32 research outputs found

    Generalized packing designs

    Full text link
    Generalized tt-designs, which form a common generalization of objects such as tt-designs, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of tt-designs, \emph{Discrete Math.}\ {\bf 309} (2009), 4835--4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes surprising connections which these generalized designs have with various known classes of combinatorial designs, including Howell designs, partial Latin squares and several classes of triple systems, and also concepts such as resolvability and block colouring of ordinary designs and packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on the size of a generalized packing design and construct optimal generalized packings in certain cases. In particular, we provide methods for constructing maximum generalized packings with t=2t=2 and block size k=3k=3 or 4.Comment: 38 pages, 2 figures, 5 tables, 2 appendices. Presented at 23rd British Combinatorial Conference, July 201

    Breakout group allocation schedules and the social golfer problem with adjacent group sizes

    Get PDF
    The current pandemic has led schools and universities to turn to online meeting software solutions such as Zoom and Microsoft Teams. The teaching experience can be enhanced via the use of breakout rooms for small group interaction. Over the course of a class (or over several classes), the class will be allocated to breakout groups multiple times over several rounds. It is desirable to mix the groups as much as possible, the ideal being that no two students appear in the same group in more than one round. In this paper, we discuss how the problem of scheduling balanced allocations of students to sequential breakout rooms directly corresponds to a novel variation of a well-known problem in combinatorics (the social golfer problem), which we call the social golfer problem with adjacent group sizes. We explain how solutions to this problem can be obtained using constructions from combinatorial design theory and how they can be used to obtain good, balanced breakout room allocation schedules. We present our solutions for up to 50 students and introduce an online resource that educators can access to immediately generate suitable allocation schedules

    Subject Index Volumes 1–200

    Get PDF

    Mini-Workshop: Algebraic, Geometric, and Combinatorial Methods in Frame Theory

    Get PDF
    Frames are collections of vectors in a Hilbert space which have reconstruction properties similar to orthonormal bases and applications in areas such as signal and image processing, quantum information theory, quantization, compressed sensing, and phase retrieval. Further desirable properties of frames for robustness in these applications coincide with structures that have appeared independently in other areas of mathematics, such as special matroids, Gel’Fand-Zetlin polytopes, and combinatorial designs. Within the past few years, the desire to understand these structures has led to many new fruitful interactions between frame theory and fields in pure mathematics, such as algebraic and symplectic geometry, discrete geometry, algebraic combinatorics, combinatorial design theory, and algebraic number theory. These connections have led to the solutions of several open problems and are ripe for further exploration. The central goal of our mini-workshop was to attack open problems that were amenable to an interdisciplinary approach combining certain subfields of frame theory, geometry, and combinatorics

    Combinatorics, Probability and Computing

    Get PDF
    The main theme of this workshop was the use of probabilistic methods in combinatorics and theoretical computer science. Although these methods have been around for decades, they are being refined all the time: they are getting more and more sophisticated and powerful. Another theme was the study of random combinatorial structures, either for their own sake, or to tackle extremal questions. The workshop also emphasized connections between probabilistic combinatorics and discrete probability

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes
    corecore