517 research outputs found

    Techniques for the reverse engineering of banking malware

    Get PDF
    Malware attacks are a significant and frequently reported problem, adversely affecting the productivity of organisations and governments worldwide. The well-documented consequences of malware attacks include financial loss, data loss, reputation damage, infrastructure damage, theft of intellectual property, compromise of commercial negotiations, and national security risks. Mitiga-tion activities involve a significant amount of manual analysis. Therefore, there is a need for automated techniques for malware analysis to identify malicious behaviours. Research into automated techniques for malware analysis covers a wide range of activities. This thesis consists of a series of studies: an anal-ysis of banking malware families and their common behaviours, an emulated command and control environment for dynamic malware analysis, a technique to identify similar malware functions, and a technique for the detection of ransomware. An analysis of the nature of banking malware, its major malware families, behaviours, variants, and inter-relationships are provided in this thesis. In doing this, this research takes a broad view of malware analysis, starting with the implementation of the malicious behaviours through to detailed analysis using machine learning. The broad approach taken in this thesis differs from some other studies that approach malware research in a more abstract sense. A disadvantage of approaching malware research without domain knowledge, is that important methodology questions may not be considered. Large datasets of historical malware samples are available for countermea-sures research. However, due to the age of these samples, the original malware infrastructure is no longer available, often restricting malware operations to initialisation functions only. To address this absence, an emulated command and control environment is provided. This emulated environment provides full control of the malware, enabling the capabilities of the original in-the-wild operation, while enabling feature extraction for research purposes. A major focus of this thesis has been the development of a machine learn-ing function similarity method with a novel feature encoding that increases feature strength. This research develops techniques to demonstrate that the machine learning model trained on similarity features from one program can find similar functions in another, unrelated program. This finding can lead to the development of generic similar function classifiers that can be packaged and distributed in reverse engineering tools such as IDA Pro and Ghidra. Further, this research examines the use of API call features for the identi-fication of ransomware and shows that a failure to consider malware analysis domain knowledge can lead to weaknesses in experimental design. In this case, we show that existing research has difficulty in discriminating between ransomware and benign cryptographic software. This thesis by publication, has developed techniques to advance the disci-pline of malware reverse engineering, in order to minimize harm due to cyber-attacks on critical infrastructure, government institutions, and industry.Doctor of Philosoph

    MalDetConv: Automated Behaviour-based Malware Detection Framework Based on Natural Language Processing and Deep Learning Techniques

    Full text link
    The popularity of Windows attracts the attention of hackers/cyber-attackers, making Windows devices the primary target of malware attacks in recent years. Several sophisticated malware variants and anti-detection methods have been significantly enhanced and as a result, traditional malware detection techniques have become less effective. This work presents MalBehavD-V1, a new behavioural dataset of Windows Application Programming Interface (API) calls extracted from benign and malware executable files using the dynamic analysis approach. In addition, we present MalDetConV, a new automated behaviour-based framework for detecting both existing and zero-day malware attacks. MalDetConv uses a text processing-based encoder to transform features of API calls into a suitable format supported by deep learning models. It then uses a hybrid of convolutional neural network (CNN) and bidirectional gated recurrent unit (CNN-BiGRU) automatic feature extractor to select high-level features of the API Calls which are then fed to a fully connected neural network module for malware classification. MalDetConv also uses an explainable component that reveals features that contributed to the final classification outcome, helping the decision-making process for security analysts. The performance of the proposed framework is evaluated using our MalBehavD-V1 dataset and other benchmark datasets. The detection results demonstrate the effectiveness of MalDetConv over the state-of-the-art techniques with detection accuracy of 96.10%, 95.73%, 98.18%, and 99.93% achieved while detecting unseen malware from MalBehavD-V1, Allan and John, Brazilian, and Ki-D datasets, respectively. The experimental results show that MalDetConv is highly accurate in detecting both known and zero-day malware attacks on Windows devices

    Adversarial Robustness of Hybrid Machine Learning Architecture for Malware Classification

    Get PDF
    The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample. In contrast, simultaneous utilization of static and behavioral telemetry is vaguely explored. We propose a hybrid model that employs dynamic malware analysis techniques, contextual information as an executable filesystem path on the system, and static representations used in modern state-of-the-art detectors. It does not require an operating system virtualization platform. Instead, it relies on kernel emulation for dynamic analysis. Our model reports enhanced detection heuristic and identify malicious samples, even if none of the separate models express high confidence in categorizing the file as malevolent. For instance, given the 0.05%0.05\% false positive rate, individual static, dynamic, and contextual model detection rates are 18.04%18.04\%, 37.20%37.20\%, and 15.66%15.66\%. However, we show that composite processing of all three achieves a detection rate of 96.54%96.54\%, above the cumulative performance of individual components. Moreover, simultaneous use of distinct malware analysis techniques address independent unit weaknesses, minimizing false positives and increasing adversarial robustness. Our experiments show a decrease in contemporary adversarial attack evasion rates from 26.06%26.06\% to 0.35%0.35\% when behavioral and contextual representations of sample are employed in detection heuristic

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    A Survey on Malware Detection with Graph Representation Learning

    Full text link
    Malware detection has become a major concern due to the increasing number and complexity of malware. Traditional detection methods based on signatures and heuristics are used for malware detection, but unfortunately, they suffer from poor generalization to unknown attacks and can be easily circumvented using obfuscation techniques. In recent years, Machine Learning (ML) and notably Deep Learning (DL) achieved impressive results in malware detection by learning useful representations from data and have become a solution preferred over traditional methods. More recently, the application of such techniques on graph-structured data has achieved state-of-the-art performance in various domains and demonstrates promising results in learning more robust representations from malware. Yet, no literature review focusing on graph-based deep learning for malware detection exists. In this survey, we provide an in-depth literature review to summarize and unify existing works under the common approaches and architectures. We notably demonstrate that Graph Neural Networks (GNNs) reach competitive results in learning robust embeddings from malware represented as expressive graph structures, leading to an efficient detection by downstream classifiers. This paper also reviews adversarial attacks that are utilized to fool graph-based detection methods. Challenges and future research directions are discussed at the end of the paper.Comment: Preprint, submitted to ACM Computing Surveys on March 2023. For any suggestions or improvements, please contact me directly by e-mai

    Forensic Memory Classification using Deep Recurrent Neural Networks

    Get PDF
    The goal of this project is to advance the application of machine learning frameworks and tools in the process of malware detection. Specifically, a deep neural network architecture is proposed to classify application modules as benign or malicious, using the lower level memory block patterns that make up these modules. The modules correspond to blocks of functionality within files used in kernel and OS level processes as well as user level applications. The learned model is proposed to reside in an isolated core with strict communication restrictions to achieve incorruptibility as well as efficiency, therefore providing a probabilistic memory-level view of the system that is consistent with the user-level view. The lower level memory blocks are constructed using basic block sequences of varying sizes that are fed as input into Long-Short Term Memory models. Four configurations of the LSTM model are explored, by adding bi-directionality as well as Attention. Assembly level data from 50 PE files are extracted and basic blocks are constructed using the IDA Disassembler toolkit. The results show that longer basic block sequences result in richer LSTM hidden layer representations. The hidden states are fed as features into Max pooling layers or Attention layers, depending on the configuration being tested, and the final classification is performed using Logistic Regression with a single hidden layer. The bidirectional LSTM with Attention proved to be the best model, used on basic block sequences of size 29. The differences between the model’s ROC curves indicate a strong reliance on lower level, instructional features, as opposed to metadata or String features, that speak to the success of using entire assembly instructions as data, as opposed to just opcodes or higher level features
    corecore