finally, in c) the reconstructed stick figure of the hand of one subject is shown.

epicondyle of the elbow. The system needed to be stopped after a few minutes of recordings, to
avoid crashes. This mainly determined the length of the experiment.

EMG signals were recorded as in the previous two chapters and the electrode grid placement is
presented in Figure 4.1.b. The 14 recorded muscles were first dorsal interosseous (FDI), the three
other dorsal interossei (II-IV DI), abductor digiti minimi (ADM), flexor pollicis brevis (FPB),
abductor pollicis brevis (APB), opponens pollicis (OPP), extensor carpi ulnaris (ECU), extensor
digitorum communis (EDC), extensor carpi radialis (ECR), flexor carpi ulnaris (FCU), flexor digi-
torum superficialis (FDS) and flexor carpi radialis (FCR). A muscle assignment procedure was used
to identify the correspondence between identified motor neurons and muscles, when an electrode
grid covered more than one muscle, as explained below in the section 6 of Methods.

EMG signals were recorded in monopolar derivation by a 400-channels amplifier (Quattrocento,
OT Bioelettronica, Torino, Italy). Signals were amplified with a gain of 150, band-pass filtered
between 10 and 900 Hz, sampled at 2048 Hz, and A/D converted to 16 bits, to be sent to a laptop
for visualisation. A reference electrode constituted by a wet bracelet was placed at the wrist.
The amplifier and the motion capture system were synchronised with a trigger signal sent from a
microcontroller (Arduino UNO, ATmega328P, Atmel) to both devices at the same time when EMG
recording started and stopped. Signals were realigned offline. A monitor was placed in front of the
subjects and the movement indications were provided by a custom-made application developed in
Matlab (The Mathworks, Natick, US), used also to inspect the signals.

Motion capture markers were placed after EMG electrode grids, since the volume around the
hand and the forearm was almost completely covered by cables and the wrist was covered by the
bracelet for the EMG reference. Thus, the remaining space for attaching the markers so that they
could be uncovered was inspected carefully, especially for markers over the knuckles and the wrist.
Camera position was also optimised, by focusing on the minimum volume of recording needed to
include hand and forearm in the full range of motion required for the experiment. This limitation
of the volume was necessary to avoid artifacts in the motion capture recordings.
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Figure 4.2: EMG processing from raw signal to motor neuron synergies. HD-sEMG signals were
decomposed separately for each electrode grid. All the identified motor neuron spike trains were
stacked together, smoothed and factorised with NMF. To assign a motor neuron to a muscle where
more than one muscle was under the same electrode grid, spike-triggered average was used to
localise the respective motor unit under the grid, by knowing the corresponding position of each
muscle (see Methods Chapter 3). Thus, it was possible to group the motor neuron synergy weights
(W) per each muscle and represent the weights anatomically for functional interpretation. The
other matrix from NMF, H is the matrix of the activation signals.

4.2.3 Protocol

Participants sat in a comfortable posture with the forearm leaned against a custom made support
represented in Figure 4.1.a. The wrist was also constrained by the support when asked for a wrist
neutral position, while it was free to move otherwise.

Each participant was asked to perform different gestures involving fingers and wrist. These
different types of gestures are respectively:

• Four repetitions of flexion-extension of each single finger (except the ring, only flexion) with
the wrist respectively in a neutral position, extended and flexed (15 different recordings, 4
repetitions each);

• For the thumb, also four repetitions of abduction-adduction and opposition with the wrist
in neutral position only;

• Four repetitions of flexion-extension of the wrist;

• Four repetitions of grips involving two, three and five fingers, and hand closing;

• Execution of sign language alphabet gestures [Chong and Lee, 2018].

Each repetition of flexion-extension of fingers and wrist, as well as abduction-adduction of the
thumb, lasted 12 seconds, 6 for each opposite movement direction (Table 4.1). For each movement
direction, respectively 2 for reaching the flexed or the extended posture, 2 to block the posture
(isometric part), and 2 to come back to the neutral position. In the case of ring (only flexion),
thumb opposition, grips, hand closing and letter gestures, only 6 seconds were needed for each
repetition, since they did not present an opposite movement.
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For the executions of letter gestures, different participants were asked for different letters. Two
participants performed the execution of 10 of the 26 sign language letters twice, chosen to involve
differently all the fingers. Three participants executed the whole alphabet and repeated the first
14 letters twice (so that to have 4 recordings with ten letters each). Two participants skipped
the letters ’M’,’N’,’S,’T’, considered less indicative in terms of finger actuation, and repeated the
first 18 letters twice (so that to have 4 recordings with ten letters each). Finally, one participant
executed all the letters once. This difference in gesture performance was due to the length of the
experiment (almost three hours) and the availability of the participants. Length in experiment
duration was between 2 and 3 hours, mainly due to rest among recordings, data saving, repetition
of wrongly executed tasks and challenges with the motion capture recording.

Thus, across all the subjects, 10 letters were executed by all. By counting separately flexion
and extension for all the joints and abduction and adduction for the thumb, and considering the
three wrist postures for single-finger movements, a minimum of 46 different gestures up to 62 were
performed (depending on the number of letters performed).

4.2.4 Overall aspects of the processing
The core of our analysis consisted in investigating the informative nature of motor neurons discharge
patterns from intrinsic and extrinsic muscles. Thus, the comparison in taking motor neurons only
from intrinsic or only from extrinsic muscles was central. The perspectives in terms of application
of this muscle grouping is debated in the Discussion. We mainly investigated how this information
provided insights about motor neuron synergistic organisation, never observed in a large set of
gestures and from motor neurons from several muscles as in the dataset presented in this chapter.
This motor neuron synergies could be used as control signals in proportional control of external
assistive devices and we provide outcomes about cross-correlation with hand kinematics in order to
estimate hand movement prediction. Also, from an immediate and practical perspective of pattern
recognition approach for myoelectric control of prostheses, we tested a state-of-the-art machine
learning classifier to recognise 10 classes for single-finger control. Future perspectives related to
the use of other machine learning or deep learning techniques are treated in the Discussion or in
Chapter 6.

4.2.5 Signal processing
As in Chapter 3, EMG signals were concatenated to then track motor neurons across the tasks by
EMG decomposition. However, differently from the 70-s-long concatenated signals of the previous
chapter, the total length of the observed recordings was around 1200 s, thus 17 times longer.
Since, this amount of EMG data (around 900 MB per 64 channels, with a float conversion in 64
bit) was impossible to decompose at once with Matlab (The Mathworks, Natick, US) running a
normal desktop personal computer, so we divided the EMG data in 4 different concatenations.
The file order in the concatenations is reported in Table 4.1 and the processing described below is
represented in Figure 4.2.

Concatenated EMG signals were digitally filtered between 20 and 500 Hz with a 4th-order
Butterworth filter. Then, signals were decomposed separately for each grid by the CKC algorithm
[Holobar and Zazula, 2007b]. The accuracy of motor unit identification from HD-sEMG was as-
sessed by pulse-to-noise ratio (PNR) [Holobar et al., 2014]. The output of the decomposition was
manually inspected, as described in the previous chapter and indicated in [Del Vecchio et al., 2019].

After having the tracked motor neurons across the tasks of the four concatenations, to fully
concatenate the whole observed recording, we paired similar motor neurons across the four concate-
nations, proceeding from the most similar pair to the last similar pair. This similarity was assessed
in terms of 2D-cross-correlation between the motor unit action potential templates of a pair of
motor units, obtained by spike-triggered average (STA) [Martinez-Valdes et al., 2017]. Two motor
unit sequences in two concatenations were considered as the same motor unit only over a threshold
of 0.7 of 2D-cross-correlation. This threshold is lower than in [Martinez-Valdes et al., 2017] (0.8)
since the recordings were long and we assumed to have more variability in the STA. Also the
unpaired motor units were considered in the analysis, since they were assessed to be accurate as
described above and they could be tracked across different tasks inside their first concatenation.

When the full concatenation of the 26 recordings was completed, each spike train was rep-
resented as a binary sequence having the length of the full concatenation and the same sample
frequency of the original EMG signals, with 1 indicating the occurrence of a spike and 0 otherwise.
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Concatenations Task Repetitions
Natural gestures Hand Open-Close 4, 6 s

Full Hand Grasp 4, 6 s
Three Finger Pinch 4, 6 s
Two Finger Pinch 4, 6 s

Signs 1 10 (different letters), 6 s
Signs 2 10 (different letters), 6 s

Signs 3 (3 subjects only) 10 (different letters), 6 s
Signs 4 (3 subjects only) 10 (different letters), 6 s

Neutral Wrist Index MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Little MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Middle MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Ring MCP Flx 4, 6 s
Thumb Abd-Add 4 × (6 s Abd, 6 s Add)

Thumb MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Thumb Opposition 4, 6 s

Extended wrist Index MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Little MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Middle MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Ring MCP Flx 4, 6 s
Thumb MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Wrist Flx-Ext 4 × (6 s Flx, 6 s Ext)
Flexed wrist Index MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Little MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)
Middle MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Ring MCP Flx 4, 6 s
Thumb MCP Flx-Ext 4 × (6 s Flx, 6 s Ext)

Table 4.1: Order of recordings in the four EMG concatenations and repetition number and length.
Motor units (neurons) were tracked by decomposition into the 4 concatenations and then tracked
across concatenations by STA similarity greater than 0.7 as explained in section 4 of Methods.

When a motor unit was not present for one of the 4 original concatenations it was zero padded
in that missing interval. As in the previous chapters, by filtering the binary spike trains with a
4th-order Butterworth low-pass filter with cut-off frequency of 2.5 Hz, we obtained the data to be
factorised as smoothed spike trains (SST). SST were then normalised between 0 and 1.

4.2.6 Joint angle computation

Kinematics data, consisting of the three X, Y, Z spatial coordinates of each marker, were manually
edited with the software BTS Smart Tracker. Some coordinates for some subjects were irremediably
affected by too many artifacts to be processed. Edited kinematics data was low-pass filtered
with the same cut-off frequency of the smoothed spike trains, since the movement asked for the
experiments were sufficiently slow to not present a higher band.

For this analysis angles were computed for finger metacarpophalangeal (MCP) joint flexion-
extension and wrist flexion-extension. In fact, although each finger consisted of multiple joints, the
biomechanical model considered finger MCP joints only. This simplification is conceived also in the
perspective of controlling advanced robotic prostheses or exoskeletons with single-finger actuation,
which would reasonably have one motor for each finger and one for each DoF of the wrist. In this
analysis only flexion-extension for the wrist joint was considered. Let be a and b the 2 vectors
connecting respectively 2 adjacent pairs of markers (for example, let be a a link between a marker
on the wrist and one on the index MCP, while b a link between a marker on the index MCP and
a marker on the index phalange), 2D angles were computed as:

angle = arccos(dot(a, b)/(norm(a) ∗ norm(b))) (4.1)
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4.2.7 Synergy extraction and number of synergies determination

As in Chapter 3, non-negative matrix factorisation (NMF) was used to extract non-negative
common components among the motor neuron SST, which we call motor neuron synergies (see
[Lee et al., 2001] for the algorithm, and [Tresch et al., 2006], [D’Avella and Lacquaniti, 2013] for
muscle synergy application). As in Chapter 2, we grouped motor neurons in three groups respec-
tively from a) all the muscles, b) only intrinsic and c) only extrinsic muscles. For each of these
three datasets, NMF computation was repeated 10 times, as in the previous chapter, for each
number of extracted synergy from 1 to 10 synergies, with different initial random values for the
matrices W and H, respectively the synergy weights and the activation signals (see Methods Chap-
ter 3). The reconstruction of the original data by W and H was quantified with the coefficient of
determination (R2) used in the previous chapter. The greatest R2 among the 10 repetitions with
different initial random weights was retained for each number of synergies. To select the number
of synergies, we used the change-in-slope criterion as in the previous chapter with a threshold of
1e− 4 [D’Avella and Bizzi, 2005].

Motor neuron synergy weights were compared by similarity computed with normalised scalar
product, i.e. cosine similarity (from 0 to 1, see [Cheung et al., 2009a]) both within- and between-
subjects. Within subjects, synergies were compared between the case of all muscles considered
and the case of a muscle sub-grouping, respectively either extrinsic or intrinsic muscles only. This
analysis was implemented to assess how neural information could be separated by considering only
a portion of the motor neurons, respectively only from intrinsic or only from extrinsic. Weights
were compared, in the case of all muscles, by taking only the ones related to the extrinsic or
to the intrinsic muscles, depending on the comparison. Between subjects, synergies of the same
muscle grouping were compared across all the subjects. This analysis aimed to find consistency
among data of different subjects. In this analysis between subjects, the number of motor neurons
was different for each subject, and so the number of synergy weights. Therefore, in this case we
compared the weights grouped by muscles, computed as reported in Figure 4.2 and as described
in Chapter 3 (assigning each motor neuron to a muscle, used also to represent anatomically the
weights). In this way, all subjects had the same number of weights, 14, one for each muscle and
the comparison was possible.

Finally, to represent in a more intuitive way the functional meaning of each motor neuron
synergies and to provide a muscle-synergy-based representation, we computed the anatomical maps
as in Chapter 3.

4.2.8 DoF-wise motor neuron synergies

A particular use of the NMF to extract a pair of synergies per each DoF, i.e. DoF-wise NMF
[Jiang et al., 2009], was tested on the dataset for the 5 subjects. This type of synergy extraction,
as explained in Chapter 1, was conceived to confer a strong functional meaning to myoelectric
synergies (computed with one or more than one EMG channel for each muscle, as in ) in order
to control a single DoF with each pair of synergies, one agonistic and one antagonistic for the
respective DoF.

The recordings used to find each pair of DoF-wise motor neuron synergies were the ones in-
volving every single finger with the wrist in neutral position, thumb opposition, thumb abduction-
adduction and wrist flexion-extension (8 tasks). For each recording, the motor neuron SST were
factorised with NMF to extract 2 synergies, meant to be agonist-antagonist. Thus, for each subject
we obtained a total of 16 synergies. The same synergy extraction was repeated for the same 3
muscle groupings, respectively all, extrinsic only and intrinsic only.

DoF-wise motor neuron synergies were compared within subjects with motor neuron synergies
to find similarity within each muscle grouping.

4.2.9 Joint angles and activation signals

To quantify an estimation of the joint angles during the different tasks from motor neuron synergy
activation signals, for each subject, the cross-correlation between synergy activation signal and
joint angle was computed. The peak of the cross-correlation function computed among the two
types of features was evaluated separately for each task. For the analysis we considered both the
angle of the relative joint maximally involved in the task (the angle which presented the maximum
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Figure 4.3: Examples of stick figures obtained by the data of one subject during 2 different frames
corresponding to the opposite gestures (e.g. flexion in violet and extension in pink).

excursion for that task) and all the angles of each finger MCP and of the wrist (flexion-extension
only).

4.3 Results

4.3.1 Motor units identification and kinematics data

Table 4.2 reports the number of motor units tracked across all the tasks for the 5 subjects and their
mean firing rate. The global number of motor units was averagely 93.4± 13.8 per subject (467 in
total for all the 5 subjects) and the PNR was averagely 32.2 ± 5.0, corresponding to an average
decomposition accuracy of > 90% (motor units with PNR > 30dB exhibited accuracy > 90% as
in [Holobar et al., 2014]). Across all the motor units of all subjects, all the motor neurons analysed
in this study presented a range of mean firing rate of 13.2± 7.9 Hz.

Figure 4.3 represent the stick figures of a representative set of gestures contained in the dataset.
For 4 subjects all the recorded gestures were successfully tracked, while for 1 subject only the 90%
of the kinematics was successfully tracked.

Figure 4.4 reports the full analysed dataset for one subject regarding motor neuron data. Since
this dataset corresponds to the activity of 103 motor neurons for a 1200-s-long recording in total,
it was challenging to represent it in one figure. For this reason, the figure represents the SST
averaged across the motor neurons of the same muscle and across the 4 considered repetitions for
each gesture. In panel a), representing data for single-finger movement in the three wrist posture
(neutral, WN, extended, WE, and flexed, WF), is possible to observe a higher activity in FDI
and IIDI and IIIDI during index finger actuation, a higher activity of ADM during little finger
actuation, and the inactivity of intrinsic muscles during wrist flexion-extension. While it is easy
to interpret intrinsic muscle activation, associating them to a certain finger, it is not obvious to
associate the 6 extrinsic muscles to a single finger. This is because 4 of the 6 extrinsic muscles
actuate the wrist and EDC and FDS actuate all the fingers and it is not possible to distinguish their
compartments by assigning motor neurons to each muscle as a whole, as we do in this analysis.
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Figure 4.4: Motor neuron smoothed spike trains (SST) during all the gestures considered for the
analysis are represented for one subject. For each muscle, the SST of the considered 4 repetition for
each gesture (except the letters) are averaged. The shadow area represents the standard deviation
while the tick line represents the mean along the epoch time (either 12 s or 6s, depending on
the considered gesture). The motor neuron SST are represented averaged within each muscle and
across the 4 considered repetitions for each gesture only for the purpose to represent all the data
for one subject. However, each motor neuron SST and the data of each repetition were considered
separated in the analysis.
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Subjects
Muscle S1 S2 S3 S4 S5
FDI 10 17 20 11 19
IIDI 5 6 9 3 8
IIIDI 7 7 7 5 7
IVDI 7 3 4 6 6
ADM 7 12 9 14 8
FPB 0 2 0 0 3
APB 0 4 11 6 3
OPP 3 9 6 7 14
ECU 9 6 4 4 7
EDC 8 6 9 5 9
ECR 6 4 5 0 4
FCU 6 8 8 6 6
FDS 10 11 11 11 12
FCR 3 0 0 0 4

Tot Intr 39 60 66 52 68
Tot Extr 42 35 37 26 42
Total 81 95 103 78 110

Table 4.2: Number of identified motor neurons for each muscle for the 5 subjects.

In panel b), data for the sign language letters are represented. FDI is mostly activated during the
letters ’V’ and ’W’ as it is reasonable to expect. ADM is mostly activated for letters ’W’, ’Y’ and
’O’, as expected, but less for ’I’ and ’J’, although they require extending the little finger. Some
letters seem more recognisable than others by seeing the muscle activation pattern, although in
the figure it is not possible to see the single motor neuron activation.

4.3.2 Motor neuron synergies

Figure 4.5 shows the R2 curves indicating the reconstruction of the original data by varying the
number of synergies extracted. Even for 10 synergies the average value of R2 is under 0.6, meaning
that a reconstruction above 0.8 is reached for a relative high number of synergies. However, all the
5 subjects present a similar trend for the R2 curve. The R2 curves (above) and the value of MSE
used for the change-in-slope criterion determining the number of synergies (below) are reported in
a) for the motor neurons of all muscles, while in b) separately for intrinsic and extrinsic muscles.
The change in slope for a MSE value lower than 1e−4 (indicated by the red line) is for 4 synergies
and this result seems consistent across subjects for all the three groupings.

The results for motor neuron synergy identification from the data of the subject represented in
Figure 4.4 are reported in Figure 4.6. Four synergies are identified for this subject across all gestures
and motor neurons of all the 14 muscles as prescribed by R2 curves in Figure 4.5. These synergies
can be functionally interpreted both by seeing the activation signal modulation during different
gestures and by seeing the most activated muscles indicated by the synergy weight anatomical
representation. For this subject, the first synergy can be related mainly to wrist extension and
more in general all the extrinsic extensor muscles (such as EDC, which extends the fingers). Two
synergies are associated respectively to co-activate index with middle finger and ring with little
finger. Thus, with four synergies it is not possible to have a synergy related to single finger control.
The last synergy is mainly related to wrist flexion but it is also activated during other gestures,
such as index and little finger activation. By seeing panel b) the synergy "Ind-Mid" is mainly
activated for letters ’R’, ’V’ and ’W’, while the synergy "Ring-Lit" is mostly activated for ’A’, ’I’,
’J’, ’M’ and ’O’. The synergy "Wr Ext" seems activated for the majority of the letters, suggesting
that it is more difficult to distinguish the contribution of extrinsic extensor muscles during complex
gestures (ECU, EDC, and ECR are all involved). Grips in panel c) look globally poorly mapped
by the identified synergies.

Figure 4.7 and Figure 4.8 represent identified synergies by considering respectively intrinsic and
extrinsic muscles only. The number of extrinsic synergies, according to R2 curves, should be 5,
but it is forced here to 4 for sake of comparison with the case in Figure 4.6.

In Figure 4.7 we can observe that, by identifying synergies from the same motor neuron SST
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Figure 4.5: R2 curves of all subjects (above) and MSE curves used the change-in-slope criterion to
determine the number of synergies to identify (below). Respectively in a) the extracted synergies
from all motor neurons and in b) by grouping motor neurons by extrinsic or intrinsic only are
represented. The shadow area indicates the standard deviation while the tick line indicates the
mean values across the subjects. The red line indicates the threshold of MSE, 1e− 4, to determine
the number of synergies to choose. On Average 4 synergies are always identified.

Figure 4.6: Motor neuron synergies identified (4) for one subject across all the gestures and all
the muscles. Gesture grouping for the three panels is the same as in Figure 4.4. On the top-right
corner the anatomical maps of the synergy weights are represented. By seeing activation during
certain joint actuation and by seeing the most activated muscles (positively corresponding to the
expected most activated intrinsic muscles), synergy can be functionally interpreted.
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Figure 4.7: Motor neuron synergies from motor neurons are intrinsic only across multiple gestures.
Representation and synergy interpretation are the same of Figure 4.6

considered in the previous figures, but considering only intrinsic muscles, two different synergies
can be related respectively to index and middle finger and the information is no more merged
together as in Figure 4.6. Moreover, a new synergy associated with the thumb finger emerges.
Wrist flexion-extension (panel a), grips (panel c) and gestures for letters ’B’,’C’,’D’,’G’,’L’,’N’, and
’S’ (panel b) look poorly represented by the identified synergies, meaning that these letters could
need extrinsic information to be recognised. The letters ’V’ and ’W’ involve all the four synergies.

In Figure 4.8 the information about index, middle and little finger activation is merged in one
unique synergy. Ring and thumb activation is codified by another synergy, while wrist extension
and flexion are represented respectively by one synergy each. These last two synergies are also
activated during single-finger gestures. The missing information in Figure 4.7 for letters ’B’,’C’,’L’,
and ’N’ is obtained when considering extrinsic muscles instead of intrinsic. Again, grips look poorly
represented by these synergies.

We identified the number of synergies with the MSE-criterion on R2 curves shown in Figure
4.5, since it is the most used in the literature. However, we want to show with Figure 4.9 how, by
increasing the number of identified synergies on the same data, new synergies emerge and that the
information emerged by separating extrinsic and intrinsic muscles (in the previous two figures) can
be obtained also by factorising motor neurons of all muscles. This is the case of Figure 4.9 where
6 synergies are extracted and are respectively associated with wrist extension, index finger, wrist
flexion, ring-little, middle and thumb.

4.3.3 Within-subject and between-subject synergy similarity and func-
tional interpretation

Table 4.3 reports the results for all the 5 subjects of the synergy comparison, both in terms of
weights (W) and activation signals (H), within each subject, across different dataset selection
as an input for the NMF. Comparison is considered between motor neuron synergies identified
among all motor neurons and, respectively, either from extrinsic (All-Extr) or from intrinsic (All-
Intr) hand muscles only. As explained in the methods, this comparison needed to select only
the weights corresponding to motor neurons of only extrinsic or intrinsic hand muscles from the
W with all motor neurons, to be consistent in the comparison with the respective two other W
to compare. Moreover, the table presents the comparison between synergies, both W and H,
extracted with different algorithmic methods, i.e. NMF applied to all the global recording, to
find the motor neuron synergies, and DoF-wise NMF to find synergies from motor neuron SST
strictly related to a certain DoF. For this second type of comparison, the two type of synergies
were compared within the three groupings, all muscles (MNS-DwNMF), intrinsic (MNS-DwNMF

78



Figure 4.8: Motor neuron synergies from motor neurons of extrinsic only across multiple gestures.

Figure 4.9: Six motor neuron synergies are extracted and are respectively associated with wrist
extension, index finger, wrist flexion, ring-little, middle and thumb. By increasing the number of
identified synergies on the same data presented in the figures above, new synergies emerge, bring-
ing information otherwise captured by the separation of motor neurons of intrinsic and extrinsic
muscles.
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W : mean± std W : % > 0.8 H : mean± std H : % > 0.8
All-Intr 0.89± 0.10 78.94 0.84± 0.13 68.42
All-Extr 0.88± 0.08 94.73 0.81± 0.12 63.15

MNS-DwNMF 0.66± 0.14 15.78 0.82± 0.08 63.15
MNS-DwNMF Intr 0.70± 0.12 18.18 0.85± 0.09 86.36
MNS-DwNMF Extr 0.76± 0.11 40.90 0.83± 0.10 54.54

Table 4.3: Similarity of synergies within-subject identified as motor neuron synergies (MNS) or
with DoF-wise NMF on motor neuron SST (DwNMF) respectively considering all motor neurons
(All), the ones only of intrinsic (Intr) and only of extrinsic (Extr) hand muscles. For all this
different conditions of synergy identification, cosine similarity (between 0 and 1) was separately
computed among synergy weights (W) and activation signals (H). The table reports mean and
standard deviation (std) among all the five subjects of this cosine similarity of synergies identified
within-subject in the different conditions mentioned above. Also, the cases of similarity greater
than 0.8% both for W and H are reported.

Intr) and extrinsic (MNS-DwNMF Extr), but not across these groupings.
In the table mean and standard deviation of the cosine similarity for the three comparisons

are reported for W and H. Also, the percentage of synergy pairs, on the total of synergy pairs
compared, with a cosine similarity higher than 0.8 for W and H is reported. A high average
similarity, greater than 0.8, both for the comparison All-Intr and All-Extr is observable, both for
W and H. Percentage of synergies pairs with cosine similarity higher than 0.8 is higher for All-Intr
by considering W, but higher for All-Extr by considering H. With respect to these results, average
similarity is lower for the comparisons MNS-DwNMF, MNS-DwNMF Intr, MNS-DwNMF Extr
by considering W, but not by considering H. This difference, for the same type of comparisons,
between considering either W or H is due to the fact that with a different dataset selection, new
synergistic patterns among motor neurons could emerge in one of the two synergy sets to compare,
but their time behaviour follows a similar modulation even if the corresponding weights are less
similar. This is true for All-Intr, where is likely that new patterns emerge by considering intrinsic
only, as in the example of one subject in Figure 4.6, and it is true also in the comparisons MNS-
DwNMF for all the three motor neurons groupings (All, Intr, Extr), since several synergies among
the 16 extracted with DoF-wise NMF could present synergistic patterns very different from the one
with classic NMF, although the respective time-varying modulation correlated positively (around
0.8 as in table 4.3). In other terms, in these last mentioned cases, the time-varying control signals
obtained are similar although the identified synergistic patterns are more different than in the
case of All-Extr. Finally, between the two comparisons MNS-DwNMF Intr and Extr, for Intr the
percentage of H pairs with cosine similarity higher than 0.8 is higher than for W pairs, contrarily
to for Extr, and this is explainable as written above. A further interpretation of these results, also
connecting them with the other results, can be found in the Discussion.

In Figure 4.10 motor neuron synergy weights identified for all subjects are represented with
anatomical maps for all the three groupings, All muscles, Extrinsic and Intrinsic. Chains of similar
synergies across subjects are represented in rows, while the synergies of each subject are represented
in column. The mean cosine similarity of each chain is reported on the right. Between different
groupings, coincident with the comparisons All-Intr and All-Extr in Table 4.3, the synergy pairs
presenting a cosine similarity greater than 0.8 are indicated with a different color for each subject.
As reported in Table 4.3, a greater number of pairs All-Extr with cosine similarity > 0.8 is identified.
Since representing the H of all the subjects in one figure was unfeasible, unlike for the W in this
figure, we cannot see the corresponding higher similarity of H pairs for the comparison All-Intr
reported in Table 4.3.

4.3.4 Cross-correlation between synergies activation signals and angles

How activations signals (H), extracted from either NMF for motor neurons synergies (MNS) or
DoF-wise NMF (DwNMF) on motor neuron SST, cross-correlate with the six considered angles in
this analysis is represented for all the 5 subjects in Table 4.4. The six joint angles are respectively
the MCP of all the five fingers and flexion-extension of the wrist. Mean and standard deviations
were computed across values of cross-correlation computed for each recording separately for all
the subjects. These values of cross-correlations computed for each recording between angles and
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MCIJ MCAJ MCAJ > MCIJ(%)
MNS All 0.64± 0.15 0.63± 0.14 42.46

DwNMF All 0.62± 0.16 0.61± 0.15 46.42
MNS Intr 0.60± 0.16 0.59± 0.16 40.07

DwNMF Intr 0.70± 0.14 0.67± 0.13 43.25
MNS Extr 0.65± 0.15 0.64± 0.13 44.84

DwNMF Extr 0.64± 0.14 0.62± 0.14 42.46

Table 4.4: Maximum Cross-correlation (MC) computed between synergies and angles, by selecting
for all the angles considered the MC across the set of synergies considered each time. Synergies
were identified as motor neuron synergies (MNS) or with DoF-wise NMF on motor neuron SST
(DwNMF) respectively considering all motor neurons (All), the ones only of intrinsic (Intr) and
only of extrinsic (Extr) hand muscles. Angles were either considered only for the interested joints
(IJ) or for all the joints (AJ), i.e. MCP of all the fingers and wrist joint for flexion-extension only.

synergies are relative to the maximum value of cross-correlation (MC) of the most cross-correlating
synergies considered each time with all the considered angles for that recordings. So, in the table
we divide this maximum cross-correlation values respectively, considering for each recording all the
joints (AJ) or only the joint more representative of the recordings, the interested joint (IJ), for
instance index MCP for index flexion-extension. No significant difference appears from statistical
analysis of these results for the different algorithmic methods (MNS and DwNMF) or for the three
motor neuron groupings (All, Intr and Extr). Cross-correlation values among activation signals
and angles for the two methods of factorisation and for the three groupings were always in the
range between 0.6 and 0.7 of cross-correlation peak on average. An average percentage greater
than 40% in all cases is identified for angles different from the IJs more cross-correlating with the
most cross-correlating synergy. A possible interpretation for these results is provided in Discussion.

4.4 Discussion

We collected and analysed a unique and unprecedented dataset involving 14 hand muscles, a total
of 467 motor neurons for 5 subjects, a large number of gestures (between 50 and 70 depending
on the subjects) expressing the dexterity potential of the human hand. We investigated through
this dataset the spatio-temporal organisation of the identified motor neurons from many muscles,
emphasizing their synergistic behaviour. We expanded the findings of the previous chapter by
confirming the hypothesis that a large pool of motor neurons innervating many muscles receive
few central descending commands (activation signals) modulating the activation of spinal modules
responsible for the synergistic co-activation of the considered motor neurons (synergy weights).
Thus, we enlarged our point of view on synergistic muscle control, where muscles were not consid-
ered as a whole, but instead controlled by many motor neurons being recruited with a synergistic
organisation. This is not obvious given the large number of motor neurons innervating the 14
muscles analysed and considering that we identified a small portion of them corresponding to the
most superficial motor units. We also wanted to see whether this synergistic information can be
captured only by considering a sub-group of the total motor neurons identified, either from intrinsic
or from extrinsic muscles only. This is fundamental for minimizing the number of EMG channels
of a future generation of myoelectric non-invasive neural interfaces.

The number of total motor neurons identified per subject is between 78 and 110, thus the
lower number of motor neurons for a subject identified here is higher than the higher number for
a subject in the previous chapter (69). This is probably due to a much longer time of observation
(17 times more) and a much higher number of tasks considered (between 50 and 60 gestures, versus
the 7 grips of the previous dataset). However, some similarities with the number of the previous
chapter are a) a large variability among subjects in the number of motor neurons identified, both
in total and for each muscle, b) a small number of motor neurons identified for the FPB (positive
only for 2 subjects) and c) a much greater number of motor neurons (between a third and a half
more) identified for intrinsic muscles than for extrinsic, except for a subject. A higher number of
motor neurons from intrinsics can be due to the double number of electrodes (256) covering these
muscles with respect to the extrinsic (128) and the presence of less fat interposed between intrinsic
muscles and the skin. The rare identification of motor units for FPB can be also due to properties
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Figure 4.10: Synergy similarity across subjects. In the panel above synergies considering all muscles
are represented, while below synergies from motor neurons of respectively intrinsic and extrinsic
muscles are represented. The mean cosine similarity for each chain of similar synergies across
subjects (rows) is reported. Within each subject, intrinsic synergies and extrinsic synergy similar
to a synergy with all muscles with a scalar product greater than 0.8 are indicated.

of the conduction volume, i.e. the major depth of this muscle with respect to the other two of the
thenar (APB and OPP) and more interposed tissues. These findings, confirming the ones of the
previous chapter, raise the problem of the variability of identified motor neurons across subjects
and across muscles, depending on the conduction volume. The main aspects of the conduction
volume contributing to this variability can be a) position of the electrodes with respect to muscles,
b) interposed tissues (mainly fat, since the skin treatment to decreasing electrode-skin impedance),
c) difference in actuation of these muscles for the same required task. Considering this variability in
number of identified motor neurons across subjects, in the perspective of developing deep learning
algorithms where the input layer of a neural network must have a fixed number of neurons, the
main challenges can be found a) for different subjects, b) the same subject for different sessions,
and c) by decomposing separately 2 portions of dataset collected in the same session, although with
the same electrode position (as observed for each subject among the 4 concatenations mentioned
in Methods, section 4). Thus, dimensionality reduction by factorisation is one possible solution to
constrain this high variability of the identified motor neurons to few synergies.

Other peculiarities of this dataset were the identification of motor units (then associated to
motor neurons) during dynamic contraction and motor unit tracking in long recordings. With
this dataset we confirm that it is possible to identify accurately (average PNR > 30 dB, phys-
iological mean firing rate) motor units from HD-sEMG also during non-isometric contraction,
as normally done in the literature and in Chapters 2 and 3. Isometric contractions are pre-
ferred to guarantee that motor unit action potential of the same motor units does not change
during muscle lengthening, but for slow contraction and small excursions this problem can be
avoided [Kapelner et al., 2018]. However, in the perspective of a new generation of decomposition
algorithms suitable for dynamic contraction in a broader condition ([Glaser and Holobar, 2019],
[De Luca et al., 2015]) this dataset could be good also to test these algorithms and assessing if the
same number of motor units is identified from the same EMG data. Moreover, tracking the same
motor unit along long-term recordings could be beneficial for examining long-term evolution and
learning of motor strategies, especially during rehabilitation of motor impaired patients. Major
efforts should be spent in this direction and we will expand this discussion in the next chapter.

Starting from these features characterizing the dataset, we conducted an analysis about syn-
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ergistic organisation of motor neurons across muscles. Dimensionality of motor neuron synergies
determined by the R2 curves in Figure 4.5 is averagely 4 for all the subjects and for three different
motor neuron groupings. As can be seen in Figure 4.10 representing weights for all the subjects, the
number of synergies identified per subject are between 3 and 5 for different subjects and groupings,
according to the change-in-slope of the R2 curve. The same dimensionality was obtained in Chap-
ter 3, and this leads to two different considerations. First, we confirm that a large number of motor
neurons receive few commands which coordinate many motor neurons across different muscles and
for achieving a vast repertoire of tasks. The dimensionality reduction in Chapter 3 was between 10
to 16 fold, here is 16 to 25 fold. Second, with only 7 grips and with the thumb always activated,
in Chapter 3, we obtained one synergy associated to each finger in opposition with the thumb.
In this study, we instead can see from the example in Figure 4.6 that the couples Index-middle
and ring-little present respectively one synergy each, while the other two synergies are respectively
for wrist flexion and wrist extension. In Figure 4.6, thumb activity seems incorporated into the
wrist-extension synergy. Thus, a much stronger dimensionality reduction is performed by NMF in
this case, considering the larger number of joints involved and gestures explored than in Chapter
3.

For the same subject in Figure 4.6, by selecting only extrinsic or intrinsic motor neurons, the
synergies identified for all motor neurons are either merged or split. In particular considering
only intrinsic motor neurons (Figure 4.7), index, middle and thumb are associated respectively to
one synergy and only ring and little are still synergistically activated. For obvious reasons, wrist
activity in this case is no more visible and there is no synergy associated with the wrist. Instead,
considering only extrinsic muscles (Figure 4.8), the function of all the fingers except the thumb
are merged together, while a synergy associated to the thumb and partially to the ring complete
the information about the fingers. The two synergies for flexion and extension of the wrist are
identified as when considering all the motor neurons. Average values of similarity for synergies of
these two sub-groupings (intrinsic or extrinsic) with respect to taking all motor neurons is resumed
in Table 4.3. This table confirms globally that the same information is conserved if only taking
part of the total motor neurons according to these subdivisions. However, a greater difference in
synergy weights emerge by considering intrinsic only (less similar synergies for All-Intr comparison
by considering W). Differently, the time-varying information of intrinsic synergies is more similar
to the the ones of all muscles than in the case of extrinsic synergies (more similar synergies for
All-Intr comparison by considering H).

In the perspective of creating in future a large database with data of many subjects, consistency
of the identified synergies across subjects is fundamental. In Figure 4.10 it is possible to observe
consistency across subjects for some identified synergies. Although the relative small number of
subjects, it is possible to observe a relative consistency among at least 3 or 4 subjects out of 5. In the
case of considering all motor neurons (top panel), the second row presents for 4 subjects a synergy
interesting III DI, IV DI and ADM, clearly functional for ring-little actuation, while the fourth
row interesting three subjects can be associated to thumb actuation. In the case of considering
only intrinsic (bottom-left panel), it is very clear the common synergy related to thumb (first three
rows), index (fourth row) and little (fifth row), while the last could be related to ring and middle.
Again, in the case of a prevalent extrinsic muscle contribution, it is more difficult to provide a
functional interpretation to hand muscle synergies (even if generated from motor neuron synergies
as in this anatomical representation). The main cause of this problem is the difficulty of separating
finger contribution, while the activity of the wrist is prevalent and many identified motor neurons
are associated with this joint.

Although this stark difference in spatial information is provided by grouping separately intrinsic
and extrinsic muscles, from the point of view of kinematics estimation we cannot see any visible
difference in Table 4.4 between these two groupings. Both extrinsic and intrinsic seem to cross-
correlate with angles in a similar way for the 5 subjects considered. In this analysis we do not
consider wrist radial and ulnar deviation which would increase the number of motor neurons
responsible for wrist actuation.

Thus, in the perspective of single finger control, recording motor neuron activity from intrinsic
muscles by a sensorized glove would result easier in terms of determining a control signal associated
with each finger. In fact, in this study, by examining intrinsic muscle only, the identification
of one synergy for each finger is possible, except the ring which is united in a unique synergy
with the little finger (Figure 4.7). Also in the previous study the synergy associated with this
finger was the least identifiable, sometimes activating more during the 5-finger grip. On the other
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hand, with such a glove, information about wrist actuation would be probably lost or difficult
to identify as seen in Figure 4.7. It could be integrated with inertial measurement units (IMUs)
or other sensor revealing movement of the wrist. This type of wearable device could be useful
in the case of controlling virtual reality both for gaming and for rehabilitation purposes of hand
motor impairment, for example for post-stroke patients. However, for control of robotic hands
by transradial amputees, our results also say that we can easily distinguish synergies assigned to
wrist actuation with synergies assigned to finger actuation. This does mean that the function of
hand opening-closing could be easily distinguished from the function of wrist flexion-extension. It
is debatable whether control of a single finger is the priority for prosthesis control, while still a
robust control of few simultaneous joints cannot be assured in daily life by commercial prosthetic
devices [Roche et al., 2014], [Roche et al., 2019]. Thus a sensorised bracelet would be enough for
the control of hand prosthesis by amputees, eventually also as a gadget for able-bodied people to
control external devices. However, for this last group of people, single finger control may be more
difficult.

For the specific purpose of myoelectric control and HMI, DoF-wise NMF was conceived to
assign a synergy for each direction of a controlled DoF. In this way, it would be possible to record
many EMG channels, eventually more than one for each muscle, and then extract few control
signals sufficient to control the actuated DoF of a robotic limb. However, in the case of single
finger control we should consider at least one DoF per finger (MCP joint is the most reasonable),
plus considering thumb Abduction-adduction and opposition as two further DoFs. By adding also
one DoF for wrist-flexion extension, we reach 8 DoFs, for a total of 16 synergies. We applied
DoF-wise NMF on motor neuron SST and we compared all these 16 synergies with the motor
neuron synergies, around 4, of each subject, for all the three muscle groupings. Of course in this
comparison, the value of cosine similarity is related to the DoF-wise synergies among the 16 more
similar to the respective motor neuron synergies. Although an average cosine similarity lower than
0.8 was found by considering W of the two types of synergies, a similarity higher than 0.8 was
found by considering H, for all the three muscle groupings. This means that with less synergies
it is possible to obtain some of the control signals obtained with DoF-wise NMF. We found that
among subjects several activation signals (H) obtained with DoF-wise NMF were almost inactive
for all the tasks, thus maybe a high number of synergies over-fitted the dataset. It is reasonable
then to consider motor neuron synergies as a valid set of control signals, eventually by choosing a
number of synergies higher than the one prescribed by the change in slope criterion. As seen in
Figure 4.9, by selecting 6 synergies instead of 4, new synergies emerge from data associated with
joints which otherwise would be underrepresented.

Since the complexity of this dataset, this dataset is eligible for other physiological investigation
(the main limit is the number of subjects) or for myoelectric control algorithm validation. We
present in Chapter 6 all the new projects born by the collaboration with students and researchers
interested in this dataset, in particular for the application of deep learning models.
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Chapter 5

A novel rehabilitation and
myoelectric control framework: a
series of clinical case studies

This chapter reports a preliminary clinical investigation to implement a framework suitable for
different clinical case studies based on the perspective of multi-muscle motor neuron synergistic
organisation. In this chapter, the role of motor neuron identification and processing is central,
as in the rest of this thesis. Here, we argue how motor neuron information processing can be
helpful for a new generation of advanced neural interfaces. Also, we suggest how the variety in the
recording condition, long-term recordings, and the use of emerging technologies can be beneficial
for rehabilitation and myoelectric control. As a preliminary proof of concept of this framework in
clinics, we present the work done in this PhD in identifying motor neuron synergistic organisation
from multiple muscles in three cases of motor impairment: 3 acute/sub-acute post-stroke patients,
1 elective TMR transradial amputee with chronic post-stroke condition and 1 TMR osseointegrated
transhumeral amputee.

I recorded data from amputees at the Vienna General Hospital (AKH) in collaboration with
Professor Oskar Aszmann and his team, and from post-stroke patients at Charing Cross Hospital
in London, in collaboration with Dr Paul Bentley. In the case of Charing Cross Hospital, we
asked the participation of acute/sub-acute post-stroke patients, which required to implement the
experimental setup in challenging conditions, by adapting promptly the setup to the particular need
of the patients. All these experiments in Vienna and London contributed to making me more aware
of the difference between ideal experimental lab conditions and the clinical reality, understanding
the most important requirements for a rehabilitation and myoelectric control framework.

5.1 How motor-neuron-based neural interfaces can improve
rehabilitation and myoelectric control

In the last decade, motor unit identification had started to be considered for studying neuro-
degenerative diseases, impediments in motor control and prosthesis control for amputees. In
Chapter 1 we dedicated an entire section to the literature review on this topic in two separated
subsections, one dedicated to amputees and the other to motor impaired people, especially after
a stroke. Here, part of that information is recalled to argue on the importance of motor neuron
information processing for rehabilitation and myoelectric control.

[Cloutier and Yang, 2013], [Roche et al., 2014] showed how the main problem in neural and
myoelectric interfaces for prosthesis control was in terms of control strategies and not in terms
of robotics. Both reviews agreed that the advancement of the last generation of robotic assis-
tive devices does not correspond to an equivalent capability in dexterous control of these de-
vices by amputees. Recovering the most important motor abilities, especially grip and manip-
ulation, is still difficult with hand robotic prostheses. [Farina and Aszmann, 2014] argued that
recording EMG for prosthesis control guarantees more stability in control in the mid term with
respect to interfacing invasively nerves or cortical areas. In fact, muscles are biological ampli-
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fiers of the neural information sent through nerves from CNS and this neural information can
be separated by EMG decomposition from the peripheral information due to conduction vol-
ume properties [Farina et al., 2014b]. Thus, this is the main motivation in identifying motor
unit activity instead of using features indirectly quantifying the neural drive, such as rectification
[Dideriksen and Farina, 2019]. A second reason is a more accurate and rich information in terms
of motor unit recruitment strategies ([De Luca and Hostage, 2010], [de Luca and Contessa, 2012]),
quantification of CSI both in one ([Farina et al., 2014c], [Negro et al., 2016b]) and in multiple mus-
cles ([Laine et al., 2015], [Del Vecchio et al., 2019], [Tanzarella et al., 2020]), and other physiolog-
ical properties [Heckman and Enoka, 2012].

[Farina et al., 2014d] and [Kapelner et al., 2015] firstly demonstrated feasibility in EMG decom-
position on TMR amputees, and then [Farina et al., 2014a] and [Farina et al., 2017a] demonstrated
CSI identification in this condition. Finally, a more structured framework based on motor unit
identification and processing was proposed in [Bergmeister et al., 2017] and [Farina et al., 2017b].
The most important studies on EMG decomposition with post-stroke patients are [Li et al., 2015],
[Hu et al., 2006], [Chou et al., 2013], [Murphy et al., 2018], [Williams et al., 2020], while for Parkin-
son’s patients and tremor the studies of [Gallego et al., 2015] and [Puttaraksa et al., 2019] are
particularly important.

5.2 Remnant recruitment of motor neuron controlling hand
muscles in acute/sub-acute post-stroke patients

5.2.1 Introduction

New treatments for post-stroke patients may enhance their recovering during the different phases
of recovering after stroke. These phases can be classified in terms of the time following the stroke
event as follow:

• Acute phase: 1-7 days post-stroke event

• Early sub-acute phase: between 7 days and 3 months post-stroke

• Late sub-acute phase: between 3 and 6 months post-stroke

• Chronic phase: over 6 months post-stroke

The main problem is the large variety in motor impairment among stroke patients, in part for the
different nature of the cortical damage caused by the stroke. In particular, capability in recovering
is specific to each patient. It has been demonstrated that, by rehabilitation during the acute
phase, recovering can significantly improve [Coleman et al., 2017]. However, few studies on acute
or early sub-acute stroke patients had been conducted with respect to chronic patients, mainly
due to the fact that acute patients are hospitalised and not always motivated to rehabilitate, for
understandable psychological reasons. We faced several issues in our data collection in finding
available subjects for our experiments and in maintaining an emphatic interaction with them,
an essential requirement during recordings with patients. Experiments were short and with few
recordings to avoid stress for the participants. We explicitly said to them that they could quit at
any moment during the experiment.

The aim of this data collection was assessing the activity of motor neurons both in intrinsic
and extrinsic hand muscles in acute and early sub-acute patients. In fact, although after a stroke
some cortical areas are compromised, the intact parts of the motor cortex can still send signals
through nerves. Although these commands are not sufficient to actuate effectively the targeted
muscles, some sufficient myoelectric activity can still be identified. We wanted to assess whether
this activity was enough to produce control signals for future application in rehabilitation and
HMI. In this analysis of hand motor neurons, we tested two different feedbacks for the subjects
to study their muscle response. Consequently, two different task conditions were asked to the
subjects. We hypothesised that in this measured motor neuron activity a synergistic organisation
of the neural input to these motor neurons could be identified, as we have done in this thesis for
healthy participants. From an application point of view, we were interested in evaluating and
testing this motor-neuron-based framework for stroke rehabilitation.
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Figure 5.1: Setup of the experiments with acute/sub-acute stroke patients. In a) the grid placement
is represented, identical to the one adopted in Chapters 2, 3 and 4 for healthy subjects. In b) a
photo during an experiment is shown. It is visible the position held by the patients during the
recordings, inside their clinical dormitory to avoid movement of the patients far from their bed.
Position of computers and amplifiers was optimised for the maximal comfort of the patient and to
minimize noise and artifacts in the recording.

5.2.2 Subjects and methods

Subjects were 3 acute/sub-acute hospitalised post-stroke patients. Experiments were carried out
after less than four weeks post stroke. Patients could not move their hemi-plegic upper limb, if not
producing, in some case, spastic weak movements, completely not effective for the task required,
when asked to contract at their maximum level of contraction.

EMG signals were recorded from extrinsic and intrinsic hand muscles with six grids of 64 surface
EMG electrodes each (OT Bioelettronica, Torino, Italy), by following the same configuration of
Chapters 2, 3 and 4. Two 13x5 grids with 8 mm inter-electrode distance (IED) were placed over the
extrinsic extensor muscles (EXT) and the extrinsic flexor muscles (FLX), covering 6 extrinsic hand
muscles: extensor digitorum communis, extensor carpi radialis and ulnaris, flexor carpi radialis
and ulnaris, and flexor digitorum superficialis. Four grids with 13x5 electrodes at 4 mm IED were
placed over the first dorsal interosseous (FDI), the other three dorsal interossei (DI), the thenar
(THE), a muscle group comprehending 3 muscles, and the abductor digiti minimi (ADM) muscles.

Subjects either lied on their bed or they were helped to sit on a chair. After having placed
the electrode grids, each subject was asked to assume a comfortable position with the investigated
upper limb. Subjects were asked to perform grasp in two different task conditions, each one
repeated for three identical trials consisting in 5 repetitions each. The two grasp conditions were
a) a cylindrical grasp holding a cylindrical object, by modulating their contraction according to a
sinusoidal cue as a visual feedback, and b) imagining to open and close their hand by following a
robotic hand opening and closing in front of them.

For each recording, the first 40 s of EMG signals were concatenated, to have a total of 240 s of
concatenated recordings for 384 EMG channels. Concatenated EMG signals was then decomposed
to track the same motor neuron across different task conditions. The identified binary spike trains,
each one long as the original signals, presenting 1 at each firing timing and 0 everywhere else,
were low-pass filtered at 2.5 Hz and then normalized between 0 and 1, each one by their respective
maximum along the whole concatenation. NMF was applied as in Chapters 3 and 4 by extracting
from 1 to 10 motor neuron synergies and repeating 100 iterations for 10 times. Each of the 10
repetitions of the 100 iterations was initialized randomly. The change-in-slope criterion on the R2

curve applied in Chapter 3 and 4 (with MSE threshold of 1e−4) was used to determine the number
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Figure 5.2: Raster plots for three post-stroke subjects attempting to perform grasps in two differ-
ent conditions, respectively following a robotic hand autonomously and periodically opening and
closing and by holding a cylindrical object. Number of identified motor units is indicated for each
EMG grid to facilitate motor unit counting in the figure.

of synergies to extract.
As in Chapter 3 and 4, the grids covering multiple muscles were divided in bands, to associate

each motor neuron to a muscle by segmenting their motor unit spike-triggered average (STA). Thus,
we were able to represent motor neuron synergy weights as muscle synergy anatomical maps, as
in Chapters 3 and 4.

5.2.3 Results

The number of identified motor neurons can be seen for each electrode grid in Figure 5.2 for the
3 subjects. In total, 88 motor neurons were analysed, respectively 33, 34, and 21 for the three
subjects, with an accuracy corresponding to a PNR of 33.5± 5.2dB. For these three subjects, for
each grid, at least 2 motor neurons were always identified. By grouping motor neurons per muscles,
we found that some muscles were not represented by identified motor neurons. As in the case of
several healthy subjects in the previous studies, flexor pollicis brevis did not present identified
motor units, for reasons we tried to justify in the Discussion of Chapters 3 and 4. One motor
neuron per each of the three interossei (II, III, and IV) were found only for the third subject, while
the other two presented respectively one or two interossei activated among the three. While for the
second subject all the 6 extrinsic muscles comprehended by the setup were associated to identified
motor neurons, extensor motor neurons for the other two subjects were associated respectively
only to extensor carpi ulnaris and only to extensor carpi radialis.

Synergistic organisation of the identified motor neurons grouped by the 14 recorded muscles
is represented in Figure 5.3 for the three subjects. Motor neuron synergy weights are represented
as anatomical maps to interpret in an easier way the synergy functional role. In fact, for all the
6 recordings subjects were asked to perform a 5-finger grasp, but in the first 3 recordings (40 s
each) no object was grasped and the task was intended as a gesture to mimic the movement of
a robotic hand in front of them. Instead, in the second 3 recordings subjects actually grasped a
cylindrical object, so having probably some kind of remnant tactile feedback and proprioceptive
feedback. This was the rationale to expect different synergistic organization for the two types of
task conditions, as we indeed can confirm in these results. The number of identified synergies was
always determined by the change in slope criterion on the R2 curve applied in Chapter 3 and 4,
with a MSE threshold of 1e-4, represented in the figure for the three subjects.

The first subject presented 3 synergies, two activated during the grip of the cylindrical object
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Figure 5.3: Motor neuron synergies for the three stroke subjects. Respectively 3, 4 and 3 synergies
were identified for the three patients. R2 curve, synergy weights (represented as anatomical maps,
as in Chapters 3 and 4) and activation signals are represented for each subject.

and one while following the robotic hand. Motor neurons from all the considered muscles (among
the one presenting identified motor neurons) were involved in the first synergy, while mainly flexor
digitorum superficialis was involved in the second synergy (the one activated during the gesture)
and mainly intrinsic muscles were involved in the third synergy. Among the two activation signals
of the synergies associated with the grip of the cylindrical object, the first appears following rapid
contractions (involving all the muscles), while the second seems fluctuating around a steady level
of contraction (involving mainly intrinsic).

The second subject presented a more complex pattern of motor neuron synergistic organisation,
with 4 identified synergies, three mainly activated during the gesture and one during the grasp of
the cylindrical object. The three synergies activated during the gesture presented different timings
during the grasp cycle: the first seems activated at the beginning, involving mainly flexor carpi
radialis, the second during the central part of the contraction, involving mainly intrinsic muscles,
and the third in the phase of opening the hand (involving mainly extensor digitorum communis).
The first of these three synergies is also activated in the final part of two of the three recordings
during the grasp of the cylindrical object, while one synergy, involving mainly the ADM and flexor
muscles of the wrist, is only activated during the grasp of the cylindrical object.

The third subject, the one presenting less motor units and the lowest number of muscles pre-
senting identified motor units, presented 3 synergies each one with few mainly activated muscles.
All these three synergies seemed activated, although differently, in both types of grasp. The most
regular and recurrent one in terms of activation was the third involving flexor carpi radialis and
opponens pollicis. The other two presented as the most activated muscles FDI and IV DI respec-
tively.

5.2.4 Discussion
For the first time, motor unit identification was achieved on acute/sub-acute stroke patients with
very weak movement capabilities, completely unable to produce sustained forces or coordinated
movements, although we were not able to assess absence of movement or force exertion. The
relative spinal motor neuron discharge patterns were analysed to look for a synergistic behaviour
which was found. As expected, the main difference in this synergistic behaviour depended on the
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different type of grasp required to the subjects, respectively a gesture to follow a robotic hand
opening and closing, and grasping a cylindrical object by following a sinusoidal cue in a screen for
modulating the contraction. No visible movements could be observed by eye, if not some small
movement at the maximum effort of contraction, therefore finding so much neural information
synergistically organised is not a trivial result. These motor neuron synergies could be useful to
be used as control signals for hand exoskeletons or as biofeedback during rehabilitation.

The number of identified motor units is variable among the three subjects for each grid, sug-
gesting that these measurements should be taken for multiple sessions to optimize both the number
of identified motor units and the number of recruitment motor units among the one identified for
each task. Indeed, on one hand the problem is to optimize the electrode grid position and the
experimental conditions to enable the decomposition algorithm to find as many motor units as
possible. This was not easy since the few available time we had to sort the setup in the hospital
room around the bed of the patients and since the time for running the experiment was less than
one hour. On the other hand, we want also maximize, among the identifiable motor units, the
number of recruited motor units. This aspect depends on how the subjects are motivated, on the
type of provided biofeedback and on the training of the subject in following the biofeedback. The
discharge patterns themselves of the recruited motor neuron could be used as biofeedback with a
robust and reliable implementation of an online decomposition on the field. Hopefully, it will be
possible soon, since the results of [Barsakcioglu et al., 2020].

From a neuroscientific perspective, the presence of active spinal motor neurons innervating
multiple muscles, both extrinsic and intrinsic, means that also in the acute and early sub-acute
phase after a stroke, when neural plasticity in the brain have just started to compensate the
missed cortical parts with the generation of new neural circuitry, we can have myoelectric signals
containing neural information modulated in a synergistic way. These synergistic aspects can be
considered muscle synergies, since they involve more than one muscle per synergy. Moreover,
they can also be considered motor neuron synergies, since it is possible to observe different motor
neurons per muscle and analyse their synergistic behaviour among a pool of multi-muscle motor
neurons. These synergistic phenomena among motor neurons in acute stroke patients should be
investigated more in detail by expanding the number of task conditions required to the subjects.

During these experiments we understood the importance of minimizing the time of preparation
of the subject and so the necessity in the future perspective of a wearable device. Moreover, if we
had the opportunity to remotely monitor the rehabilitation of these patients everyday from their
bed, we could study the reliability of these motor neuron synergies as biomarkers for improvement
during rehabilitation during the acute phase. We could also augment the number of task condi-
tions required, as suggested above, since the subject would be more comfortable to perform the
experiments when preferred. These were the observations which moved me to consider the design
of a framework as we propose in the last section of this chapter.

5.3 Pre and post-rehabilitation recording sessions for a tran-
shumeral TMR and osseointegrated amputee

Although the entire project of this thesis is focused on muscles actuating the fingers and the wrist,
i.e intrinsic and extrinsic muscles of the hand, the proposed framework based on motor neuron
synergies can be valid for different set of muscles, and we aim to expand such a framework in this
direction. The case presented here, of a double-TMR osseointegrated transhumeral amputee, thus
amputated at the mid level of his humerus and missing even the elbow, is interesting not only in
the perspective of seeing a further application of our framework for transhumeral amputees, but
also to analyse control signals aimed to control the wrist and the fingers, through the information
provided by TMR of radial and ulnar nerves. Thus, we provide here the perspective of studying
motor neuron synergistic organisation in the case of TMR transhumeral amputees for the control
of hand movements. This can lead to interesting perspectives for advanced myoelectric control of
robotic limb prostheses.

5.3.1 Subject history and surgical operation

At the time of the first session in June 2019 (PRE), the male participant was 53 years old, while
the second session was in January 2020 (POST). He underwent two years before a transhumeral
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Figure 5.4: HD-sEMG grid placement on the stump of a transhumeral osseointegrated amputee.
Two grids, MIN2 and MIN3 are placed respectively over the two TMR, MIN2 over the lateral
head of the triceps and MIN 3 over the short head of the biceps. IN 1-4 was placed only in the
second session to cover more the TMR in the lateral head of the triceps, found to be extended
more distally than only in the MIN 3 position. MIN 1 and MIN 4 cover respectively the long head
of the biceps and the medial head of the triceps, which maintain their natural role of respectively
flexing and extending the elbow.

amputation on the left side and received simultaneous one-staged osseointegration as well as TMR
in May 2018. TMR consisted in transferring ulnar nerve termination to the short head of the
biceps. Long head of the biceps was left without nerve transfers to be used as an “elbow flexion”
signal. Deep branch of radial nerve termination was innervated to the lateral head of the triceps.
The rest of the triceps was left without nerve transfers to be used as an “elbow extension” signal.
The two sessions were conducted pre and post a period of rehabilitation and familiarisation with
myoelectric control of a robotic prosthesis.

5.3.2 Materials and methods
Figure 5.4 shows the EMG electrode placement repeated across the two sessions. Grids are in-
dicated with a code relative to the channels of the EMG amplifier used for the recording (Quat-
trocento, OT Bioelettronica, Turin, Italy) respectively in the order, with a step of 64 channels
each, IN 1-4, IN 5-8, and from MIN1 to MIN4 (corresponding to six 64-channel grids). While
grids from MIN 1 to MIN4 were common in the two sessions, in POST a fifth grid was attached
to expand the recording space and signals were analysed (grid IN 1-4 in figure), and also a sixth
grid was attached on the deltoid but the relative recorded EMG signals were not analysed (grid
IN 5-8 in figure). Four 8 × 8 squared electrode grids with 10-mm IED were placed over the four
sites where control signals were expected, as explained above. Grid MIN 1 was placed over the
long head of the biceps, grids MIN 2/IN 1-4 over the lateral head of the triceps (first TMR), MIN
3 over short head of the biceps (second TMR), while MIN 4 over the medial and long head of the
triceps. Preparation of the setup took more time and was less optimized in PRE, while in POST
we applied what we learnt in PRE in terms of setup optimization.

In both sessions, sustained contractions were asked to the participant, with shoulders in neutral
position, asking to imagine different tasks. While in PRE a point moving along a cue was asked to
be followed with each contraction (no biofeedback was provided), in POST the RMS-based heating
map of the most important EMG electrode grid for the required task was provided as biofeedback.
The visualised heating map, generated online, corresponded to the interpolated RMS values of
each channel with a timing window changeable by the operator to optimize the trade-off between
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online representation and smoothness in time elapsing. In PRE the sustained contraction lasted
15 seconds, while in POST they lasted only 10 seconds but were repeated twice. Before and after
these steady sustained contractions, gradual and slow ramps were asked respectively to reach the
level of the steady contractions and to release from the steady contraction to rest.

The imagined tasks in common between the two sessions were: elbow flexion and extension,
forearm pronation and supination, hand opening and closing, wrist extension, index extension, little
abduction, thumb abduction and opposition, all-finger abduction and adduction. For PRE also the
simultaneous activation of 2 DoFs was asked, respectively hand closing and hand opening during
forearm pronation. In POST, little opposition and wrist flexion were asked, while no simultaneous
multi-DoF activation was executed.

EMG signals of the sustained contractions in their steady part were segmented (15 s for the
first session, 10 s for the second session) and then concatenated. Concatenated EMG signals were
then decomposed with CKC in the constituent trains of motor unit action potentials. STA was
computed to locate spatially each motor unit. The binary spike trains were low-pass filtered at 2.5
Hz, normalized between 0 and 1, and NMF was applied as for the other cases above.

5.3.3 Results

In POST a greater number of motor units was identified (16) with respect to PRE (only 11), with
an average accuracy among all the 27 analysed motor units quantified by a PNR of 28.4± 3.2dB.
By comparing the raster plots of the two sessions represented in Figure 5.5 (POST) and Figure
5.6 (PRE), we can also see that in POST discharge patterns are sparser and it is possible to
distinguish better each task, with respect to PRE. As explained in Methods, in POST we added
a further rectangular grid (IN 1-4) which covered the distal lateral head of the triceps, which was
reinnervated with the deep branch of the radial nerve termination. We examine here in detail
before POST and then PRE to show before the richer information obtained in POST and then
comparing it with the poorer information obtained in PRE.

We can see in Figure 5.5 (POST) that among different tasks, discharge patterns look maximally
different across almost all the tasks, except patterns for hand open and wrist flexion. On the
contrary, within each task, by comparing the first with the second repetition, patterns are almost
identical. Moreover, in the first repetition for the forearm pronation almost no motor neuron firings
are identified. So in the second repetition, the subject was able to recruit better motor units to
produce distinguishable patterns maximally different across the tasks. The radial nerve TMR (grid
IN 1-4) provided the greatest number of motor neurons codifying mainly for finger actuation. All
motor units except the second identified for IN 1-4 are spatially localized over the distal part of the
long head of the triceps (radial nerve TMR), while the second motor unit has a different location,
probably covering another muscle (Figure 5.5.b). The ulnar nerve TMR (grid MIN 3) provided
only 2 identified motor units, which were expected to actuate the ulnar part of the hand. Although
they fired for little finger actuation and hand closure, as expected, also activation during elbow
flexion, index extension and forearm supination is visible. For the POST session, grid MIN 2 was
expected to provide control signals from the radial nerve TMR, but no motor units were identified
for this grid, while the whole information for the radial nerve TMR was provided, as said, by the
grid IN 1-4 only.

In Figure 5.6 (PRE) patterns are less distinguishable for different tasks. Here, for the radial
nerve TMR (covered by grid MIN 2) only one motor unit was identified, mainly activated during
all the tasks except elbow flexion and thumb actuation. For this session it was not possible to
observe 2 repetitions for the same task. However, differently from the POST session, for ulnar
nerve TMR (MIN 3) 6 motor units were identified (vs 2 in POST). Finally, only 1 motor unit
was identified for MIN 4 covering the medial head triceps for elbow extension (vs 4 in POST).
So, in PRE, the maximal information was provided by the ulnar TMR instead of the radial TMR,
unlike in POST. In PRE, activity identified by MIN 1, 2 and 3 cover almost all the tasks, except
thumb adduction (which is instead recognizable with motor units identified with grid IN 1-4 in
POST), although discharge patterns for each task cannot be easily discriminated in some case (for
example the pair hand close and finger adduction, or the pair hand oper and finger extension).
Finally, an unexpected pattern in PRE occurred for elbow flexion, where the TMR short head
of the biceps (expected to control the hand) instead of the long head of the biceps (expected to
control elbow flexion) is activated. Moreover, for this task only of elbow flexion, the medial head
of the triceps covered by grid MIN 4 results activated, although expected to be activated for elbow
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Figure 5.5: Motor unit identification in the session post-rehabilitation (POST). In a) the raster plot
for the identified motor units is represented, by grouping them per each electrode grid. Imagination
of tasks involving elbow, wrist, hand and single fingers was asked to the participant. IN b) motor
unit localisation in the respective recording grid is provided. IN 1-4 was a rectangular 13x5-channel
grid, while the other 3 8x8-channel grids (see Figure 5.5). Each sustained contraction was 10-s
long.
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Figure 5.6: Motor unit identification in the session pre-rehabilitation (PRE). The same represen-
tation of raster plots and motor unit localisation is provided respectively in a) and b), as in Figure
5.5. Little opposition and wrist flexion were not asked and instead a combination of two different
DoFs was asked (forearm pronation and respectively either hand open or close). Each sustained
contraction was 15-s long.

extension. This could be a further proof of a lack of sufficient control of the missing DoFs before
the rehabilitation phase.

The analysis of motor neuron synergistic organisation during the POST session is represented in
Figure 5.7. Synergistic organisation was assessed only in this second session which clearly present
better task discrimination than the PRE session (from Figure 5.5 and Figure 5.6). This result
is a demonstration of how synergistic organisation of motor neurons assessed by NMF can be
useful to highlight the evident motor neuron discharge pattern modularity shown in Figure 5.5.
In a) the R2 curve and the corresponding MSE curve to assess the change-in-slope criterion are
represented, and a threshold of 1e-4 for the MSE was chosen, by determining 6 identified motor
neuron synergies. The contribution of each motor neuron in the synergies is represented in b). For
two synergies, only one motor neuron per synergy is mainly active, identified for the radial nerve
TMR (grid IN 1-4). With different colors, one for each synergy, the different information obtained
by putting HD-sEMG only on TMR zones is indicated. The functional role of these synergies, so
the meaning of these different coloured boxes, is indicated in c), by representing the activation
signals, corresponding to the synergy weights represented in b). The functional interpretation of
the 6 synergies seems respectively: (1) finger abduction (getting the maximal distance among the
5 fingers), (2) hand close, (3) a synergy activated during both elbow and wrist extension, activated
also during forearm supination, (4) hand open (active also during wrist flexion), (5) pointing the
index finger (since it is activated both for index extension and hand close), and (6) elbow flexion.
As visible in the figure, among these 6 control signals constituted by the identified synergies,
ulnar nerve TMR provides further information with respect to radial nerve TMR only for finger
abduction.

In c), only the first repetition of 10 s each per task is represented, for a total of 15 s of
concatenated data (15 tasks considered). This is because, as also evident from Figure 5.5, the
synergy activation signals in the second repetition followed a similar behavior with respect to
the first repetition. The examination of the activation signals for each task appears essential for
synergy functional interpretation, more than analysing the synergy weights, since the high number
of tasks and the possibility to see the activation of each synergy in time during each task.

5.3.4 Discussion
Covering more distally the stump in the POST session with respect to the PRE session allowed to
cover better the TMR of the radial nerve, which enables to recognize distinguishable and stable
patterns for finger actuation. However, TMR for the ulnar nerve was better covered in PRE, iden-
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Figure 5.7: Motor neuron synergies across 15 tasks in a transhumeral amputee with two TMR. In a)
6 synergies are identified with the change-in-slope criterion on the R2 curve (MSE threshold 1e-4).
In b) the synergy weights representing the motor neuron contribution to each synergy are shown,
and the functional information provided by the grid over the TMR of the radial nerve (lateral head
of the triceps) are indicated with different colors. This functional meaning is indicated in c) where
the activation signals for the first repetition of the 15 tasks are represented.
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Figure 5.8: Representation of the elective amputation of a TMR chronic post-stroke subject (a).
In b) Four grid are placed respectively of the extensor muscles of the forearm (Grid 1 and Grid 4),
while the other two are placed over the pronator and extrinsic flexor muscles (respectively Grid 2
and 3).

tifying much more motor units, contributing to the differentiation of the patterns during different
tasks, although not so effectively as for IN 1-4 in POST.

In general, we can conclude that even with a high-density distribution of EMG electrodes (a
number greater or equal than 256 channels in total), a careful and critic selection of the area
to cover is fundamental, especially in the case of a stump with a large section, as in this case.
Position of the TMR and of the muscle under the stump should be, when possible, scanned with
ultrasonographic imaging and then being consistent as much as possible across different sessions,
preventing an excessive electrode-shift across sessions. It is evident that we could not be able
during these two pilots to be perfectly consistent in terms of grid positioning, although we tried to
place the same grids over the same muscles by using photos taken during PRE, when we conducted
POST.

With the comparison of these two sessions we are able to plan a definitive experimental protocol
and setup for a data collection of a representative number of TMR osseointegrated subjects. The
main difficulty is in the relative still small population of this type of amputee subjects, since
osseointegration is an emerging surgical operation.

5.4 TMR and elective trans-radial amputee chronic post-
stroke individual: a motor neuron analysis on extrinsic
hand muscles

5.4.1 Subjects and methods
The subject was a 52 years old man and it was recorded in December 2019. He suffered from a
right-sided hemiparesis after a stroke in 2010. In a first visit at the Vienna General Hospital in
2015, he showed a spastic right arm with good cognitive control of his proximal arm muscles but no
function of his hand and forearm. In a second visit in early 2018, the planned treatment consisted
in three stages.

• Stage 1. TMR for the generation of myoelectric signals in the forearm codifying mainly for
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wrist flexion and extension. Nerves to pectoralis medialis and inferior were innervated to the
flexor muscles in the forearm via long nerve graft. A nerve anastomosis between the triceps
nerve branches and the deep branch of the radial nerve was created to control the hand.

• Stage 2. Cognitive signal training after TMR via EMG-biofeedback and training of prosthetic
control with a hybrid prosthesis.

• Stage 3. Derotational osteotomy and elective transradial amputation (Figure 5.8.a).

The grid placement for the experiment is represented in detail in Figure 5.8.b with respect to
the covered muscles. Grids 1 (a rectangular 13x5 grid with 8-mm IED, transversal to the muscle
fibres) and 4 (8x8 with 10-mm IED) covered the extrinsic extensor muscles, respectively in the
proximal and the distal part of the stump. Grid 2 and 3, two rectangular 13x5 grids with 8-mm
IED were put adjacent along the longer side, transversally to the muscle fibres, to cover respectively
the pronator and the flexor digitorum communis. Both these two grids also covered flexor carpi
ulnaris and radialis.

The subject sat in a comfortable position in front of a screen representing the myoelectric
activity of one of the electrode grids, considered for each task the most significant to be followed as
a biofeedback. The myoelectric activity of each selected grid per task was represented in terms of an
activity surface with a custom-made software (see Appendix B). The tasks required to the subject
were wrist flexion, wrist extension, hand close, hand open, pronation and supination, repeated for
two different postures of the elbow, fully extended and at rest (so 12 task conditions). In fact, since
the nerve anastomosis for the TMR to the deep branch of the radial nerve started from the triceps
nerves, we wanted to observe the effect of the triceps activation on the myoelectric activation of the
forearm muscles. For each task condition, the subject was asked to perform sustained contractions
of around 10 s for four repetitions, by gradually contracting and relaxing muscles respectively at
the beginning and at the end of the steady contraction.

The 12 recordings (one for each task condition) were decomposed singularly, each one for
its entire duration. Then, motor units across the 12 task conditions were tracked, by matching
their STA with 2D cross-correlation. To do so, for all the possible permutations between pairs of
recordings among the 12, the sets of identified motor units were matched by their STAs. Only
motor unit pairs over a 2D cross-correlation threshold of 0.7 were considered for the tracking. The
tracking was implemented by creating a chain of the motor units of different recordings ordered
by their 2D-cross correlation value, in a descent order from the highest value of cross-correlation
between the pairs. For instance, a motor unit in recording A, matching with a motor unit in
recording B and C, was identified with the motor unit in B or C based on the highest cross-
correlation between the two pairs. Then, the spare motor unit not identified with motor unit in
A, was reconsidered, at the next iteration, for all the other possible matching with motor units of
all the other recordings. The same tracking was then considered also by separating the two elbow
conditions, i.e. either tracking motor neurons only across the recordings with extended elbow or
only across recordings with elbow at rest.

The binary spike trains of the tracked motor units across the different tasks were then low pass-
filtered at 2.5 Hz with a 4th-order Butterworth filter, normalized between 0 and 1, and factorized
by NMF, by following the same procedure of the stroke subjects above.

5.4.2 Results
A total of 62 motor neurons were identified with an accuracy corresponding to a PNR equal to
34.0 ± 5.8. The raster plot of the identified motor neurons across the different task conditions is
shown in Figure 5.9. The discharge patterns for all the task conditions were similar for the elbow
extended, while the main differences can be observed for the condition of the elbow at rest. Much
less motor neurons were recruited when elbow was at rest, with the only exception of hand close
with elbow at rest. For this task condition, 7 motor neurons were recruited for the extensor muscles
(5 for Grid 1 and 2 for Grid 4), 13 for the grid over the pronator and 10 for the grid over the flexor
muscles. Thus, by observing the discharge patterns, it is not evident a great difference across the
12 tasks except a) the difference between elbow extended and elbow at rest, and b) the difference
between hand close and the other task condition with elbow at rest.

The motor neuron synergistic organisation intuitively visible in Figure 5.9 was quantified by
NMF and represented in Figure 5.10. Only 2 synergies were identified with the change-in-slope
criterion on the R2 curve (a). By looking at synergy weights in (b), the first synergy involves
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Figure 5.9: Above, raster plot of the identified motor neurons across the different task conditions.
Below, a zoom of the discharge pattern in a epoch of 5 s is provided and the spike-triggered average
of a motor unit per each grid is shown.

more the motor neurons from the extensor muscles, while the second synergy involves more motor
neurons from the grids over the pronator and the flexor muscles. By looking at the activation
signals in (c), the first synergy is equally activated for all the tasks when the elbow is extended,
while the second synergy is mainly activated for hand close.

In Figure 5.11 we represent the synergistic organization identified by tracking the motor neurons
separately for the two task conditions. In panels (a), (b) and (c), respectively the R2 curve,
synergy weights and activation signals are represented for motor neuron synergies extracted only
across tasks with extended elbow. In this case we can identify up to 5 synergies. By looking to
the activation signals in (c), the first synergy is mainly activated for hand opening, the second is
mainly activated for hand closing, the third for wrist extension and partially for wrist flexion, the
fourth for supination and in a weaker way for pronation and wrist extension, while the fifth synergy
is activated for wrist flexion and pronation. By looking at synergy weights, a perfect coherence in
motor neuron participation to synergies seems to be found. In fact, motor neurons from extensor
muscles were mainly activated in the first, the third and the fourth synergy, i.e. the synergies
respectively activated for hand opening, wrist extension and supination. Motor neurons from the
Grid 2 over the pronator were more activated, as expected, for the fifth synergy activated during
pronation, while motor neurons from the Grid 3 of the extrinsic flexor muscles (where also the
flexor digitorum superficialis was present) were mainly activated for the second synergy, activated
during hand closing.

In panels (e), (d) and (f), motor neuron synergies are represented for the elbow at rest. In this
case, only the grids over the pronator and the flexor muscles were considered, since they were the
ones where motor neurons activated for more than one task were found. Also in this case 5 synergies
were identified. By looking to the activation signals in (f), the first synergy is mainly activated
for wrist flexion and hand opening, the second is mainly activated for wrist actuation and hand
closing, the third for wrist extension and hand opening, the fourth for hand closing and supination
and the fifth for hand closing only. Thus, the task of hand closing involves three different synergies,
one which is activated for hand closing only and the other two involved in other movements of the
forearm and the wrist. By looking at synergy weights, the second synergy involves only 2 motor
neurons, one per grid, while the other synergies all involve at least 6 motor neurons. For all the
synergies, motor neurons in both grids are involved, maybe because we covered some muscles in
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Figure 5.10: Motor neuron synergies of a TMR elective post-stroke subject. Respectively, in a), b)
and c), R2 curve, synergy weights and activation signals are represented.

common between the two grids (as explained in Methods).

5.4.3 Discussion

The synergistic organisation of 62 motor neurons across 12 different tasks conditions was considered
in a patient case still uncommon in the literature. This case is constituted by a chronic post-stroke
individual who decided to undergo elective amputation for limb reconstruction with a robotic
prosthesis, after a surgical operation of TMR, different from the TMR usually implemented in
amputees. This difference is both in the target, a nerve not receiving signals after the stroke
(instead of innervating a muscle in the stump), and in the source, by tacking neural commands
from a nerve still used for actuating the elbow joint, instead of receiving commands from a nerve
without no muscles to innervate, since removed with the amputation.

The neural command received by the triceps nerve branches significantly augments, as expected,
the activity of all the forearm muscles, which all recruit more motor neurons, in particular the
extrinsic extensor muscles of the hand. This sharp difference in the discharge patterns between
the two elbow conditions leads to having only 2 motor neuron synergies, when the MNF is applied
on the motor neurons tracked considering both the elbow conditions. As expected by seeing the
raster plots in Figure 5.9, in Figure 5.10 one main synergistic organization is due to motor neurons
activated for elbow extension condition, while the other is mainly relative to hand closing, a task
during which a quite higher number of motor neurons are recruited than for the other tasks in
both elbow conditions, mainly due for motor neurons from Grid 2 and 3.

Thus, this is why we separated the two elbow conditions to evaluate how tasks are discriminated
in terms of motor neuron synergistic organization in the two cases (Figure 5.11). In both cases
we can identify up to 5 synergies. We have to conclude that task discrimination is better when
the elbow is extended, as expected, since the TMR was aimed to increase the control of the plegic
forearm muscles in the stump. In fact, one clear synergy is identified for hand opening and one
for hand closing. Then, one synergy is mainly activated for supination, while another mainly
activated for pronation and wrist flexion. Finally, the last synergy is clearly associated with wrist
extension. Instead, in the case of elbow at rest, three synergies are activated during hand closing,
plus other tasks, while two synergies are activated for hand opening and other tasks. Although this
demonstrates that a remnant activity in the plegic forearm muscles could be already enough to
control at least a couple of DoFs, we can conclude that the TMR from the triceps nerve branch to
the deep branch of the radial nerve is beneficial to improve myoelectric control. Thus, the subject
was, at the time of experiment, to be already able to differentiate these neural commands from the
triceps to control different tasks.

By looking at the activation signals during extended elbow (Figure 5.11.c), the "wrist-extension"
synergy is slightly activated also during wrist flexion, probably because of the need to compensate
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Figure 5.11: Motor neuron synergies identified across the two elbow conditions separately. Re-
spectively, in a), b) and c), R2 curve, synergy weights and activation signals are represented for
extended elbow, while in d), e) and f) the same quantities are represented for elbow at rest, only
for two grids, the ones where we found motor neurons activated for more than one task.
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for the wrist-flexion contraction, as well as in the case of the secondary activity of the "supination"
synergy during pronation. An interesting association between wrist extension and supination, and
wrist flexion and pronation can be observed by seeing respectively the "pronation" and "supina-
tion" synergies. This can be due to a natural combination of these two degrees of freedom in many
daily activities.

These findings in terms of motor neuron synergistic organisation are interesting and promising
for prosthesis control. In fact, this very unique patient case, who just started rehabilitation at
the time of the experiment, after only a few months from the surgical operation, suggests that
there may be room for improvement in terms of production of discriminable discharge patterns for
controlling the main DoFs of a robotic hand. Since at the moment of the experiment the subject
was able to produce five control signals, it is reasonable that with more training he could be able to
differentiate even better these commands. In particular, simultaneous control of multiple degrees
of freedom is still needed to be tested. For a training to improve task discrimination, a biofeedback
could be constituted by an online representation of the firing patterns of the identified motor units,
when online decomposition algorithms will be enough robust to be tested in clinics. The possibility
to improve in differentiation and simultaneous proportional control with the commands from the
nerve triceps is suggested by the ability of the subject to unawarely recruit synergistically different
group of motor neurons for more than two tasks also with the remnant activity of the plegic forearm
muscles, without the signal from the triceps.

To conclude, a motoneuron-synergy-based framework could be highly beneficial for post-stroke
TMR amputees both for rehabilitation and for robust myoelectric control. To identify robust
biomarkers during long-term based on motor neuron synergistic organisation, the same synergistic
patterns should be assessed many times in a multi-day approach. This type of experiment would
take significant time for the patients, if the presence at the hospital was required. Instead, this
monitoring would be much easier with a remote observation based on a wearable device for HD-
sEMG recordings and a cloud system to share data with bioengineers and doctors.

5.5 Conclusion
In this chapter, the motor-neuron-synergy-based framework of different was tested for different
clinical cases. We showed how the proposed framework offers interesting opportunities in the
study of motor control during motor impairment, how it can provide few control signals codifying
for different tasks, and, in a long-term recording perspective, and how it may provide biomarkers
to quantify the evolution of motor performances during rehabilitation. However, these are very
preliminary results conducted on few subject with the only aim to illustrate the possibilities offered
by the proposed framework. A great effort is still to be done to conduct extensive studies on these
type of motor impaired people by involving more task conditions, multi-day observations and
integrating other technologies with HD-sEMG and decomposition. This is what we suggest in the
next and last chapter.
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Chapter 6

Conclusions and future perspectives

6.1 A summary of the work presented in this thesis

To the best of our knowledge, for the first time this thesis presents a framework based on the
extraction of control signals from a pool of motor neurons innervating many muscles. Between
40 and 70 motor neurons per subject (7 in total) were identified in the first dataset analysed
in Chapter 2 and 3, while around one hundred of motor neurons per subject (5 in total) were
identified in Chapter 4. In the study of Chapter 2, published in the Journal of Neural Engineering
[Tanzarella et al., 2020], a first presentation of the framework targeting 8 intrinsic muscles and 6
extrinsic muscles with respectively 256 and 128 electrodes (384 in total) is provided. Also, for the
first time, common synaptic input is quantified by PCA among all the motor neurons innervating
the 14 muscles and the first principal component results positively correlated with the force. In
the next two chapters, from the spike trains identified across multiple task conditions (7 grip types
for the dataset in Chapter 3 and around 50 gestures in Chapter 4), NMF was applied to extract
control signals then correlated with biomechanical features to assess their proportional estimation
of movement intention. These control signals were associated respectively one to each finger in
opposition with the thumb in Chapter 3 and to combination of fingers and wrist DoFs in Chapter
4. In the study of Chapter 3, published in the Journal of Neuroscience [Tanzarella et al., 2021],
we proposed a neuro-physiological speculation about how the central nervous system could control
single motor units instead of muscles as indivisible actuators. A better functional interpretation
and force estimation is proved for these so-called motor neuron synergies with respect to muscle
synergies obtained by the same targeted muscles. The limit in representation of finger movements
presented in chapters 2 and 3 was due to the unprecedented complexity of the setup and the
requirement of isometric contraction. However, in Chapter 4, by measuring kinematics with motion
capture, we enlarged the movement range and we decomposed successfully from slow dynamic
contraction.

Both principal component analysis (PCA) and non-negative matrix factorization (NMF) enable
the extraction of a few representative control signals from a great number of inputs. The great
number of inputs is needed to collect the maximal possible neural information from the investigated
muscles, and then dimensionality reduction is needed to control a lower number of DoFs. Since
the CKC is based on the mathematical principles of the independent component analysis (ICA)
we could say we explored the three most commonly adopted dimensionality reduction techniques
in the same thesis. Each of these three dimensionality reduction approaches was used for different
purpose:

• CKC was used to identify the constituent train of motor unit action potentials present into
the HD-sEMG channels and it is a non-linear dimensionality reduction, providing as output
the firing occurrences of the motor unit spike trains;

• PCA was used to identify the common synaptic input among motor neurons of different
muscles (estimated by the first principal component) for each single recording at time; it is
a linear dimensionality reduction technique;

• NMF was used to identify different neural primitives, i.e. the motor neuron synergies, by
looking for time-invariant patterns (the synergy weights) and time-varying control signals
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(the activation signals) interpreted at a functional level for controlling different combinations
of DoFs.

These three techniques can be considered as quasi-unsupervised machine learning techniques, which
need only the intervention of a human user to manage the succession of the different tasks to provide
to these algorithms. The learning is at the level of the generation of the mixing matrix for the
CKC, of the loads for PCA and of the synergy weights for the MNF. This could be extracted with
a training dataset and then tested online with the data acquired during the control. The functional
interpretation of the time-variant and time-varying quantities is done after the training extraction
by correlation with biomechanical quantities, i.e. force or kinematics. No reconstruction of a
test dataset is evaluated in this thesis, since we are entirely focused on analysing and interpreting
from a physiological and neuromechanical point of view the identified spatio-temporal patterns
during the training phase. We consider the online application and the improvement in learning
of these algorithms as a technical future perspective of this project. This is also because of the
unavailability of online decomposition for the complex setups presented in this thesis.

In Chapter 5 we applied these techniques in the case of motor impaired people, respectively
three acute post-stroke individuals, a trans-humeral amputee recorded in 2 sessions, PRE and
POST rehabilitation, and a trans-radial amputee who underwent an elective amputation for limb
restoration after being impaired by a stroke. In all these three cases, depending on the complexity
of the patterns required to these subjects, we identified motor neuron synergies clearly associated
with different DoFs and eligible as control signals for HMI. However, in this case we did not have
force or kinematics to compare with these quantities since these patients could not move the body
parts they tried to control, the stroke patients because they were plegics and the amputee because
they missed the limb to be myoelectrically controlled. Online decomposition algorithm is needed
to test these quantities online and it is not ready at the moment for a complex setup as the one
presented in this thesis. So, we anticipated the possible results obtainable by online decomposition
when it will be robust and will enable the parallel decomposition of multiple HD-sEMG grids
separately.

In the next conclusive section of this thesis we examine the future perspective of the framework
presented in this thesis towards a commercial and practical application.

6.2 Active collaborations and projects involving the gesture
dataset

Currently, the dataset presented in Chapter 4 offers the opportunity to start collaborations with
groups inside and outside Imperial College. The main collaborations involving this dataset are the
following.

• Application of a Transformer Network on motor neurons controlling extrinsic and intrinsic
hand muscles for dexterous prosthesis control. In collaboration with Marcus Panchal, Mas-
ter graduated in Biomedical Engineering at Imperial College London, we aim to apply the
most recent state-of-the-art deep learning structure for long sequential data, Transformer
Networks [Vaswani, 2017], to this motor neuron dataset to regress angles of the main joints
of the hand. Transformer Networks are an improvement of classic long short-term memory
recurrent neural networks (LSTM RNNs) introducing the concept of attention in deep learn-
ing [Vaswani, 2017]. The network is formed by an encoder and a decoder. In the encoder
multiple latent variables are extracted from each of the several encoding layers, which can
be eventually shaped as convolutional layers. Then, in the encoder all these latent variables,
and not only the one computed at the last stage as usually in autoencoders, are taken into
account and scored by softmax computation. This score constitutes the "attention" on one
particular latent variable more similar with the target to regress or classify. Thus, this net-
work constitutes an example of supervised learning. At the input layer stage motor neurons
for each subject are grouped per muscle, to emphasise the association of each motor neuron
to its functional biomechanical meaning. At the moment the model is trained separately for
each subject, since the number of motor neurons is different for each subject.

• Multi-Attention Feature Fusion Network (MAFN) on hand muscles HD-SEMG signals for
mapping complex gestures. In collaboration with Weiyu Guo, Lin Chuang and Ning Jiang,
the aim is to apply another attention-based state-of-the-art deep learning structure similar
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to the transformer to regress and classify HD-sEMG from many muscles of the hand. The
aim is to develop a new fast and efficient myoelectric control algorithm which needs simple
EMG features such as RMS, zero-crossing and invariant time-domain descriptors (invTDD).
InvTDD constitutes a robust feature extraction method that is invariant to movement of
subject and muscle contraction force variation, conceived to efficiently classify EMG signal
patterns in the presence of both factors. The use of MAFN [Li et al., 2020] aims to overcome
the limits of normal RNN which need very long recordings to be trained and the limits of
time convolutional networks (TCN) which can lose detailed information latent in data.

• Interfacing Spinal Motor Neurons Innervating Multiple Hand Muscles With Spiking Neural
Networks and neuromorphic technology. In collaboration with the Event-Driven Perception
for Robotics (EDPR) Team at the Italian Institute of Technology, I am studying the ap-
plication of spiking neural networks (SNN) and neuromorphic circuits to interface directly
with the spiking information of pools of motor neurons, contained in the presented dataset.
Supervised by Chiara Bartolozzi and in collaboration with Elisa Donati, we firstly aim to
adapt a framework developed in PyTorch (a Python library for deep learning and manag-
ing tensors). This framework is named Deep Continuous Local Learning (DECOLLE) and
was developed by [Kaiser et al., 2020] which merges different approaches from the works of
[Neftci et al., 2019], [Zenke and Vogels, 2020] and [Mostafa et al., 2018]. The aim is to over-
come the gap between the local dynamic learning at the synaptic level in biological networks
and the back-propagation techniques, which enables the use of powerful automatic differen-
tiation methods. The solution is to compute locally the error function at each layer level and
reuse the variables required for local learning immediately for the forward dynamics. Thus,
DECOLLE can use back-propagation for training SNN, which are implemented in PyTorch
as RNNs [Neftci et al., 2019]. In a second phase, we will use neuromorphic silicon circuits to
develop spiking neural networks on chip for minimizing energy consumption and maximizing
parallel computation, since neurons can work in parallel since they are not constrained by
the Von Nuemann machine structure ([Indiveri et al., 2011]).

• Biomechanical-model-based myoelectric control for hand prostheses. In collaboration with
Laura Ferrante, a PhD student at the University of Birmingham, Intelligent Robotics Lab-
oratory, this project is strictly focused on implementing a robust framework based on a
biomechanical model. This musculoskeletal model is constituted by a agonist-antagonist
couple of muscles actuating the wrist for flexion-extension and it is aimed to be extended
to other DoFs such as radial-ulnar deviation and pronation-supination. Muscle and tendons
are modelled like in-series springs characterized by stiffness and dumpling experimentally
determined by previous studies. Since currently only 1 DoF is modelled, only a very small
portion of the dataset is involved in this project, mainly related to wrist actuation and hand
open-closing. The 2 subjects of the dataset for which also wrist radial-ulnar deviation and
pronation-supination of the forearm are recorded result particularly useful for this prelimi-
nary study, unlike for the analysis of the present chapter.

• Orthogonal components to common synaptic input to hand muscles as control signal for su-
pernumerary joints in human augmentation. This is a Master Thesis project conducted by a
graduated student at Imperial College with the use of this dataset.

6.3 The importance of long-term observation, wearable de-
vices and IoT in myoelectric control and rehabilitation

The greatest limit in myoelectric recordings collected during a single experimental session is the
low level of generalisation with respect to long-term variations. This is both important in terms
of following the recovering of a patient during rehabilitation, and in terms of the improvement in
performances across multi-day myoelectric control sessions. This kind of long-term EMG recordings
are difficult to be conducted with the technology used in the studies presented in this thesis, as in
the majority of the scientific studies in the literature. In fact, our instrumentation was connected
to the power network, it was impossible or difficult to move such an instrumentation from one
place to another, and the preparation of each subject was a critical aspect for the quality of the
recordings, by requiring 20-30 minutes in normal conditions. Wearable devices could solve these
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problems. Also, since the large data stream in this type of recordings, a wireless communication
with a cloud platform to send the collected data would be highly beneficial. Thus, the two aspects
we would like to include in the design of our framework are a) extending the time of observation
of the EMG recordings and b) the use of wearable devices connected to the Internet, by adopting
the Internet of Things (IoT) technological paradigm.

In term of an extension of the time of observation, both in rehabilitation and in myoelectric con-
trol several studies assessed benefits in long-term recordings. In rehabilitation, [Pan et al., 2018]
conducted a study implying a 8-week rehabilitation period with sensory electrical stimulation on
chronic stroke survivors, by assessing a significant increase in the Fugle-Meyer score for some of the
subjects. These and other studies based on long-term EMG recordings (see also [Breit et al., 2008]
and [Peña Pino et al., 2020]), either constituted by multi-session experiments or entire-day ses-
sions, clearly emphasise the importance of long-term EMG analysis to find physiological features
expressing the level of impairment or the presence of a pathology. For myoelectric control, the
studies of [He et al., 2015], [Waris et al., 2019] and [Kamavuako et al., 2014b] prove the necessity
of a multi-day training to confer stability to myoelectric control in daily life, but it is reasonable
that multi-day training can be shorter than two weeks to be invariably robust in future control
sessions.

The easiest way to record multi-day or entire-day dataset is adopting wearable technology
which can be worn under common clothes during the entire day. Wearing these devices should be
easy and intuitive and if these devices were constituted textile sensors embedded in elastic clothes,
they should be washable and robust to rapid movements and to all the daily-life most challenging
conditions. In the last few years, wearable technology is exploding as well as reviews on the field.
The most exhaustive review we found was provided by [Lou et al., 2020], showing how the three
most important frontiers to cover in designing and implementing wearable-device-based healthcare
systems are a) materials for sensor fabrication, b) electronic and mechanical structure of the device,
and c) how sensors, devices and data platforms are integrated into the system.

For EMG recordings, different materials are taken into account, such as ultra thin conductive
Au/PI electrode sensors, silver nanowire electrodes or cellulose-graphene composite electrodes.
All these types of EMG electrodes ensure a dry recording without the use of conductive gels.
[Acar et al., 2019] and [Guo et al., 2020] in particular deepened their reviews in the studies fo-
cused on textile electrodes for biopotentials, such as EMG, ECG, and EEG. [Adesida et al., 2019]
explore the most recent studies on wearable devices for kinematics and kinetics recording in sports
applications, in particular inertial measurement units (IMUs) and joint-torque measurement. These
types of devices could be used as well for rehabilitation or for sensor fusion to enhance myoelectric
control performance. Finally, [Rovini et al., 2017] presented a review on wearable devices applied
to Parkinson disease rehabilitation by dividing the analysed studies into the five most important
aspects of Parkinson disease rehabilitation, i.e. early diagnosis, tremor, body motion analysis,
motor fluctuations, and home and long-term monitoring.

The role of the IoT technological paradigm is fundamentally integrated with wearable tech-
nology in the future remote rehabilitation and telemedicine perspective [Minh Dang et al., 2019].
A continuous and long-term stream of data needs to be sent to cloud platforms through wireless
gateways, not only for data storing but also for data processing, since the most recent deep learn-
ing algorithms require clusters of GPUs provided by cloud platforms to process data in a suitable
amount of time. Moreover, cloud technology enables availability of data from every enabled device,
from the patient’s smartphone to the doctor’s laptop. For rehabilitation purposes the idea is to
converge in a unique dataset the information from different devices mapping all the main phys-
iological features of the human body and allowing doctors somewhere else to monitor this data
periodically [Jiang, 2020].

To the best of our knowledge, multichannel EMG (either one channel per muscle or high-density)
and motor unit discharge patterns analysis have never been considered in remote rehabilitation.
In the next section, we briefly propose a high-level design for a such remote monitoring system.

6.4 High-level design of novel framework for HMIs and reha-
bilitation

As a future perspective of this PhD project, we here propose a framework based on a wearable
device mainly recording HD-sEMG and IMU measures. This wearable device is meant to be con-
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nected with a cloud-based system providing neural and motor control features extracted by EMG
decomposition and factorisation (the techniques presented in this thesis) as potential biomarkers
(as we proposed in the first part of this chapter, presenting results for patients) for continuous
remote monitoring during rehabilitation. The main aspects we consider in our high-level design
are:

• the development of a wearable containing hundreds of EMG channels configured in a high-
density configuration;

• the stream of so many data, the relative technological limits and the possibility to decompose
locally the EMG signals, to send only the firing times to the cloud-based system

• proposing which features to consider as potential biomarkers and how to intuitively represent
them for the users

• defining the implied technological environment and the actors involved in the process

• a prototyping of the possible service to offer either to the patients or to the clinicians

I named this system IoRehab (Internet of Rehabilitation), by proposing it for the Venture Cat-
alyst Challenge 2020 at Imperial College London. The project was not selected to participate since
my team and I did not sufficiently understand the business model (it was a startup competition).
However, this high-level design is proposed here as the technological application of the studies
presented in this thesis and an interesting future perspective in my post-doctoral research.

The description of the framework is provided in Figure 6.1. By considering that the IoRehab
framework could involve wearable devices covering different body districts, in a) the distribution
of a total of 192 channels on the right upper limb is proposed. Forearm and hand for example, as
considered for this thesis, or legs could be as well covered by a HD-sEMG distribution. The key
point here is the optimisation of the number of channels per each muscle, by maximizing also the
number of muscles itself. In b) the very basic structure of the system is shown. The main type
of interested motor impaired patients are indicated in the figure and different kinds of apps to
visualize data are considered depending on the considered user (either the patient or the doctor,
who needs very different apps for different gateways). In c) an example of a clear and concise data
representation is provided. Maximizing graphs and anatomical maps and minimizing text would be
beneficial for a quick understanding of the patient’s performance during the rehabilitation session.

6.4.1 Challenges for a wearable device for multi-muscle motor neuron
identification

The first issue to solve for a HD-sEMG wearable device is the position of the electrodes over the
muscles (Figure 6.1.a). Usually, electrode location during an experiment is chosen carefully by
expert operators with knowledge of muscular anatomy and other best practises for EMG electrode
positioning (SENIAM, Hermens et al. 1999). In the case of manufacturing a wearable to record
EMG from multiple signals, many electrodes should be placed so that at least some of them
can cover the interested muscle, since the exact position of muscles may vary between different
wearers. A high-density configuration of electrodes can partially solve this problem, whether the
surface covered by the electrodes is sufficiently large to cover all the main interested muscles. In
Figure Figure 6.1.a a proposal of HD-sEMG distribution on the upper limb muscles is proposed.
With 192 electrodes per side it would be possible to cover 18 muscle compartments listed in the
figure. A particular configuration could be considered for the muscles actuating the hand, both
extrinsic (with an arm-band) or intrinsic (with a glove), as already hypothesised in Chapter 2 and
4.

A second issue to solve is scaling the electronics to enable the recording of so many channels.
A first solution could be considering a distributed electronics constituted by electrode pairs in a
bipolar configuration with the analog part of the circuit (constituted by resistors, capacitors and
operational amplifiers) placed locally above the electrodes. Groups of these local analogue condi-
tioning circuits, for example grouped by 8, could be connected with an analogue 8:1 multiplexer
driven by a microcontroller with a frequency of clock significantly greater than the sample frequency
required for the EMG signal. This is because the multiplexer should select sequentially one channel
after the other and so the delay introduced between each electrode should be sufficiently small with
respect to the sampling interval imposed, to guarantee channel synchronisation. Such structure is
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Figure 6.1: The three main aspects of the proposed framework. In a) an example of a high-density
distribution of 192 EMG electrodes covering up to 18 muscle compartments. In b) the basic idea
of connecting different types of motor impaired people with the cloud through an intuitive and
simple app. In c) an example of what should be seen from the doctor’s side of the app. An easy
and graphical representation of a few features at time.
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motivated because it is fundamental to multiplex EMG channels only after analogue amplification
with an instrumentation amplifier, since it is not possible with the current electronic technology
to multiplex low-voltage biopotentials before the amplification chain [Merletti and Farina, 2016].
The multiplexed signals can be then sent to the input pins of a microcontroller, with an analogue-
to-digital converter (ADC) for each input, to be sampled and digitized. The de-multiplexing can
then be done digitally. A so complex distributed architecture would hardly scale in complexity by
augmenting the number of channels and their density in distribution.

An alternative to design a HD-sEMG wearable could be in centralizing the processing of
a group of 64-channels with miniaturized analog chips then connected with a microcontroller.
[Cerone and Gazzoni, 2018] presented a miniaturized and wireless HD-sEMG device based on a
32-channel Intan chip and a microcontroller to communicate Bluetooth with a smartphone or a
PC. This device sampled each channel at 2048 Hz with 16-bit resolution, with a volume of around
14cm3 and a weight lower than 20g. Scaling in the channel number also introduces a problem in
terms of data transmission. The throughput could easily escalate by exceeding the maximum baud-
rate allowed by wireless communication, such as Bluetooth. For example, 64 channels sampled at
1024 Hz each with a 16-bit resolution would imply a throughput reaching the limit of 1 Mbps (Mega-
bit per second) for Bluetooth 1.0. This is probably the reason because [Cerone and Gazzoni, 2018]
limited the device to 32 channels, by sampling at 2048 Hz. WiFi or other wireless communication
allow higher limits up to tens of Mbps, but the number of channels for HD-sEMG should be limited
to a few hundreds.

6.4.2 Selection of biomarkers, biofeedback and data representation

With the term biomarker we mean a physiological feature extracted from biomedical measures
which can be correlated with the level of impairment or with some quantification of improve-
ment of motor skills after a period of rehabilitation. Myoelectric activity has been proved to
provide some important biomarkers related to motor control. In the frequency domain, analysis
of the EMG spectrum or EMG time-frequency distribution can assess muscle electric fatigue. An-
other biomarker in the frequency domain can be EEG-EMG coherence, to assess cortico-muscular
coherence and find correlation between EMG spectral bands and the EEG spectral bands. In
time-domain, by observing the myoelectric activity of multiple muscles, muscle coordination has
been quantified through muscle synergies in stroke survivors as a biomarker of motor impairment
[Cheung et al., 2012]. Cases of fractionation or merging with respect to muscle synergies in healthy
people have been observed in post-stroke patients selected with a different score in the Fugle-Mayer
scale [Cheung et al., 2012]. Since muscle synergies should reflect muscle coordination prescribed
by spinal modules, and since a stroke damages cerebral cortex, alteration in muscle synergies after
stroke could be due to a strategy of CNS to use differently synergistic behaviours coded at the
spinal level to compensate impairment in motor control at the cortical level [Cheung et al., 2009a].

In this thesis we presented a new point of view in assessing synergistic muscular behaviour, by
focusing on synergistic organisation of spinal motor neurons. We tried to show how by observing
synergistic behaviour of motor neurons it is possible to observe in a clearer way the final output
of spinal interneuronal circuits. This interneuronal output, reflected in the motor neuron activity,
reflects the integration of both descending commands and reflexes at the spinal level, and part of
the descending commands can be also cortico-motoneuronal pathways not mediated by the spinal
cord (see Chapter 3). Thus, we proposed motor neuron synergies as a new framework to study
synergistic coordination in motor control and infer non-invasively neural information at the spinal
level. The use of these motor neuron synergies as a biomarker still needs to be validated, but we
tried to identify them in three different impairment cases on a total of 5 subjects.

A first problem is associating these biomarkers to the concrete motor improvement of the
observed patients. This aspect can be only assessed in a large population of patients and a large
range of different conditions. Usually, clinical studies focus on a single session implying few tasks.
There is no evidence of how these biomarkers could change if computed and observed for months
or even years in patients during different stages of rehabilitation, to assess a correlation with a
significant improvement in their motor skills.

The second aspect of the problem of representing biomarkers is a graphical immediate represen-
tation (as proposed in Figure 6.1). Clinicians can be confused from so many graphs and numerical
information in the meantime they are trying to assess the actual improvement in motor ability of
a patient. Few significant graphs and maps, eventually varying in time as an online biofeedback
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Figure 6.2: Representation of the environment around the framework and the actors involved. The
patients, with different motor impairments, are at the center of the framework and the aim of
the framework is their well-being. With the use of a unique app they should be able to integrate
the information collected from many rehabilitation devices, both for monitoring and therapy, with
embedded sensors and be able to communicate, in an IoT perspective. The two main goals from
a global perspective are, on one hand, a fast and effective rehabilitation of the subject better than
by using only some device without a systematic approach, and, on the other hand, being able to
collect a huge and complete dataset containing multi-day sessions and information during many
task conditions and from many different devices. The main actors around the patients are both
technicians and clinicians, both human and machine agents.

during a rehabilitation task, could be beneficial for clinicians to immediately understand the motor
ability of the patient. On the patient side, a fancy and coloured biofeedback, immediately associa-
ble to their current activity could be highly beneficial for enhancing motivation and involvement
during a rehabilitation session. Another important aspect for patients, is the immediate assessment
in being able to produce some effect in the virtual reality or game they are playing with.

6.4.3 Technologies, actors and services to integrate

A potential platform to provide home-monitoring during rehabilitation is represented in Figure
6.2. It can imply the creation of a technological environment in which the aforementioned wearable
devices for recording HD-sEMG, IMUs, ECG and other signals, could be only a part of the system.
First, different wearable devices should be able to be integrated in the platform. Second, systems
for rehabilitation therapy should be strictly related to the measures obtained by these wearables.
These systems used for therapy can be wearable robots (exoskeletons) which can actuate externally
the limb or hand joints of the wearer, functional electrical stimulation (FES) for enhance muscle
contraction, haptic biofeedback devices providing vibration or somatic electric stimulation, and
virtual reality. Integrating data provided from all these technologies could both optimise the
action of these therapeutic devices based on online identified biomarkers and contribute to build a
more complete and exhaustive description of the actual ability of a patient.

Different actors should be involved in the rehabilitation process through the proposed plat-
form. By starting from a patient-centred perspective, physiotherapists, neurologists, care givers,
bioengineers and other experts should be integrated around the continuous update of the patient’s
medical records. This means also to provide a specific app for all these different figures to interact
effectively with the platform in a customised way dependent on their specific role. As we suggest
in Figure 6.2, also artificial intelligence (AI) could be considered as an actor of the process in the
future. In particular the role of AI to process data and detect promptly potential risks or emer-
gencies for the health of the patients is to be considered. An AI embodied in a full-body wearable
device monitoring all the main biometric features of a patient could be considered a wearable AI
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and continuously assist the patients as other AI assistants embedded already in smartphones or
other digital gateways through cloud services.

Finally, the most critical aspect to consider to really implement a similar system and even
commercialise it, is designing the services carefully. As mentioned above, we were not considered
to participate at the VCC 2020 for not sufficiently designing the business model and answering
about a specific customer segmentation. After having participated in several business courses
organised by the ICL Graduate School, I understood that the first aspect to consider is either
designing a service for the patient or designing a service for clinical experts. In this second case,
technology would be provided to experts in rehabilitation who can then manage in the best way
the tools to adapt them in the rehabilitation process. So, in the perspective of implementing a
similar rehabilitation platform, I would consider looking for interested doctors or physiotherapists
as potential customers, to allow them to customise the system around their rehabilitation strategy.

6.5 Conclusion
This thesis proposes a bridge between two extensively investigated motor control strategies, i.e.
spinal motor neuron recruitment and muscle synergistic control, and it is based on what we called
motor neuron synergies. This new framework is then proposed not only as a neuroscientific hy-
pothesis, but also as the basis of a new physiology-inspired control of external assistive devices.
In fact, the time-varying quantities obtained by the dimensionality techniques used (PCA and
NMF) were positively correlated with biomechanical quantities, i.e. forces or joint angles. This
means that the control signals extracted by dimensionality reduction from a pool of motor neurons
innervating many muscles can be used to estimate exerted force or movement, thus can predict
movement intentions. The clinical applications showed in Chapter 5 are only a preliminary assess-
ment of the opportunities offered by this framework for rehabilitation. The future perspective of a
rehabilitation platform based on this framework is at the moment speculative, but I tried to con-
nect the current literature and questions of research in rehabilitation technology with the proposed
framework. I believe we have just started to investigate this framework both from a scientific and
a technical point of view, and it looks promising for many future studies and applications.
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Appendix A

Software for multi-grid HD-sEMG
real-time management

During this PhD, I developed a software application in Matlab (The MathWorks Inc, Naticks, MA,
USA) which I used for the recording of all the studies and which evolved significantly across the
studies, especially the ones described in Chapter 4 and 5. This software, which I called myoViewer
is aimed to represent HD-sEMG activity taken with whatever channel configuration in different
ways during the recording. The main need which led to the development of this software was that
the available commercial solutions were not optimised to inspect the signals in progressive time
windows, by placing the signals in the same position of the channel in the grid and representing
online surfaces. This representation was tremendously useful to understand the quality of the signal
while it was acquired and to provide a biofeedback to the user to watch how different contraction
could produce different spatio-temporal patterns in real-time. Also, the software was extended to
represent a large number of gestures and the timings to execute them, and to provide a simple
myoelectric control for one degree of freedom. The software is described in detail in the following
sections.

A.1 Setup
All the recordings for this thesis were collected with a 400-channel EMG amplifier (Quattrocento,
OT Bioelettronica, Torino, Italy). Each 64-channel EMG electrode grid was connected to an
impedance-adapter (the white boxes represented in Figure 2.1.b in Chapter 2). The amplifier
presented 8 16-channel inputs ("IN"). Groups of 4 of these IN inputs were collected by adaptors
(2 in total) to have 64-channels for each group of 4 IN inputs. Also, the amplifier presented 4
64-channel inputs (multiple IN, or "MIN"), each one connected to a 64-channel grid.

Figure A.1 represents the main options of the "Setting" window to select the parameters of the
setup. On the left panel, all the possible grids to be selected are shown. On the right panel, all the
available inputs are shown. By pressing the button "Add", after having selected a grid and an input
configuration, the input channels will be associated with a grid. Selected grid-input associations
can be deleted with the button "Delete", auxiliary channels can be selected (the amplifier provides
16 auxiliary channels, i.e. non-EMG channels), saving the setup and loading a pre-saved setup.

A.2 Visualisation and recording
The myoViewer was mainly conceived to visualise online in a detailed way HD-sEMG during
recording. Several representation modes are available as indicated in Figure A.2. In particular,
for representing a biofeedback to the subjects, the "Map" representation consisting in an online
activation surface of the myoelectric activity under the EMG grid was particularly useful during
some experiments (Figure A.2.a). The "Grid" representation, by representing each EMG signal
in the respective position of the channel into each grid, enables to observe the propagation of
motor unit action potentials and the location of the innervation zone, if zoomed adequately with
the slider for setting the visualization window length. Finally, the "Stacked" configuration is the
default configuration represented at the beginning of the acquisition and it simply represents 16
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Figure A.1: Setting window for the selection of the setup. Most important selection options are
represented in order of execution.

signals at time, one after the other. Each grid is visible separately and can be shifted with a
dedicated button, both forward ("Next") and back ("Back"). The "Map" and "Grid" options
enable grid rotation, both clockwise ("CW") and anticlockwise ("ACW"). Online digital filtering
is available, but only for visualization, since signals are recorded raw, as they are given out by the
amplifier (only filtered at the hardware level). A button grid on the left of the represented signals
enables to remove channels (even channel rows and columns) from the observed grids, but all
channels will be recorded. Other options, such as single differential ("SD") and double differential
representation ("DD"), are available as visible in the figure. As mentioned, all channels can be
recorded and saved. To record a channel the "floppy disk" button must be pressed to start the
recording and then pressed again to stop. In the figure, the "Acquisition" button is pressed, since
the online visualisation is on.

A.3 Protocols and biofeedback

A further feature of myoViewer is representing the tasks to execute during the experiment. For the
purposes of this thesis, images describing hand gestures were prepared. As represented in Figure
A.3.a, it is possible to create the experimental protocol and upload it into a form. The experimental
protocol can be prepared in an Microsoft Excel file, with a dedicated template suitable to be read
by the software. Name of the task, joint involved, time of execution for each repetition, phases of
the repetition (increasing, plateau, decreasing), number of repetitions and other parameters can
be set in the Microsoft Excel file and uploaded. Then, as represented in b, c and d of Figure
A.3, the movement to do are represented on the right, and the time to reach, keep and release
the contraction for the relative movement are represented with a cue on the left. In this example,
for each repetition, a combined movement involving wrist flexion and thumb flexion-extension was
asked. In the first 6 s, the thumb was flexed and in the following 6 s thumb was extended. Two
seconds were asked to reach the flexion, keep it and go back to rest, to then perform extension with
the same timing. Five repetitions were set for this task. For each task, EMG signals are recorded
and saved with the name assigned to the task in the protocol.

Myoelectric biofeedback was also implemented in a simple way, with the aim of further develop-
ing it in a next release. Maximum voluntary contraction (MVC) is required for normalising normal
activity (Figure A.4.a). MVC values can then be saved or pre-saved MVC values can be uploaded.
During each myoelectric biofeedback recording, a red ball will represent the overall activity of all
the channels selected (average of all these channels) and will be asked to follow a white cue. Also
in this case, a pre-designed protocol written in an Microsoft Excel file can be uploaded. In the
figure, a transition between a ramp and a steady condition is represented in panel b.
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Figure A.2: Online visualisation of EMG signals for one selected grid. a) The main selection
options are indicated in the figure during the representation of the activity surface under the grid
("Map" representation). b) Representation of the signals in the channel configuration of the grid
("Grid"). c) "Stacked" representation, i.e. one signal after the other.

Figure A.3: Protocol for gesture execution. a) The protocol is uploaded in the form, to be loaded
in the software to represent the corresponding tasks. b) Representation of the combination of wrist
flexion and thumb flexion, with a cue on the right to indicate the timings of contraction. c) Coming
back at rest. d) Wrist flexion and thumb extension.
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Figure A.4: Biofeedback of the myoelectric activity for one degree of freedom (one control signal).
a) Maximum voluntary contraction is recorded (MVC). b) MVC is kept or repeated. c) Ascending
white ramp (target) and online myoelectric activity (red ball). d) Steady contraction.

Figure A.5: Example of a pre-saved recording uploaded in myoViewer to be processed offline. The
feature here is the FFT and window time of computation and the time around which the window
is taken are selectable with the relative sliding windows.

A.4 Loading saved files and processing
After having saved a signal, it is possible to upload and offline process it. Different features
to be computed are represented in the listbox "Features". In Figure A.5 an example of FFT
computation is provided. Different parameters are available to compute the feature according to
the requirements of the user. All the visualisations represented online can be represented offline
and the online can be easily simulated.
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