42 research outputs found

    Role of opinion sharing on the emergency evacuation dynamics

    Get PDF
    Emergency evacuation is a critical research topic and any improvement to the existing evacuation models will help in improving the safety of the evacuees. Currently, there are evacuation models that have either an accurate movement model or a sophisticated decision model. Individuals in a crowd tend to share and propagate their opinion. This opinion sharing part is either implicitly modeled or entirely overlooked in most of the existing models. Thus, one of the overarching goal of this research is to the study the effect of opinion evolution through an evacuating crowd. First, the opinion evolution in a crowd was modeled mathematically. Next, the results from the analytical model were validated with a simulation model having a simple motion model. To improve the fidelity of the evacuation model, a more realistic movement and decision model were incorporated and the effect of opinion sharing on the evacuation dynamics was studied extensively. Further, individuals with strong inclination towards particular route were introduced and their effect on overall efficiency was studied. Current evacuation guidance algorithms focuses on efficient crowd evacuation. The method of guidance delivery is generally overlooked. This important gap in guidance delivery is addressed next. Additionally, a virtual reality based immersive experiment is designed to study factors affecting individuals\u27 decision making during emergency evacuation

    A Comprehensive Study on Pedestrians' Evacuation

    Full text link
    Human beings face threats because of unexpected happenings, which can be avoided through an adequate crisis evacuation plan, which is vital to stop wound and demise as its negative results. Consequently, different typical evacuation pedestrians have been created. Moreover, through applied research, these models for various applications, reproductions, and conditions have been examined to present an operational model. Furthermore, new models have been developed to cooperate with system evacuation in residential places in case of unexpected events. This research has taken into account an inclusive and a 'systematic survey of pedestrian evacuation' to demonstrate models methods by focusing on the applications' features, techniques, implications, and after that gather them under various types, for example, classical models, hybridized models, and generic model. The current analysis assists scholars in this field of study to write their forthcoming papers about it, which can suggest a novel structure to recent typical intelligent reproduction with novel features

    Controlling Individual Agents in High-Density Crowd Simulation

    Get PDF
    Simulating the motion of realistic, large, dense crowds of autonomous agents is still a challenge for the computer graphics community. Typical approaches either resemble particle simulations (where agents lack orientation controls) or are conservative in the range of human motion possible (agents lack psychological state and aren’t allowed to ‘push’ each other). Our HiDAC system (for High-Density Autonomous Crowds) focuses on the problem of simulating the local motion and global wayfinding behaviors of crowds moving in a natural manner within dynamically changing virtual environments. By applying a combination of psychological and geometrical rules with a social and physical forces model, HiDAC exhibits a wide variety of emergent behaviors from agent line formation to pushing behavior and its consequences; relative to the current situation, personalities of the individuals and perceived social density

    Development of a microscopic crowd dynamic model: incorporating decision making capability Into the social force model.

    Get PDF
    Model daya sosial adalah salah satu model pejalan kaki mikroskopik yang paling berjaya yang mewakili fenomena dirancang dengan baik bagi aliran pejalan kaki. Bagaimanapun, keupayaan pejalan-pejalan kaki untuk membuat keputusan dalam situasi-situasi kecemasan dan normal tidak digabungkan dengan betul ke dalam model. The Social Force Model is one of the most successful microscopic pedestrian models that represent the well-organized phenomena of the pedestrian flow. However, the pedestrians‟ abilities to make decisions in normal and emergency situations have not been incorporated properly into the model

    Microscopic and macroscopic models for pedestrian crowds

    Get PDF
    This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for pedestrian flows is derived. We examine a detailed microscopic social force model coupled to a local visibil- ity model on the one hand and macroscopic models including the interaction forces and a local visibility term on the other hand. Particle methods are applied to solve these models. Numerical experiments are explored and com- pared on the microscopic as well as on the hydrodynamic and scalar models

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Macroscopic modeling and simulations of room evacuation

    Full text link
    We analyze numerically two macroscopic models of crowd dynamics: the classical Hughes model and the second order model being an extension to pedestrian motion of the Payne-Whitham vehicular traffic model. The desired direction of motion is determined by solving an eikonal equation with density dependent running cost, which results in minimization of the travel time and avoidance of congested areas. We apply a mixed finite volume-finite element method to solve the problems and present error analysis for the eikonal solver, gradient computation and the second order model yielding a first order convergence. We show that Hughes' model is incapable of reproducing complex crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally, using the second order model, we study numerically the evacuation of pedestrians from a room through a narrow exit.Comment: 22 page

    System Identification for the design of behavioral controllers in crowd evacuations

    Get PDF
    Behavioral modification using active instructions is a promising interventional method to optimize crowd evacuations. However, existing research efforts have been more focused on eliciting general principles of optimal behavior than providing explicit mechanisms to dynamically induce the desired behaviors, which could be claimed as a significant knowledge gap in crowd evacuation optimization. In particular, we propose using dynamic distancekeeping instructions to regulate pedestrian flows and improve safety and evacuation time. We investigate the viability of using Model Predictive Control (MPC) techniques to develop a behavioral controller that obtains the optimal distance-keeping instructions to modulate the pedestrian density at bottlenecks. System Identification is proposed as a general methodology to model crowd dynamics and build prediction models. Thus, for a testbed evacuation scenario and input?output data generated from designed microscopic simulations, we estimate a linear AutoRegressive eXogenous model (ARX), which is used as the prediction model in the MPC controller. A microscopic simulation framework is used to validate the proposal that embeds the designed MPC controller, tuned and refined in closed-loop using the ARX model as the Plant model. As a significant contribution, the proposed combination of MPC control and System Identification to model crowd dynamics appears ideally suited to develop realistic and practical control systems for controlling crowd motion. The flexibility of MPC control technology to impose constraints on control variables and include different disturbance models in the prediction model has confirmed its suitability in the design of behavioral controllers in crowd evacuations. We found that an adequate selection of output disturbance models in the predictor is critical in the type of responses given by the controller. Interestingly, it is expected that this proposal can be extended to different evacuation scenarios, control variables, control systems, and multiple-input multiple-output control structures.Ministerio de Economía y Competitivida

    A data-driven approach towards a realistic and generic crowd simulation framework

    Get PDF
    Jacob Sinclair studied and developed a data-driven approach towards a realistic and generic crowd simulation framework. He found that by using virtual reality and questionnaires, we can gather all types of real world data. He also found that an AI framework developed using all types of data can produce similar results to the real world. This AI framework has the potential to be used to improve areas such as emergency management and response, traffic control, building design, video games, etc
    corecore