7,567 research outputs found

    GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems

    Full text link
    Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a user's long-term preference (or an item's long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each node's local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.Comment: Accepted by CIKM2020 Applied Research Trac

    mARC: Memory by Association and Reinforcement of Contexts

    Full text link
    This paper introduces the memory by Association and Reinforcement of Contexts (mARC). mARC is a novel data modeling technology rooted in the second quantization formulation of quantum mechanics. It is an all-purpose incremental and unsupervised data storage and retrieval system which can be applied to all types of signal or data, structured or unstructured, textual or not. mARC can be applied to a wide range of information clas-sification and retrieval problems like e-Discovery or contextual navigation. It can also for-mulated in the artificial life framework a.k.a Conway "Game Of Life" Theory. In contrast to Conway approach, the objects evolve in a massively multidimensional space. In order to start evaluating the potential of mARC we have built a mARC-based Internet search en-gine demonstrator with contextual functionality. We compare the behavior of the mARC demonstrator with Google search both in terms of performance and relevance. In the study we find that the mARC search engine demonstrator outperforms Google search by an order of magnitude in response time while providing more relevant results for some classes of queries

    Session-based Recommendation with User Cold-Start Problem Using Markov Chain Model & Incremental Learning

    Full text link
    Session-based recommendation has become a hot topic of intelligent system in recent years. As a sub-field of Recommending System, the session-based recommendation studies the sequential relationship of data in user's usage sessions. In some applications, the recommending system should focus more on the personalized usage feature in order to make better recommendations. This thesis analyzed the statistics of user's usage sessions and proposed the Statistics Enhanced FPMC algorithm to enhance the personalized usage pattern of users to improve the recommending performance of recommender system for in-vehicle infotainment system and APP manage system application. The proposed algorithm also addressed the user cold-start problem by incremental learning with a knowledge distillation method to alleviate the catastrophic forgetting problem. The user cold-start problem is defined as making recommendations to new users under cold-start conditions. While the usage data becomes available for new users, the model can continue to be updated to improve recommending performance.MSEElectrical Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/167350/1/Zhengru Li - Final Thesis.pd

    A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and Future Directions

    Full text link
    Graphs represent interconnected structures prevalent in a myriad of real-world scenarios. Effective graph analytics, such as graph learning methods, enables users to gain profound insights from graph data, underpinning various tasks including node classification and link prediction. However, these methods often suffer from data imbalance, a common issue in graph data where certain segments possess abundant data while others are scarce, thereby leading to biased learning outcomes. This necessitates the emerging field of imbalanced learning on graphs, which aims to correct these data distribution skews for more accurate and representative learning outcomes. In this survey, we embark on a comprehensive review of the literature on imbalanced learning on graphs. We begin by providing a definitive understanding of the concept and related terminologies, establishing a strong foundational understanding for readers. Following this, we propose two comprehensive taxonomies: (1) the problem taxonomy, which describes the forms of imbalance we consider, the associated tasks, and potential solutions; (2) the technique taxonomy, which details key strategies for addressing these imbalances, and aids readers in their method selection process. Finally, we suggest prospective future directions for both problems and techniques within the sphere of imbalanced learning on graphs, fostering further innovation in this critical area.Comment: The collection of awesome literature on imbalanced learning on graphs: https://github.com/Xtra-Computing/Awesome-Literature-ILoG

    Software library for stream-based recommender systems

    Get PDF
    Tradicionalmente, um algoritmo de machine learning é capaz de aprender com dados, dado um conjunto tratado e construído anteriormente. Também é possível analisar esse conjunto de dados, usando técnicas de mineração de dados e extrair conclusões a partir dele. Ambos os conceitos têm inúmeras aplicações em todo o mundo, desde diagnósticos médicos até reconhecimento de fala ou mesmo consultas a mecanismos de pesquisa. No entanto, tradicionalmente, supõe-se que o conjunto de dados esteja disponível a todo o momento. Isso não é necessariamente verdade com os dados modernos pois os aplicativos de sistemas distribuídos recebem e processam milhões de fluxos de dados em uma fração de tempo limitado. Portanto, são necessárias técnicas para extrair e processar esses fluxos de dados, em um período de tempo limitado, com bons resultados e dimensionamento eficaz à medida que os dados aumentam. Um sistema específico de análise e previsão de conclusões futuras a partir de dados fornecidos são os sistemas de recomendação. Vários serviços online usam sistemas de recomendação para fornecer conteúdo personalizado a seus usuários. Em muitos casos, as recomendações são um dos geradores de tráfego mais eficazes nesses serviços. O problema reside em encontrar o melhor pequeno subconjunto de itens em um sistema que corresponda às preferências pessoais de cada usuário, através da análise de uma quantidade muito grande de dados históricos. Esse problema recebe mais atenção se for considerado um problema genérico, não específico, ou seja, se uma biblioteca for construída para que possa ser estendida e usada como uma ferramenta para ajudar a construir um sistema para um caso de uso específico. Podem-se distinguir soluções entre perfeitas ou estatisticamente semelhantes. Devido a grande quantidade de dados disponíveis, a decisão de reprocessar todos os dados, sempre que novos dados chegam, não seria viável; portanto, algoritmos incrementais são usados ​​para processar os dados recebidos e manter o modelo de recomendação atualizado. O objetivo real deste trabalho é implementar uma biblioteca que contenha e avalie essas abordagens incrementais para recomendações de que as atuais são específicas da tarefa.Traditionally, a machine learning algorithm is able to learn from data, given a previously built and treated data set. One can also analyze that data set, using data mining techniques, and draw conclusions from it. Both of these concepts have numerous world-wide applications, from medical diagnosis to speech recognition or even search engine queries. However, traditionally speaking, it is being assumed that the data set is available at all times. That is not necessarily true with modern data, as distributed systems applications receive and process millions of data streams on a limited time fraction. Therefore, there is a need for techniques to mine and process these data streams,on a limited time period with good results and effective scaling as data grows. One specific use case of analyzing and predicting future conclusions from given data, are recommendation systems.Several online services use recommender systems to deliver personalized content to their users.In many cases, recommendations are one of the most effective traffic generators in such services.The problem lies in finding the best small subset of items in a system that matches the personal preferences of each user, through the analysis of a very large amount of historical data. This problem gets more attention if it is considered as a generic problem, not as a specific one, that is,if a library is built so that it can be extended and used as a tool to help build a system for a specific use case. One can distinguish solutions between perfect ones or statistically similar ones. Due to the large amount of data available, the decision to reprocess all the data every time new data arrives, would not be feasible so, incremental algorithms are used to process incoming data and keeping the recommendation model updated. The real purpose of this work is to implement such a library which contains, and evaluates these incremental approaches to recommendation since current ones are task-specific

    AutoAssign+: Automatic Shared Embedding Assignment in Streaming Recommendation

    Full text link
    In the domain of streaming recommender systems, conventional methods for addressing new user IDs or item IDs typically involve assigning initial ID embeddings randomly. However, this practice results in two practical challenges: (i) Items or users with limited interactive data may yield suboptimal prediction performance. (ii) Embedding new IDs or low-frequency IDs necessitates consistently expanding the embedding table, leading to unnecessary memory consumption. In light of these concerns, we introduce a reinforcement learning-driven framework, namely AutoAssign+, that facilitates Automatic Shared Embedding Assignment Plus. To be specific, AutoAssign+ utilizes an Identity Agent as an actor network, which plays a dual role: (i) Representing low-frequency IDs field-wise with a small set of shared embeddings to enhance the embedding initialization, and (ii) Dynamically determining which ID features should be retained or eliminated in the embedding table. The policy of the agent is optimized with the guidance of a critic network. To evaluate the effectiveness of our approach, we perform extensive experiments on three commonly used benchmark datasets. Our experiment results demonstrate that AutoAssign+ is capable of significantly enhancing recommendation performance by mitigating the cold-start problem. Furthermore, our framework yields a reduction in memory usage of approximately 20-30%, verifying its practical effectiveness and efficiency for streaming recommender systems
    corecore