10,611 research outputs found

    A Hybrid Modelling Framework for Real-time Decision-support for Urgent and Emergency Healthcare

    Get PDF
    In healthcare, opportunities to use real-time data to support quick and effective decision-making are expanding rapidly, as data increases in volume, velocity and variety. In parallel, the need for short-term decision-support to improve system resilience is increasingly relevant, with the recent COVID-19 crisis underlining the pressure that our healthcare services are under to deliver safe, effective, quality care in the face of rapidly-shifting parameters. A real-time hybrid model (HM) which combines real-time data, predictions, and simulation, has the potential to support short-term decision-making in healthcare. Considering decision-making as a consequence of situation awareness focuses the HM on what information is needed where, when, how, and by whom with a view toward sustained implementation. However the articulation between real-time decision-support tools and a sociotechnical approach to their development and implementation is currently lacking in the literature. Having identified the need for a conceptual framework to support the development of real-time HMs for short-term decision-support, this research proposed and tested the Integrated Hybrid Analytics Framework (IHAF) through an examination of the stages of a Design Science methodology and insights from the literature examining decision-making in dynamic, sociotechnical systems, data analytics, and simulation. Informed by IHAF, a HM was developed using real-time Emergency Department data, time-series forecasting, and discrete-event simulation. The application started with patient questionnaires to support problem definition and to act as a formative evaluation, and was subsequently evaluated using staff interviews. Evaluation of the application found multiple examples where the objectives of people or sub-systems are not aligned, resulting in inefficiencies and other quality problems, which are characteristic of complex adaptive sociotechnical systems. Synthesis of the literature, the formative evaluation, and the final evaluation found significant themes which can act as antecedents or evaluation criteria for future real-time HM studies in sociotechnical systems, in particular in healthcare. The generic utility of IHAF is emphasised for supporting future applications in similar domains

    Exploring Artificial Intelligence Methods for Energy Prediction in Healthcare Facilities: An In-Depth Extended Systematic Review

    Full text link
    Hospitals, due to their complexity and unique requirements, play a pivotal role in global energy consumption patterns. This study conducted a comprehensive literature review, utilizing the PRISMA framework, of articles that employed machine learning and artificial intelligence techniques for predicting energy consumption in hospital buildings. Of the 1884 publications identified, 17 were found to address this specific domain and have been thoroughly reviewed to establish the state-of-the-art and identify gaps where future research is needed. This review revealed a diverse range of data inputs influencing energy prediction, with occupancy and meteorological data emerging as significant predictors. However, many studies failed to delve deep into the implications of their data choices, and gaps were evident regarding the understanding of time dynamics, operational status, and preprocessing methods. Machine learning, especially deep learning models like ANNs, have shown potential in this domain, yet they come with challenges, including interpretability and computational demands. The findings underscore the immense potential of AI in optimizing hospital energy consumption but also highlight the need for more comprehensive and granular research. Key areas for future research include the optimization of ANN approaches, new optimization and data integration techniques, the integration of real-time data into Intelligent Energy Management Systems, and increasing focus on long-term energy forecasting.Comment: 38 pages, 1 figure, 3 tables, systematic literature revie

    Evolution of artificial intelligence research in Technological Forecasting and Social Change: Research topics, trends, and future directions

    Get PDF
    Artificial intelligence (AI) is a set of rapidly expanding disruptive technologies that are radically transforming various aspects related to people, business, society, and the environment. With the proliferation of digital computing devices and the emergence of big data, AI is increasingly offering significant opportunities for society and business organizations. The growing interest of scholars and practitioners in AI has resulted in the diversity of research topics explored in bulks of scholarly literature published in leading research outlets. This study aims to map the intellectual structure and evolution of the conceptual structure of overall AI research published in Technological Forecasting and Social Change (TF&SC). This study uses machine learning-based structural topic modeling (STM) to extract, report, and visualize the latent topics from the AI research literature. Further, the disciplinary patterns in the intellectual structure of AI research are examined with the additional objective of assessing the disciplinary impact of AI. The results of the topic modeling reveal eight key topics, out of which the topics concerning healthcare, circular economy and sustainable supply chain, adoption of AI by consumers, and AI for decision-making are showing a rising trend over the years. AI research has a significant influence on disciplines such as business, management, and accounting, social science, engineering, computer science, and mathematics. The study provides an insightful agenda for the future based on evidence-based research directions that would benefit future AI scholars to identify contemporary research issues and develop impactful research to solve complex societal problems

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    Towards More Nuanced Patient Management: Decomposing Readmission Risk with Survival Models

    Get PDF
    Unplanned hospital readmissions are costly and associated with poorer patient outcomes. Overall readmission rates have also come to be used as performance metrics in reimbursement in healthcare policy, further motivating hospitals to identify and manage high-risk patients. Many models predicting readmission risk have been developed to facilitate the equitable measurement of readmission rates and to support hospital decision-makers in prioritising patients for interventions. However, these models consider the overall risk of readmission and are often restricted to a single time point. This work aims to develop the use of survival models to better support hospital decision-makers in managing readmission risk. First, semi-parametric statistical and nonparametric machine learning models are applied to adult patients admitted via the emergency department at Gold Coast University Hospital (n = 46,659) and Robina Hospital (n = 23,976) in Queensland, Australia. Overall model performance is assessed based on discrimination and calibration, as measured by time-dependent concordance and D-calibration. Second, a framework based on iterative hypothesis development and model fitting is proposed for decomposing readmission risk into persistent, patient-specific baselines and transient, care-related components using a sum of exponential hazards structure. Third, criteria for patient prioritisation based on the duration and magnitude of care-related risk components are developed. The extensibility of the framework and subsequent prioritisation criteria are considered for alternative populations, such as outpatient admissions and specific diagnosis groups, and different modelling techniques. Time-to-event models have rarely been applied for readmission modelling but can provide a rich description of the evolution of readmission risk post-discharge and support more nuanced patient management decisions than simple classification models

    Intelligent Energy Management with IoT Framework in Smart Cities Using Intelligent Analysis: An Application of Machine Learning Methods for Complex Networks and Systems

    Full text link
    Smart buildings are increasingly using Internet of Things (IoT)-based wireless sensing systems to reduce their energy consumption and environmental impact. As a result of their compact size and ability to sense, measure, and compute all electrical properties, Internet of Things devices have become increasingly important in our society. A major contribution of this study is the development of a comprehensive IoT-based framework for smart city energy management, incorporating multiple components of IoT architecture and framework. An IoT framework for intelligent energy management applications that employ intelligent analysis is an essential system component that collects and stores information. Additionally, it serves as a platform for the development of applications by other companies. Furthermore, we have studied intelligent energy management solutions based on intelligent mechanisms. The depletion of energy resources and the increase in energy demand have led to an increase in energy consumption and building maintenance. The data collected is used to monitor, control, and enhance the efficiency of the system

    Assessing the current landscape of AI and sustainability literature:Identifying key trends, addressing gaps and challenges

    Get PDF
    The United Nations’ 17 Sustainable Development Goals stress the importance of global and local efforts to address inequalities and implement sustainability. Addressing complex, interconnected sustainability challenges requires a systematic, interdisciplinary approach, where technology, AI, and data-driven methods offer potential solutions for optimizing resources, integrating different aspects of sustainability, and informed decision-making. Sustainability research surrounds various local, regional, and global challenges, emphasizing the need to identify emerging areas and gaps where AI and data-driven models play a crucial role. The study performs a comprehensive literature survey and scientometric and semantic analyses, categorizes data-driven methods for sustainability problems, and discusses the sustainable use of AI and big data. The outcomes of the analyses highlight the importance of collaborative and inclusive research that bridges regional differences, the interconnection of AI, technology, and sustainability topics, and the major research themes related to sustainability. It further emphasizes the significance of developing hybrid approaches combining AI, data-driven techniques, and expert knowledge for multi-level, multi-dimensional decision-making. Furthermore, the study recognizes the necessity of addressing ethical concerns and ensuring the sustainable use of AI and big data in sustainability research.</p
    • …
    corecore