19,721 research outputs found

    Energy rating of a water pumping station using multivariate analysis

    Get PDF
    Among water management policies, the preservation and the saving of energy demand in water supply and treatment systems play key roles. When focusing on energy, the customary metric to determine the performance of water supply systems is linked to the definition of component-based energy indicators. This approach is unfit to account for interactions occurring among system elements or between the system and its environment. On the other hand, the development of information technology has led to the availability of increasing large amount of data, typically gathered from distributed sensor networks in so-called smart grids. In this context, data intensive methodologies address the possibility of using complex network modeling approaches, and advocate the issues related to the interpretation and analysis of large amount of data produced by smart sensor networks. In this perspective, the present work aims to use data intensive techniques in the energy analysis of a water management network. The purpose is to provide new metrics for the energy rating of the system and to be able to provide insights into the dynamics of its operations. The study applies neural network as a tool to predict energy demand, when using flowrate and vibration data as predictor variables

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

    Full text link
    This paper presents an approach for employing artificial neural networks (NN) to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation. The assimilation methods are tested in the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localization of balloon soundings. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLP-NN), is applied. The MLP-NN are able to emulate the analysis from the local ensemble transform Kalman filter (LETKF). After the training process, the method using the MLP-NN is seen as a function of data assimilation. The NN were trained with data from first three months of 1982, 1983, and 1984. A hind-casting experiment for the 1985 data assimilation cycle using MLP-NN were performed with synthetic observations for January 1985. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses is of order 0.02. The simulations show that the major advantage of using the MLP-NN is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-NN is 90 times faster than cycle assimilation with LETKF for the numerical experiment.Comment: 17 pages, 16 figures, monthly weather revie

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    On Forecasting Recessions via Neural Nets

    Get PDF
    In this research, we employ artificial neural networks in conjunction with selected economic and financial variables to forecast recessions in Canada, France, Germany, Italy, Japan, UK, and USA. We model the relationship between selected economic and financial (indicator) variables and recessions 1-10 periods in future out-of-sample recursively. The out-of-sample forecasts from neural network models show that among the 10 models constructed from 7 indicator variables and their combinations that we investigate, the stock price index (index) and spread between bank rates and risk free rates (BRTB) are most likely candidate variables for possible forecasts of recessions 1-10 periods ahead for most countries.business cycles neural network out-of-sample forecasts recession real GDP

    Nonlinear Combination of Financial Forecast with Genetic Algorithm

    Get PDF
    Complexity in the financial markets requires intelligent forecasting models for return volatility. In this paper, historical simulation, GARCH, GARCH with skewed student-t distribution and asymmetric normal mixture GRJ-GARCH models are combined with Extreme Value Theory Hill by using artificial neural networks with genetic algorithm as the combination platform. By employing daily closing values of the Istanbul Stock Exchange from 01/10/1996 to 11/07/2006, Kupiec and Christoffersen tests as the back-testing mechanisms are performed for forecast comparison of the models. Empirical findings show that the fat-tails are more properly captured by the combination of GARCH with skewed student-t distribution and Extreme Value Theory Hill. Modeling return volatility in the emerging markets needs “intelligent” combinations of Value-at-Risk models to capture the extreme movements in the markets rather than individual model forecast.Forecast combination; Artificial neural networks; GARCH models; Extreme value theory; Christoffersen test
    • 

    corecore