13,870 research outputs found

    The identification of cellular automata

    Get PDF
    Although cellular automata have been widely studied as a class of the spatio temporal systems, very few investigators have studied how to identify the CA rules given observations of the patterns. A solution using a polynomial realization to describe the CA rule is reviewed in the present study based on the application of an orthogonal least squares algorithm. Three new neighbourhood detection methods are then reviewed as important preliminary analysis procedures to reduce the complexity of the estimation. The identification of excitable media is discussed using simulation examples and real data sets and a new method for the identification of hybrid CA is introduced

    An Unsupervised Approach for Automatic Activity Recognition based on Hidden Markov Model Regression

    Full text link
    Using supervised machine learning approaches to recognize human activities from on-body wearable accelerometers generally requires a large amount of labelled data. When ground truth information is not available, too expensive, time consuming or difficult to collect, one has to rely on unsupervised approaches. This paper presents a new unsupervised approach for human activity recognition from raw acceleration data measured using inertial wearable sensors. The proposed method is based upon joint segmentation of multidimensional time series using a Hidden Markov Model (HMM) in a multiple regression context. The model is learned in an unsupervised framework using the Expectation-Maximization (EM) algorithm where no activity labels are needed. The proposed method takes into account the sequential appearance of the data. It is therefore adapted for the temporal acceleration data to accurately detect the activities. It allows both segmentation and classification of the human activities. Experimental results are provided to demonstrate the efficiency of the proposed approach with respect to standard supervised and unsupervised classification approache

    Joint segmentation of multivariate time series with hidden process regression for human activity recognition

    Full text link
    The problem of human activity recognition is central for understanding and predicting the human behavior, in particular in a prospective of assistive services to humans, such as health monitoring, well being, security, etc. There is therefore a growing need to build accurate models which can take into account the variability of the human activities over time (dynamic models) rather than static ones which can have some limitations in such a dynamic context. In this paper, the problem of activity recognition is analyzed through the segmentation of the multidimensional time series of the acceleration data measured in the 3-d space using body-worn accelerometers. The proposed model for automatic temporal segmentation is a specific statistical latent process model which assumes that the observed acceleration sequence is governed by sequence of hidden (unobserved) activities. More specifically, the proposed approach is based on a specific multiple regression model incorporating a hidden discrete logistic process which governs the switching from one activity to another over time. The model is learned in an unsupervised context by maximizing the observed-data log-likelihood via a dedicated expectation-maximization (EM) algorithm. We applied it on a real-world automatic human activity recognition problem and its performance was assessed by performing comparisons with alternative approaches, including well-known supervised static classifiers and the standard hidden Markov model (HMM). The obtained results are very encouraging and show that the proposed approach is quite competitive even it works in an entirely unsupervised way and does not requires a feature extraction preprocessing step

    SHADHO: Massively Scalable Hardware-Aware Distributed Hyperparameter Optimization

    Full text link
    Computer vision is experiencing an AI renaissance, in which machine learning models are expediting important breakthroughs in academic research and commercial applications. Effectively training these models, however, is not trivial due in part to hyperparameters: user-configured values that control a model's ability to learn from data. Existing hyperparameter optimization methods are highly parallel but make no effort to balance the search across heterogeneous hardware or to prioritize searching high-impact spaces. In this paper, we introduce a framework for massively Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO). Our framework calculates the relative complexity of each search space and monitors performance on the learning task over all trials. These metrics are then used as heuristics to assign hyperparameters to distributed workers based on their hardware. We first demonstrate that our framework achieves double the throughput of a standard distributed hyperparameter optimization framework by optimizing SVM for MNIST using 150 distributed workers. We then conduct model search with SHADHO over the course of one week using 74 GPUs across two compute clusters to optimize U-Net for a cell segmentation task, discovering 515 models that achieve a lower validation loss than standard U-Net.Comment: 10 pages, 6 figure
    • …
    corecore