10 research outputs found

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state arc modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECI I) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.Peer reviewe

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation.EURATOM 633053Netherlands Organization for Scientific Research 680.47.43

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF

    A dynamic state observer for real-time reconstruction of the tokamak plasma profile state and disturbances

    No full text
    A dynamic observer is presented which can reconstruct the internal state of a tokamak fusion plasma, consisting of the spatial distribution of current and temperature, from measurements. Today, the internal plasma state is usually reconstructed by solving an ill-conditioned inversion problem using a large number of measurements at one point in time. Such an approach does not take into account the time evolution of the underlying dynamical system (the plasma) and strongly relies on (technically challenging) internal measurements. The observer-based approach presented here includes the dynamics of the plasma current and temperature, modeled by a set of coupled nonlinear 1-D PDEs which are discretized in space and time to yield a finite-dimensional nonlinear model. The observer, which is based on an Extended Kalman Filter, estimates the state of an augmented model which includes additive state disturbances modeled as a random walk. Simulation results demonstrate the effectiveness of this observer in the case of perturbed models and input disturbances

    A dynamic state observer for real-time reconstruction of the tokamak plasma profile state and disturbances

    No full text
    A dynamic observer is presented which can reconstruct the internal state of a tokamak fusion plasma, consisting of the spatial distribution of current and temperature, from measurements. Today, the internal plasma state is usually reconstructed by solving an ill-conditioned inversion problem using a large number of measurements at one point in time. Such an approach does not take into account the time evolution of the underlying dynamical system (the plasma) and strongly relies on (technically challenging) internal measurements. The observer-based approach presented here includes the dynamics of the plasma current and temperature, modeled by a set of coupled nonlinear 1-D PDEs which are discretized in space and time to yield a finite-dimensional nonlinear model. The observer, which is based on an Extended Kalman Filter, estimates the state of an augmented model which includes additive state disturbances modeled as a random walk. Simulation results demonstrate the effectiveness of this observer in the case of perturbed models and input disturbances

    Model-based Control of the Current Density Profile in the Experimental Advanced Superconducting Tokamak (EAST)

    Get PDF
    As worldwide energy consumption increases, the world is facing the possibility of an energy shortage problem. While several approaches have been proposed to slow down this process, which include the improvement of the combustion efficiency of fossil fuels and the introduction of nuclear energy and renewable energy, such as solar, wind, and geothermal energy, a replacement for fossil fuels will eventually be needed. The energy that comes from a nuclear reaction, which includes nuclear fission and nuclear fusion, has a high energy production density (rate of energy produced divided by the area of the land needed to produce it) and produces no air pollution or greenhouse gases, which makes it a strong and attractive candidate. Compared with nuclear fission, the radioactive waste from nuclear fusion can be more easily disposed, the reactants in a nuclear fusion reaction are abundantly available in nature, and nuclear fusion poses no risk of a nuclear accident. For all these reasons, nuclear fusion is a potential solution for the energy shortage problem. However, there are many challenges that need to be conquered to achieve nuclear fusion. The primary challenge is to confine the hot reactants, whose temperatures are about one hundred million degrees Kelvin. At these temperatures, the reactants are in the plasma state and have enough kinetic energy to overcome the repelling electrostatic forces and fuse. One of the most promising approaches to confine the fusion plasma is magnetic confinement, where magnetic fields are used to confine the plasma through the Lorentz force. The tokamak is one of the fusion devices that exploit magnetic confinement. To demonstrate the viability of a nuclear fusion power plant, the International Thermonuclear Experimental Reactor (ITER) tokamak project is aimed at producing 500 megawatts power with 50 megawatts of input power, which will make it the first tokamak with net energy output. To be able to obtain the desired fusion gain, the ITER tokamak will need to operate at a temperature and a pressure so high that the plasma has a good chance of becoming unstable and difficult to confine. To address this issue, extensive research has been conducted on different fusion tokamaks around the world to find high performance operating scenarios characterized by a high fusion gain, good plasma confinement, plasma stability, and a dominant self-generated plasma current with the goal of developing candidate scenarios for ITER. The shape of the toroidal current density profile, or the safety factor profile (qq-profile), impacts steady-state operation, magnetohydrodynamic (MHD) stability, and plasma performance. The plasma β\beta, which is the ratio of the kinetic pressure of the plasma to the magnetic pressure (pressure exerted on plasma by the magnetic field), acts as an important economic factor in fusion power generation. Therefore, active control of the toroidal current density profile and plasma β\beta is one path towards advanced scenarios. This dissertation focuses on developing control solutions for regulating the current density profile, and to some extent the normalized plasma β\beta (denoted as βN\beta_N), on the Experimental Advanced Superconducting Tokamak (EAST) located at the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), in Hefei, China. Towards this goal, a control-oriented, physics-based model has been developed for the current density profile evolution in EAST in response to available heating and current-drive (H\&CD) systems. The feasibility of reconstructing the internal plasma states, which may be crucial for feedback control, from measurements at the magnetic axis and at the plasma edge has been studied by using experimental data and exploiting the response model. Target scenarios (characterized by desired qq-profile and βN\beta_N) have been developed by following a model-based finite-time optimization approach. Feedback controllers ranging from simpler Proportional-Integral-Derivative (PID) controllers to more complex model-based optimal controllers, derived from Linear-Quadratic-Regulator (LQR), HH_\infty, and Model Predictive Control (MPC) theories, have been synthesized to counteract deviations from the desired target scenario. The overall control solution has been implemented in the Plasma Control System (PCS) and closed-loop qq-profile regulation has been demonstrated for the first time ever in EAST in disturbance rejection and target tracking experiments

    Physics-model-based Optimization and Feedback Control of the Current Profile Dynamics in Fusion Tokamak Reactors

    Get PDF
    As the demand for energy continues to increase, the need to develop alternative energy sources to complement (and one day replace) conventional fossil fuels is becoming increasingly important. One such energy source is nuclear fusion, which has the potential to provide a clean source of energy and possesses an abundant fuel supply. However, due to the technological difficulty in creating the conditions necessary for controlled fusion to occur, nuclear fusion is not yet commercially viable. The tokamak is a device that utilizes magnetic fields to confine the reactants, which are in the plasma state, and it is one of the most promising devices capable of achieving controlled fusion. The ITER tokamak project is the next phase of tokamak development and will be the first tokamak reactor to explore the burning plasma (one with a significant amount of fusion reactions) operating regime.In order for ITER to meet its demanding goals, extensive research has been conducted to develop advanced tokamak operating scenarios characterized by a high fusion gain, good plasma confinement, magnetohydrodynamic stability, and a significant fraction of noninductively driven plasma current to maximize the plasma performance and potentially enable steady-state operation. As the dynamics of the tokamak plasma magnetic and kinetic states are highly coupled, distributed, nonlinear systems that exhibit many instabilities, it is extremely difficult to robustly achieve advanced operating scenarios. Therefore, active control of the plasma dynamics has significant potential to improve the ability to access advanced operating regimes. One of the key plasma properties investigated in the development of advanced scenarios is the plasma current profile because of its intimate relationship to plasma energy/particle transport and to plasma stability limits that are approached by increasing the plasma pressure. The plasma density and temperature profiles are also important parameters due to their close relationship to the amount of generated fusion power, to the total plasma stored energy, and to the amount of noninductive current drive. In tokamaks, the current and electron temperature profiles are coupled through resistive diffusion, noninductive current drive, and plasma energy/particle transport. As a result, integrated algorithms for current profile and electron temperature profile control will be necessary to maintain plasma stability, optimize plasma performance, and respond to changing power demand in ITER, and eventually a commercial, power producing tokamak reactor.In this work, model-based feedforward and feedback algorithms are developed to control the plasma current profile and thermal state dynamics with the goal of improving the ability to achieve robust tokamak operation. A first-principles-driven (FPD), physics-based approach is employed to develop models of the plasma response to the available actuators, which provides the freedom to handle the trade-off between the physics accuracy and the tractability for control design of the models. A numerical optimization algorithm to synthesize feedforward trajectories for the tokamak actuators that steer the plasma through the tokamak operating space to achieve a predefined target scenario (characterized by a desired current profile and total stored energy), subject to the plasma dynamics (described by the developed physics-based model), actuator constraints, and plasma state constraints, is developed. Additionally, robust feedback control algorithms for current profile, combined current profile + total stored energy, and simultaneous current profile + electron temperature profile control are synthesized for various tokamaks by embedding a FPD model into the control design process.Examples of the performance of the controllers in simulations (DIII-D, ITER, and TCV tokamaks) and DIII-D experiments are presented to illustrate the potential and versatility of the employed control methodology. The DIII-D experimental tests demonstrate the potential physics-model-based profile control has to provide a systematic approach for the development and robust sustainment of advanced scenarios. The ITER simulations demonstrate the ability to drive the current profile to a stationary target while simultaneously modulating the amount of fusion power that is generated. Finally, the TCV simulations demonstrate the ability to drive the current and electron temperature profiles to a self consistent target, as well as to maintain the current profile in a stationary condition while simultaneously modulating the electron temperature profile between equilibrium points
    corecore