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Abstract 

This narrative is a history of the contributions made to graph theory in the United States of 

America by American mathematicians and others who supported the growth of scholarship 

in that country, between the years 1876 and 1950. 

The beginning of this period coincided with the opening of the first research university 

in the United States of America, The Johns Hopkins University (although undergraduates 

were also taught), providing the facilities and impetus for the development of new ideas. 

The hiring, from England, of one of the foremost mathematicians of the time provided the 

necessary motivation for research and development for a new generation of American 

scholars. In addition, it was at this time that home-grown research mathematicians were 

first coming to prominence. 

At the beginning of the twentieth century European interest in graph theory, and to 

some extent the four-colour problem, began to wane. Over three decades, American 

mathematicians took up this field of study - notably, Oswald Veblen, George Birkhoff, 

Philip Franklin, and Hassler Whitney. It is necessary to stress that these four 

mathematicians and all the other scholars mentioned in this history were not just graph 

theorists but worked in many other disciplines. Indeed, they not only made significant 

contributions to diverse fields but, in some cases, they created those fields themselves and 

set the standards for others to follow. Moreover, whilst they made considerable 

contributions to graph theory in general, two of them developed important ideas in 

connection with the four-colour problem. Grounded in a paper by Alfred Bray Kempe that 

was notorious for its fallacious 'proof of the four-colour theorem, these ideas were the 

concepts of an unavoidable set and a reducible configuration. 

To place the story of these scholars within the history of mathematics, America, and 

graph theory, brief accounts are presented of the early years of graph theory, the early years 

of mathematics and graph theory in the USA, and the effects of the founding of the first 
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institute for postgraduate study in America. Additionally, infonnation has been included on 

other influences by such global events as the two world wars, the depression, the influx of 

European scholars into the United States of America, mainly during the 1930s, and the 

parallel development of graph theory in Europe. 

Until the end of the nineteenth century, graph theory had been almost entirely the 

prerogative of European mathematicians. Perhaps the first work in graph theory carried out 

in America was by Charles Sanders Peirce, arguably America's greatest logician and 

philosopher at the time. In the 1860s, he studied the four-colour conjecture and claimed to 

have written at least two papers on the subject during that decade, but unfortunately neither 

of these has survived. William Edward Story entered the field in 1879, with unfortunate 

consequences, but it was not until 1897 that an American mathematician presented a lecture 

on the subject, albeit only to have the paper disappear. Paul Wernicke presented a lecture 

on the four-colour problem to the American Mathematician Society, but again the paper has 

not survived. However, his 1904 paper has survived and added to the story of graph theory, 

and particularly the four-colour conjecture. 

The year 1912 saw the real beginning of American graph theory with Veblen and 

Birkhoff publishing major contributions to the subject. It was around this time that 

European mathematicians appeared to lose interest in graph theory. In the period 1912 to 

1950 much of the progress made in the subject was from America and by 1950 not only had 

the United States of America become the foremost country for mathematics, it was the 

leading centre for graph theory. 
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Chapter 1 

The early years of American mathematics 

Just sixteen years after the Mayflower had landed at Plymouth on the east coast of 

America, pioneers of North American colonisation founded the first establishment of 

higher learning in America, at Cambridge in Massachusetts; it was to be another 57 years 

before the second college was opened. The educational fare offered by the early colleges 

was simply to transmit known knowledge. Although advances were made over the years, it 

was not until 1862, when the government intervened with the Morrill Act (see below), that 

significant steps were made in the education of undergraduates; and in 1876, with the 

opening of The Johns Hopkins University, similar advances were made in the education of 

graduates; although the University also taught undergraduates. 

During the second half of the nineteenth century, when efforts were being made to 

provide graduate education opportunities and initiate research in universities and colleges, 

two men were notable for their contributions; they were Benjamin Peirce and Eliakim 

Hastings Moore. 

Further information on the early colleges in America can be found on their individual 

web sites [1], [2], [3], [4], [5]; additionally the web site [6] has details of colleges and 

mathematicians. 

1.1 Some early colleges 

The first institution of higher education to be established in the American colonies ,vas 

Harvard College in Cambridge, Massachusetts, in 1636. It was created by the Great and 

General Court of the Massachusetts Bay Colony. The College was named after a Puritan 

minister, John IIarvard of Charleston, West Virginia, who bequeathed his library and half 

his estate to it on his death in 1638. John Harvard was born in 1607 in London, England, 
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and was baptised the same year at St. Saviour's Church (now Southwark Cathedral). He 

received his MA from Cambridge University in 1635. 

Over the following century or so, other universities and colleges were founded. All of 

these institutions were privately funded and their aim was, essentially, to fit their students 

for careers in theology, law, medicine and teaching. After Harvard came the College of 

William and Mary at Williamsburg, Virginia, in 1693; Yale University at New Haven, 

Connecticut, in 1701; the University of Pennsylvania at Philadelphia in 1740; Princeton 

University in New Jersey in 1746; Columbia University in New York City in 1754; Bro\\TI 

University, at Providence, Rhode Island, in 1764; and Dartmouth College at Lebanon, New 

Hampshire, in 1769. All of these institutions were located in the original thirteen states of 

the union, and increasingly more were to be founded as time and social development 

continued. 

These early colleges did not include a knowledge of mathematics among their entrance 

requirements, and later when it was considered a prerequisite - at Yale in 1745, Princeton 

in 1760, and Harvard in 1807 - it was limited to elementary arithmetic only. In 1816, 

Harvard obliged its applicants to have a greater understanding of arithmetic, and they 

added algebra in 1820. It was not until after the Civil War of 1861-65 that those other 

colleges insisted on algebra. 

There was little enthusiasm for mathematics in the early years of the American 

colleges, as demonstrated by the low level of entrance criteria. Members of staff not 

otherwise usefully employed carried out the teaching of any mathematics that was 

considered necessary. In 1711, the Reverend Tanaquil Lefevre, the son of a French 

diplomat, was the first person in the Colonies to be appointed a professor of mathematics, 

at the College of William and Mary. Isaac Greenwood took up a similar position at 

Harvard in 1726, but neither held his tenure very long. By 1729, the colonies could boast 

six professors of mathematics, usually coupled with another subject such as natural 
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philosophy (physics) or astronomy; all of them were graduates of British universities: 

Oxford, Cambridge and Edinburgh. 

Like all developing nations, America put great store in the education of its population, 

but the rate of progress, as always, was governed by economics and the calibre of the 

people available for teaching. Progress was made over the next century in all areas of 

learning, not least through the increase in the number of institutes of higher education, with 

the accompanying considerable growth in the importance of mathematics. 

The ending of the American Civil War initiated a considerable increase in the amount 

of disposable money available, both to the government and to the general populace. This 

new-found affiuence, coupled to the Morrill Act, which was authorised by President 

Abraham Lincoln in 1862, allowed a significant increase in the number of institutions of 

higher learning in the USA. The Morrill Act provided a fundamental change in the way 

that higher learning was perceived and funded. It allowed for the distribution of public land 

to the states and territories for the building of colleges, together with the resources 

necessary for the teaching, initially, of agriculture and mechanical subjects. This act was 

conceived as a vehicle to promote and enhance the practical education of the growing 

industrial population. As well as providing the land and funds to build and run the colleges 

and universities, it set about making higher education available to more sections of the 

population than hitherto, with the express intention that this should be for those people 

who could benefit from further education, irrespective of their financial background. This 

also had the effect of considerably increasing the admission of women into institutions of 

higher learning and providing colleges specifically for women and for African Americans, 

as the former slaves and their descendents are now known. 

In the history of graph theory, the most significant of these early American colleges 

were Harvard and Princeton. Later colleges important to this thesis are the Massachusetts 

Institute of Technology, founded in 1861 in Cambridge, Massachusetts; The Johns 
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Hopkins University, founded in 1876 in Baltimore, Maryland; and The Institute of 

Advanced Study, located at Princeton, established in 1930. 

Ilarvard University 

Harvard remains to this day one of the most prestigious places of learning in America and 

can claim, as graduates, eight presidents of the USA and more than forty Nobel Laureates. 

Opening with just nine students and a single master, the education provided there was 

initially based on the European pattern, and the College was modelled on traditional 

English universities with their classic academic courses, but tailored to the Puritan 

philosophy of the first colonists. Although the College was never officially associated with 

any religious denomination, many of its early graduates entered the Puritan Church, taking 

up positions as clergymen throughout New England. 

The first non-clergyman to become President of Harvard College was John Leverett in 

1708, and under his and his successors' guidance over most of the eighteenth century, the 

offered curriculum was widened, particularly in the sciences. Indeed the development was 

so successful that in 1780 the Massachusetts Constitution officially recognised Harvard as 

a University. 

The formal teaching of mathematics played little part for almost the first two hundred 

years of the University. Although there had briefly been a professor of mathematics in the 

1720s, it was not until much later that recognisable courses in mathematics became 

available. 

The University continued to expand and develop during the early 1800s, acquiring a 

growing reputation. This was particularly true of the Department of Mathematics and 

Natural Philosophy under the direction of John Farrar from 1806 to 1836 and then, from 

1836 to 1880, the outstanding Benjamin Peirce, unquestionably one of the two leading 
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American mathematical astronomers of the nineteenth century (Peirce features in detail 

later in this chapter). 

In 1847, the Lawrence Scientific School opened at Harvard, allowing Peirce the 

opportunity to develop a graduate programme. Farrar made translations of eighteenth

century French works on mathematics, physics and astronomy as aids to improving the 

level of undergraduate instruction. His resignation due to poor health allowed Peirce to 

take the lead role in teaching these subjects at Harvard. From 1836 to the end of the 

century, mathematics at the university was dominated by Peirce and his students. During 

the early 1830s he produced a number of new sets of course notes, resulting in a further 

improvement in the quality of teaching. 

The Lawrence Scientific School was an early attempt to foster graduate education in 

individual sciences, in place of the previously labelled natural philosophy or natural 

history. During the period 1845 to 1865, Harvard was the foremost mathematical research 

centre in America, with most of the credit going to Peirce. However, it was not until 1912 

that Harvard invested in a dedicated postgraduate programme of mathematical research. 

Princeton University and the Institute for Advanced Study 

Princeton was chartered in 1746 under its original name of The College of New Jersey, by 

which it was known for its first 150 years. Initially located in Elizabeth, New Jersey, it 

moved after a year to Newark, and then to Nassau llall, Princeton, in 1756. Nassau Hall 

was one of the largest buildings in the new colonies and was named after King William III, 

Prince of Orange of the House of Nassau. The charter, dated 22 October 1746, was issued 

by the Province of New Jersey in the name of King George II and stated that 'any Person 

of any religious Denomination whatsoever' may attend. The College was North America's 

fourth establishment of higher learning. 
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The first student intake comprised ten young men, who attended classes in the parlour 

of the Reverend Jonathan Dickinson. In 1780, Princeton's charter was amended so that the 

trustees no longer needed to swear allegiance to the King of England. In 1783, the 

Continental Congress met in Nassau Hall, making Princeton the capital of the newly 

emerging nation for a short time. Nine Princeton alumni attended the Constitution 

Convention in 1787, more than from any other American or British institution. 

By 1896, the College had developed a sufficiently enhanced educational programme 

that it was granted university status, was renamed Princeton University after its host city, 

and in 1900 opened a graduate school, with mathematics research under the guidance of 

Henry Burchard Fine (1858-1928). Fine published a number of mathematical research 

papers on numerical analysis and geometry, but was foremost a writer of textbooks. In 

addition he was a gifted leader, with skills in administration and the development of 

academic organisations. In the late 1880s, he was an active supporter of the founding of the 

New York Mathematical Society, which became the American Mathematical Society in 

1894. 

By this time, Princeton, like most of the American universities, had made little 

contribution to original mathematics. However, the graduate school brought some success 

in research for individual members of the mathematics faculty, but the emphasis at 

Princeton remained that of teaching; research was the poor relation, with little funding and 

scant facilities. One of the mathematical researchers of that time, Solomon Lefschetz 

(1884-1972), recalls [7]: 

When I came in 1924 there were only seven men there engaged in mathematical research. These 

were Fine, Eisenhart, Veblen, Wedderburn, Alexander, Einar Hille, and myself. In the beginning we 

had no quarters. Everyone worked at home. Two rooms in Palmer [Laboratory of Physics] had been 

assigned to us. One was used as a library, and the other for everything else! Only three members of 

the department had offices. Fine and Eisenhart [as administrators] had offices in Nassau Hall, and 

Veblen had an office in Palmer. 
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In the early 1900s, Fine was the foremost researcher in mathematics at Princeton. In 

order to increase the amount of research at the newly accredited university he appointed a 

number of young scholars to preceptorships; one of these was Oswald Veblen in 1905 and 

another was G. D. Birkhoffin 1908 (see Chapter 4). 

Although facilities were less than ideal, much was done to improve the situation during 

the period 1924 to 1930. In 1926 Fine documented criteria for an enhanced research 

facility and, with support from others, set about raising the necessary funds. These aims 

were realised in 1930 with the foundation at Princeton of the Institute for Advanced Study, 

with mathematics as its first field of study and Albert Einstein among its first 

mathematicians. This also had the effect of encouraging mathematical research in the 

University with improvements in its facilities. 

The Massachusetts Institute of Technology (MIT) 

On 10 April 1861, a charter was approved to found a school of higher education in Boston, 

Massachusetts. It read' An Act to Incorporate the Massachusetts Institute of Technology, 

and to Grant Aid to Said Institute and to the Boston Society of Natural History ... ', and 

four years later it opened to the first students. The efforts of the Institute's founder and first 

president, William Barton Rogers, to raise funds were made more difficult due to the 

outbreak of the American Civil War. As a result, classes were initially held in rented 

accommodation in the Mercantile Building in Boston. The Institute's first owned 

buildings, completed in 1866, were located in Boston's Back Bay. 

During the early years of this (essentially) engineering school, the head of 

mathematics was John Daniel Runkle, who had been a pupil and protege of Benjamin 

Peirce. Runkle had attended the Lawrence Scientific School at Harvard, from which he 

graduated in 1851, and subsequently worked at the Nautical Almanac Office in 

Cambridge; in both places, he enjoyed the influence and encouragement of Peirce. Runkle 
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was Rogers' right-hand man, and they were both influential in planning and defining the 

Institute's teaching programme. Runkle believed that his department was there to provide 

mathematical instruction for the engineering students. 

On Runkle's death in 1902, his successor, Harry Walter Tyler, set about making the 

teaching of mathematics a serious subject in its own right, and not just as a service to 

engineering. In this, he was encouraged by the President, Richard Maclaurin, \vho also 

supported Tyler's efforts to expand the department and to promote mathematical research. 

The Institute relocated to its present site in Cambridge in 1916, housed in what is knO\\TI as 

the Maclaurin building, after the president who oversaw its construction. 

By the early 1920s, the Massachusetts Institute of Technology had established itself in 

the top division of mathematics research. It earned a reputation for invention, and many 

successful and significant companies were founded by the Institution and by its graduates. 

Over sixty current or former members of the Institute have received Nobel Prizes. 

The Johns Ilopkins University 

The Johns Hopkins University, founded in Baltimore, Maryland, in 1876, \vas the first 

research university in the USA, with funds provided through a bequest of $3,500,000 from 

the American financier Johns Hopkins. Additionally, he left an equal amount to fund the 

building of the Johns Hopkins Hospital, which opened in 1893 and provided facilities for 

training students of the University'S medical school. The University opened on 22 

February 1876 with Daniel Coit Gilman as its first president. In his installation address, he 

asked: 

What are we aiming at? The encouragement of research ... and the advancement of individual 

scholars, who by their excellence will advance the sciences they pursue and the society where they 

dwell. 

With the freedom of starting from nothing, and without the need to change entrenched 

ideas, Gilman set out to create an academic establishment new to the USA. His guiding 
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premise was to build a research school that, through scholarship, would improve the 

individual student's knowledge and enhance the general level of human understanding. He 

succeeded in developing an atmosphere where teaching and research went hand in hand, 

and where all faculty members became confident to do both. What Gilman achieved at 

Johns Hopkins marked a major turning point in the higher education system in the USA 

and set a challenge to other American colleges and universities. 

To implement his aspirations in the mathematics department, Gilman travelled to 

Europe in 1876 to attract a world-renowned mathematician with a reputation for original 

research and for encouraging others in research. With the assistance of Benjamin Peirce, he 

secured the services of the British mathematician James Joseph Sylvester, who was 61 

years of age and retired but still young enough in mind to be able to instil enthusiasm in 

young scholars. The story of the development of mathematics at Johns Hopkins with 

Sylvester continues in Chapter 2. 

1.2 Early mathematics education 

The teaching in colleges in the early years of the USA was elementary and followed 

eighteenth-century English practice, comprising Latin, Greek, philosophy, basic 

Newtonian mechanics and a little mathematics, including Euclid's Elements, the rudiments 

of trigonometry and basic arithmetic, and some algebra. 

A consequence of the 1812-14 War between Britain and the USA over shipping and 

territory disputes was that many things in America became influenced more by France than 

by England as hitherto. For mathematics, this meant looking towards a country where 

mathematics and science were held in respect and benefited from considerable support 

from government; this attitude had never been a high priority of the British government. 

This change in emphasis led to the expansion of mathematics and science faculties within 
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American colleges, and the corresponding creation of additional chairs within these 

disciplines. 

During these early years, little research was carried out within the higher education 

system in the USA. Although many people working within the system considered research 

to be prestigious, few facilities were available and there were no internal structures for 

fostering it. Additionally, because higher education in America \vas almost exclusively 

devoted to undergraduate teaching, there were little experience and ability available to 

develop postgraduate study. It was accepted at the time that promising graduates should 

travel to Europe, mostly to Germany, for doctoral study and research. 

The founding of The Johns Hopkins University initiated a process of change. Its first 

president., Daniel Gilman, was unlike the presidents of long-established colleges and 

universities such as Harvard, Princeton and Yale, where they were steeped in entrenched 

tradition. He recognised that American higher education was far behind that of many 

European countries. Additionally, he felt that for his new university to survive and grow, it 

needed to offer an alternative programme to that of extant institutions. As a result, Johns 

Hopkins placed equal emphasis on undergraduate studies and graduate education 

incorporating research and support for technical publication. One of Gilman's objects was 

to make the United States of America competitive with Europe, and to help achieve this 

object he set about recruiting internationally respected scholars who had a long history of 

research and of encouraging research in others. It was at Johns Hopkins that the American 

Journal of Mathematics was founded in 1878 (see Chapter 2). 

1.3 Two scholars 

Two American mathematicians who made considerable contributions to the development 

of teaching and graduate study in the USA, and who in differing ways were significant in 
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the history of what was to become graph theory, were Benjamin Peirce of Harvard 

University and Eliakim Hastings Moore of the University of Chicago. 

Benjamin Peirce (1809-1880) 

Throughout the relatively short history of American scholarship, and mathematics In 

particular, there have been dynasties, albeit mostly of two-generation duration. One of 

these was the Peirce family, whose head was Benjamin Peirce (pronounced purse). His 

offspring included his highly acclaimed son Charles Sanders Peirce, mathematician, 

logician and philosopher (see Chapter 2). 

After graduating from Harvard in 1829, Peirce taught for two years at George 

Bancroft's Round Hill School in Northampton, Massachusetts, before returning to Harvard 

and joining the mathematics faculty where he remained for the rest of his life. 

Peirce was perhaps the first American-born professor of mathematics who considered 

research to be part of his role, and not just something to do in his spare time. During his 

time at Harvard, he was influential in elevating the status of the university to that of a 

leading national institution. He is regarded as having made a considerable contribution to 

the emergence of mathematical research in the USA. In 1847, the Lawrence Scientific 

School was founded at Harvard, which allo\ved Peirce to teach graduates and encourage 

them in research. The programme he developed was so advanced that he averaged only 

two students per year. 

Peirce's research topics included celestial mechanics, applications of plane and 

spherical trigonometry to navigation, geodesy, linear associative algebra, number theory 

and statistics. In particular, he published, at his own expense, Linear Associative Algebra 

in 1870. This work classified all complex associative algebras of dimension less than 7, 

and laid down the foundations of a general theory of linear associative algebras. In 

addition, he calculated multiplication tables for more than 150 new algebras. This work 
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was highly influenced by the study of quaternions by William Rowan Hamilton (1805-

1865) (see Appendix I) who was the leading mathematician and astronomer in Ireland 

during the 19th century. Peirce's work was considered the first American treatise on 

modem abstract algebra and the first important research to come out of the USA in the area 

of pure mathematics. 

It has been said that Benjamin Peirce made three significant contributions to 

mathematics: as a stimulating and inspiring teacher and dedicated researcher, as an 

outstanding scholar in the field of statistics, and for his son C. S. Peirce [8]. 

EHakim Ilastings Moore (1862-1932) 

One of the mathematicians to take advantage of the home-grown postgraduate training, as 

well as benefit from overseas study, was Eliakim Hastings Moore. He graduated from Yale 

in 1883 and received his doctorate in 1885, before spending the academic year 1885-86 in 

Germany where he attended the Universities of Gottingen and Berlin. On his return to the 

USA, he was a high-school instructor for a year before becoming a tutor at Yale for 1\\'0 

years. In 1889, Moore joined Northwestern University and then, in 1892, moved to the ne\v 

University of Chicago as Professor of Mathematics and acting head of the Department of 

Mathematics. Chicago University, founded in 1890 largely with money provided by the 

founder of Standard Oil, John D. Rockefeller, had as its main objective the development of 

postgraduate study and research, together with undergraduate instruction. 

It was Chicago's first president, the outstanding administrator William Rainey Harper, 

who recruited Moore. Together they developed an excellent mathematics faculty. 

Chicago's doctoral graduates went on to establish and expand many important departments 

of mathematics across America over the first decades of the twentieth century. Indeed, 

although Moore made no direct contribution to graph theory, two of his postgraduate 

students were to publish major works on the subject. 
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Moore was to stay at Chicago for 40 years, where he devoted considerable time to the 

building of the mathematical community in America. In 1893 he was instrumental in 

organising the JVorld's Columbian Exposition in Chicago to commemorate the 400th 

anniversary of the discovery of the Americas. This attracted attendance and contributions 

from 45 mathematicians from Austri~ Germany, Italy and 19 states of the Union, as well 

as papers from French, Russian, and Swiss scholars, and was the first international 

mathematical meeting to be held in the USA. He then encouraged the New York 

Mathematical Society to expand its boundaries and change its name to the American 

Mathematical Society in 1894, and went further by setting up a Chicago section of the 

Society in 1897. Next, he energetically lobbied the Society to produce a learned periodical 

to publish research papers which should be predominantly by American mathematicians. 

The Society agreed to do this, and in 1899 there appeared the first issue of the 

Transactions of the American Mathematical Society, with Moore as Editor-in-Chief. In 

1906, Moore presented the Society's Colloquium lectures. 

Thirty-one research students earned their PhDs under Moore's supervision, and by the 

end of the twentieth century he was recorded as having had over 9500 doctoral 

descendants. A number of people have commented that this list of descendants reads like a 

JVho's JVho of twentieth-century American mathematicians. Two of his successful 

students, Oswald Veblen and George David Birkhoff, went on to become leading 

American mathematicians in the first half of the twentieth century, making significant 

contributions to graph theory; they form the subject of Chapter 4. 

Conclusion 

As with many things in the USA during the nineteenth and twentieth centuries, the 

development of higher education moved apace, not least in mathematics. By 1910, and 

through to the outbreak of World War II, Harvard, Princeton, Chicago, and Johns Hopkins 
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were not only the leading mathematical establishments in Americ~ but were comparable to 

many of the top European universities. This was due, in large part, to the lead set by Johns 

Hopkins, and the significant change in graduate education at IIarvard in the early 1900s, 

and soon followed by other universities. Other institutions that followed Johns Hopkins' 

lead included Princeton and Yale, as well as newly formed institutions such as Clark 

University and the University of Chicago. This changed the principal emphasis from 

mathematical education to mathematical research. Moreover, the seminal work done by 

Peirce and Moore in developing postgraduate study in America proved to be of immense 

importance for the future of mathematics. 

The story of mathematical research, the influence of Johns Hopkins and Sylvester, the 

initial interest in graph theory in Americ~ and some of its nineteenth-century pioneers are 

explored in the next chapter. 

References 

1. www.harvard.edu 

2. www.princeton.edu 

3. www.ias.edu 

4. www.mit.edu 

5. www.jhu.edu 

6. www.history.mcs.st-and.ac.uk 

7. William Aspray, 'The emergence of Princeton as a World Centre for Mathematical 
Research, 1896-1939', A Century of Afathematics in America, Part II. Edited by Peter Duren 
with the assistance of Richard A. Askey and Uta C. Merzbach, American Mathematical 
Society, Providence, 1989. 

8. Stephen M. Stigler, 'Statistics in the early States', A Century of Afathematics in America, 
Part III. Edited by Peter Duren with the assistance of Richard A. Askey, Harold M. Edwards 
and Uta C. Merzbach, American Mathematical Society, Providence, 1989. 

14 



Chapter 2 

The beginnings of American graph theory 

As has been seen, The Johns Hopkins University was the first establishment of education 

in the USA that had been founded partly with the aim of encouraging and providing 

facilities for research. The University's first president set out to employ the very best 

scholars to head its departments. Mathematics was the first faculty to open, with James 

Joseph Sylvester as its guiding light. Sylvester published several technical papers, 

including a few relating to graph theory. 

The story of Johns Hopkins and its mathematics during its first few years is essentially 

that of Sylvester, but also involves contributions from other notable figures. Alfred Bray 

Kempe, a fellow Briton, whilst not directly involved in the development of graph theory in 

America, is important to the story, because of the famous error in his solution of the four-

colour problem; this was to have an unwitting influence on events on graph theory in the 

USA and on the search for a valid solution. 

However, there were two other scholars important to the early history of lohns 

Hopkins and to the development of mathematics in the USA. The first was William 

Edward Story, a mathematician with a talent for organisation but little luck. The second 

was Charles Sanders Peirce, a brilliant but somewhat wayward polymath. 

Further information on Sylvester can be found in [1], [2]. 

2.1 James Joseph Sylvester (1814-1897) 

Sylvester was a mathematician, former actuary and barrister, who had enjoyed an eventful 

career in his native country, but was already retired when he received Daniel Gilman's 

invitation to become the first Professor of Mathematics at lohns IIopkins in 1876. 

Although many considered Sylvester the finest mathematician in the English-speaking 
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world, he was surprised and pleased by the invitation. Benjamin Peirce, a friend of 

Sylvester, had written to Gilman to urge him to engage Sylvester. Peirce's letter of 18 

September 1875 included the following passage [3]: 

Hearing that you are in England, I take the liberty to write you concerning an appointment in your 

new university, which I think would be greatly for the benefit of our country and of American 

science if you could make it. It is that of one of the two greatest geometers of England, J. J. 

Sylvester. If you enquire about him, you will hear his genius universally recognised but his power 

of teaching will probably be said to be deficient. Now there is no man living who is more luminary 

in his language, to those who have the capacity to comprehend him than Sylvester, provided the 

hearer is in a lucid interval. But as the bam yard fowl cannot understand the flight of the eagle, so it 

is the eaglet only who will be nourished by his instruction ... Among your pupils, sooner or later, 

there must be one, who has a genius for geometry. He will be Sylvester's special pupil - the one 

pupil who will derive from his master, knowledge and enthusiasm - and that one pupil will give 

more reputation to your institution than ten thousand, who wiJI complain of the obscurity of 

Sylvester, and for whom you will provide another class of teachers ... I hope that you wiJI find it in 

your heart to do for Sylvester - what his own country has failed to do - place him where he 

belongs - and the time will come, when all the world will applaud the wisdom of your selection. 

On taking up his appointment in May 1876, at a salary of $5000 per annum (paid in 

gold) [4], Sylvester set about realising Gilman's objective, by initiating research \\'ork in 

the mathematics department. He selected two graduate fellows, George Bruce Halsted and 

Thomas Craig, to join the mathematics faculty, and in the autumn William Story was 

recruited from Harvard. 

Sylvester presented his inaugural lecture on 22 February 1877, the day of the 

celebrations of the first anniversary of the official opening of the University. His speech 

covered many subjects, including how mathematics should be taught and studied, the role 

of Johns Hopkins in the development of mathematics in the USA, and indeed that of 

further education in America. lIe also included an attack on English universities that 

discriminated against all who were not Protestant Christians. As a sufferer of this prejudice 
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himself, he took the opportunity to acclaim the damage done to the furtherance of higher 

education in England by the exclusion of Jews, Catholics and others. 
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Sylvester is credited as the founder of the American Journal of Mathematic, which is 

still in publication today, and with the help of Story he published the first issue in 1878. It 

was intended that the Journal be a vehicle for dialogue between American mathematicians, 

although space was also made available for foreign contributions. As can be e n from the 

index overleaf the first issue contained contributions from the Briti h scholars Arthur 

Cayley, W K Clifford Edward Frankland (although his initial is given as A) and, of 

cour e,. Sylvester' the Americans imon Newcomb, C S Peirce and tory; plus papers from 

yl vester's students T Craig, F Franklin and G 8 Halsted. 
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Index of the first issue of the American Journal of Afalhematics. 

The first SIX volumes of the Journal, which covered the years 1878-1884 and for 

which Sylvester was responsible, contained nearly 200 papers. Sylvester was included in 

each of the volumes with a total of 32 entries and Cayley contributed to five volumes. 

Cayley (1821-1895) was an English mathematician who met Sylvester when they were 

both studying law in London, becoming lifelong friends and collaborators on mathematical 
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matters. In addition to the British mathematicians included in Volume I other Europeans 

who featured in Volumes II-VI were Julius Petersen (see Chapter 3) and Kempe; other 

Americans having papers in these latter volumes included Benjamin Peirce and all eight of 

Sylvester's doctoral students. Sylvester must have initiated a publicity campaign to 

promote the new publication as its 'List of Subscribers' on 1 July 1878 totalled nearly 150, 

of which 36 were institutions some of whom took mUltiple copies. Three addresses in Paris 

were listed, including La Bibliotheque de l'Ecole Polytechnique, and six in England, 

including the University Library, Cambridge, and two in Canada. 

Yale University was the first American institution to confer the PhD degree (in 1861), 

and in 1862 awarded the PhD degree in mathematics to J H Worrall. In the period 1862-

1869 only Yale conferred this degree and only in three cases. In the period 1870-1879 the 

PhD degree in mathematics was awarded once at Cornell University, once at Dartmouth 

University, twice at I-Iarvard, on four occasions at Yale and twice at Johns Hopkins. 

During his time at Johns Hopkins University, Sylvester supervised eight postgraduate 

students writing their doctoral theses [5]. These were: 

1. Thomas Craig, The representation of one surface upon another, and some 
points in the theory of the curvature of surfaces, 1878. 

2. George Bruce Halsted, Basis for a dual logic, 1879. 

3. Fabian Franklin, Bipunctual coordinates, 1880. 

4. Washington Irving Stringham, Regular figures in n-dimensional space, 1880. 

5. Oscar Howard Mitchell, Some theorems in numbers, 1882. 

6. William Pitt Durfee, Symmetric functions, 1883. 

7. George Stetson Ely, Bernoulli's numbers, 1883. 

8. Ellery William Davis, Parametric representations of curves, 1884. 

By this time, Sylvester and his Mathematical Seminarium, as he called his school of 

mathematics, was being recognised in American mathematical circles and in Europe. 

Indeed, papers published by this group, most of which appeared in the American Journal of 
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Mathematics, were widely read at home and abroad. George Andrews [6] recently 

commented that the collective output during these years amounted to a 'monumental' 

contribution to combinatorics, and it was widely accepted that Sylvester and his school 

were succeeding in putting America on the mathematical map. 

In December 1879 the University issued the first of its Johns Hopkins University 

Circulars. This publication was intended initially to communicate throughout the 

University the full scope of research being undertaken, but it also included correspondence 

between (and information of) members of the various faculties. In 1883 Sylvester, in a 

letter to Cayley, wrote [7] that the Circulars acted as 'a sort of record of progress in 

connection with the work and personality of the Johns Hopkins'. Indeed Sylvester 

published many notes, papers and some lectures in the Circulars. 

Sylvester was very happy at Johns Hopkins, not least because, for the first time in his 

life, he was able to teach and carry out research based on his own ideas and chosen topics 

within a formal university environment. 

Since the mid-1850s Sylvester had been thinking of partition theory on \vhich he 

corresponded with Cayley. In 1859 he presented a series of public lectures at King's 

College, London, covering the work on partitions he had done the previous winter and 

spring. During his time at Johns Hopkins he further worked on and developed the theory of 

partitions, a subject that had first been studied in depth by Leonhard Euler (1707-1783). 

Sylvester's ideas are still of value today and George Andrews wrote [8]: 

The modem combinatorial theory of partitions was founded by Sylvester at Johns Hopkins. Most of 

the work of Sylvester and his students was gathered together in an omnibus paper entitled A 

constructive theory of partitions, arranged in three acts, an interact and an exodion. The 

philosophy of the work is perhaps best summarized in the first paragraph of Act I. On Partitions as 

Entities: 

In the new method of partitions it is essential to consider a partition as a definite thing, which end is 

attained by regularization of the succession of its parts according to some prescribed law. The 

simplest law for the purpose is that the arrangement of the parts shall be according to their order of 
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magnitude. A leading idea of the method is that of correspondence between different complete 

systems of partitions regularized in the manner aforesaid. The perception of the correspondence is 

in many cases greatly facilitated by means of a graphical method of representation, which also 

serves per se as an instrument of transformation. 

Sylvester's work, together with that of his students, was assembled in this paper, which 

was published in two parts, in 1882 and 1884 [9], and was the first major combinatorial 

study of partitions since Euler. Although the paper was published under Sylvester's name, 

its contents included individual credits to those parts that had been formulated by his 

graduate students. 

A partition of an integer is a representation of it as a sum of positive integers - for 

example,S + 4 + 4 + 2 is a partition of 15. This can be graphically represented as: 

• • • • • 

• • • • 

• • • • 

• • 

The paper defines the conjugate of a partition as that found by interchanging rows and 

columns, so that the conjugate of the above graphical representation is: 

• • • • 

• • • • 

• • • 

• • • 

• 

which is the partition 4 + 4 + 3 + 3 + 1. Furthermore a self-conjugate partition is a partition 

that is identical with its conjugate - for example, 4 + 3 + 2 + 1 = lOis graphically 

represented as: 
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• • • • 

• • • 

• • 

• 

In this case the changing of rows and columns results in the same partition. 

The paper referred to an integer n being partitioned into j parts with i being the largest 

part. So in the example, 4 + 4 + 3 + 3 + 1, n = 15, j = 5 and i = 4. The paper \vent on to 

develop techniques for determining the number of such partitions. 

Like William Kingdon Clifford (1845-1879), a graduate of Trinity College, 

Cambridge, and potentially one of the major mathematicians of his time before his 

untimely death, Sylvester believed there to be a direct connection between chemistry and 

algebra. Sir Edward Frankland (1825-1899) was a British scientist who held appointments 

in Britain and in continental Europe and was for many years responsible for the continuous 

analysis of London water supplies; he also served on a Royal Commission on water 

pollution. In 1866 he published his Lecture Notes for Chemical Students [10]. This 

introductory text began by explaining how atoms and bonds could be graphically depicted 

by circles and connecting lines. Frankland then went on to list the symbolic and graphic 

notation for many chemical compounds, beginning with water. Symbolic formulae are 

expressions of the atoms and their quantities which combine to form chemical compounds 

- for example, water having the symbolic notation as OH2• Graphic notation is where 

each atom is shown separately, represented by a letter enclosed in a circle and where all 

single and multiple bonds are identified by lines joining the appropriate circles - for 

example, water is shown as: 

0--0-0 
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As Sylvester was already convinced of the connection between chemistry and algebra 

he was very much taken with Frankland's paper. In 1878 Sylvester wrote a short note [11], 

published in Nature and a lengthy paper [12] on the idea. It was in the note that the word 

graph (in the sense of graph theory) was used for the first time and the first two paragraphs 

of the note show his enthusiasm for the subject and how much he was energised by 

Frankland's paper: 

It may not be wholly without interest to some of the readers of Nature to be made acquainted with 

an analogy that has recently forcibly impressed me between branches of human knowledge 

apparently so dissimilar as modem chemistry and modem algebra. I have found it of great utility in 

explaining to non-mathematicians the nature of the investigations which algebraists are at present 

busily at work upon to make out the so-cal1ed Grundformen or irreducible forms appurtenant to 

binary quantics taken singly or in systems, and I have also found that it may be used as an 

instrument of investigation in purely algebraical inquiries. So much is this the case that I hardly ever 

take up Dr. Frankland's exceedingly valuable Notes for chemical students, which are drawn up 

exclusively on the basis of Kekule's exquisite conception of valence, without deriving suggestions 

for new researches in the theory of algebraical forms. I will confme myself to a statement of the 

grounds of the analogy, referring those who may feel an interest in the subject and are desirous for 

further information about it to a memoir which I have written upon it for the new American Journal 

of Pure and Applied Mathematics, the first number of which will appear early in February. 

The analogy is between atoms and binary quantics exclusively. 

The note and the paper were like much of Sylvester's writing: they were not just 

scholastic but verged on the flowery. The paper that expanded on the note was published in 

the first volume of the American Journal of Mathematics and entitled On the application of 

the new atomic theory to the graphical representation of the invariants and co variants of 

binary quantics, - with three appendices. The first two paragraphs give a flavour of his 

prose: 

By the new Atomic Theory I mean that sublime invention of Kekule which stands to the old in a 

somewhat similar relation as the Astronomy of Kepler to Ptolemy's, or the System of Nature of 

Darwin to that of Linnaeus, - like the latter it lies outside of the immediate sphere of energetic, 
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basing its laws on pure relations of form, and like the former as perfected by Newton, these laws 

admit of exact arithmetic definitions. 

Casting about, as I lay awake in bed one night, to discover some means of conveying an 

intelligible conception of the objects of modem algebra to a mixed society, mainly composed of 

physicists, chemists and biologists, interspersed only with a few mathematicians, to which I stood 

engaged to give some account of my recent researches in this subject of my predilection, and 

impressed as I had long been with a feeling of affinity if not identity of object between the inquiry 

into compound radicals and the search for "Grundformen" or irreducible invariants, I was agreeably 

surprised to find, of a sudden, distinctly pictured on my mental retina a chemico-graphical image 

serving to embody and illustrate the relations of these derived algebraical forms to their primitives 

and to each other which would perfectly accomplish the object I had in view, as I will now proceed 

to explain. 

Another bizarre example of unlikely phrasing in a technical paper appears later: 

Chemistry has the same quickening and suggestive influence upon the algebraist as a visit to the 

Royal Academy, or the old masters may be supposed to have on a Browning or a Tennyson. Indeed 

it seems to me that an exact homology exists between painting and poetry on the one hand and 

modem chemistry and modem algebra on the other. In poetry and algebra we have the pure idea 

elaborated and expressed through the vehicle of language, in painting and chemistry the idea 

enveloped in matter, depending in part on manual processes and the resources of art for its due 

manifestation. 

In this paper he again heaps praise on Frankland, saying: 

The more I study Dr. Frankland's wonderfu1ly beautiful little treatise the more deeply I become 

impressed with the harmony or homology (I might ca1l it, rather than analogy) which exists between 

the chemical and algebraical theories. 

The analogy that Sylvester was trying to make was between binary quantics and 

atoms. A binary quantic is a homogeneous expression of two variables, such as d + 3b';y 

+ 3cxY + dJ, with an invariant being a function of the coefficients a, b, c and d that 

essentially remains unaltered under linear transfonnations. He makes it obvious that this 

idea evolved from the use of diagrammatical representation of chemical compounds. The 
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note included the following explanation of the connection between atoms and binary 

quantics: 

The analogy is between atoms and binary quantics exclusively. 

I compare every binary quantic with a chemical atom. The number of factors (or rays, as they may 

be regarded by an obvious geometrical interpretation) in a binary quantic is the analogue of the 

number of bonds, or the valence, as it is termed, of a chemical atom. 

Thus a linear form may be regarded as a monad, a quadratic from as a duad, a cubic as a triad, 

and so on. 

An invariant of a system of binary quantics of various degrees is the analogue of a chemical 

substance composed of atoms of corresponding valences. 

The order of such invariant in each set of coefficients is the same as the number of atoms of the 

corresponding valence in the chemical compound ... The weight of an invariant is identical with 

the number of the bonds in the chemicograph of the analogous chemical substance, and the weight 

of the leading term (or basic difTerentiant) of a co-variant is the same as the number of bonds in the 

chemicograph of the analogous compound radical. Every invariant and covariant thus becomes 

expressible by a graph precisely identical with a Kekulean diagram or chemicograph ... I give a 

rule for the geometrical multiplication of graphs, that is, for constructing a graph to the product of 

in- or co-variants whose separate graphs are given. 

The connection between chemistry and algebra was but one of the more fanciful ideas 

Sylvester had during his long academic career. Despite the details contained in both the 

note, the associated paper, and the subsequent correspondence by chemists and 

mathematicians, his ideas were at the time considered only a passing connection between 

F. A. Kekule's notation for chemical compositions and the theory of trees developed by 

Cayley. 

Cayley produced a number of graph theory papers between 1857 and 1889. In 1857, 

he published the first paper [13] to use the word tree, in the graph theory sense, although 

both Kirchhoff (see Appendix I) and Karl Georg Christian von Staudt (1798-1867) had 

used the idea around ten years earlier. The term 'tree' as described in [13] 'arose ... from 

the study of operators in the differential calculus' and was defined as a connected graph 
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that contains no cycles; it follows that the number of edges is one fewer than the number of 

vertices and a connected graph with these properties must be a tree. Cayley's paper, 

inspired by Sylvester's work on what he called 'differential transfonnation and the 

reversion of serieses', dealt with rooted trees only, in which one particular vertex is 

denoted as the root. 

Cayley published papers where he combined his work on chemical compositions and 

his studies of trees. In 1874, he presented a paper On the mathematical theory of isomers 

[14]. Isomers are compounds that have the same chemical composition but different atomic 

configurations. This short paper allowed Cayley to describe how his work on trees could 

be used in the study isomerism. Two further papers, one in 1875 [15] and the other in 1877 

[16], also dealt with the connections between trees and chemical composition. This area of 

his scholarship generated tenninology that is now standard in the field of graph theory. 

Sylvester was somewhat apprehensive that his work on the analogy behveen chemistry 

and algebra might not meet with universal acceptance. Perhaps he suspected that it \vas 

doomed, as he wrote to Newcomb that he felt others might believe it to be 'over fanciful' 

[17]. Simon Newcomb (1835-1909) was Professor of Mathematics and Astronomer at the 

Naval Observatory in Washington: he later became Professor of Mathematics and 

Astronomy at Johns Hopkins University, and was President of the American Mathematical 

Society from 1897 to 1898. He was also the maternal grandfather of Hassler Whitney (see 

Chapter 6). 

Although there was some academic debate on the theory, it soon ran its course as it 

became apparent that the only probable link between chemistry and algebra was 'the use of 

a similar notation' [18]. This was not the only suppositional theory promoted by Sylvester 

during his long career. 
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During his time at Johns Hopkins Sylvester published two papers on trees, one in 1879 

[19], while the other appeared in the first volume of the Circulars that covered the years 

1879 to 1882 [20]. 

During the academic year 1881-82, Sylvester arranged for Cayley to visit Johns 

Hopkins. While in the USA, Sylvester was deprived of his frequent meetings with Cayley 

and sent him a number of letters during the early months of 1881 inviting him to teach for 

a period at Johns Hopkins. Sylvester painted an encouraging picture of the social and 

academic life in Baltimore and suggested that Cayley would be rewarded academically and 

financially. Sylvester undoubtedly felt the lack of mathematical peers at Johns Hopkins 

and in the USA generally, especially after the death of Benjamin Peirce in 1880. IIis 

letters, and a visit to Cayley in Cambridge in August 1881, persuaded Cayley to visit Johns 

Hopkins for six months during the spring semester of 1882, and whilst there to present a 

series of lectures. Cayley also had papers published in the Johns Hopkins University 

Circulars and the American Journal of Afathematics. 

In February 1883 Henry Smith, the Oxford Savilian Professor of Geometry, died, thus 

prompting a search for a successor, preferably an Oxford man. News reached Sylvester and 

on 16 March he wrote to Cayley indicating that he would probably offer himself as an 

applicant and in December he was unanimously elected to the chair. Sylvester had 

submitted his resignation to Johns Hopkins in the autumn and returned to Britain towards 

the end of the year. 

His legacy in the USA was that Johns Hopkins' success in establishing a successful 

graduate school, which invested time and effort into training future researchers, had an 

effect on other educational institutions; additionally his legacy included the founding of the 

American Journal of Mathematics. Many other institutions established graduate schools, 

and the level of mathematical research within America gradually improved, with the result 

that it was no longer necessary for graduates to journey abroad for postgraduate study, 
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although some still chose to do so. Sylvester was then \vell past what \\Oe no\v accept as 

normal retirement age, and gave an additional reason for leaving Johns Hopkins in a letter 

to Felix Klein [21]: 

... because I did not consider that my mathematical erudition was sufficiently extensive nor the 

vigour of my mental constitution adequate to keep me abreast of the continually advancing tide of 

mathematical progress to that extent which ought to be expected from one on whom practically rests 

the responsibility of directing and moulding the mathematical education of 55 million of one of the 

most intellectual races of men upon the face of the earth. 

2.2 William Edward Story (1850-1932) 

William Story, who experienced a number of setbacks., was one of the first American 

mathematicians to study for a degree at a German university, gaining his PhD degree for 

his thesis, On the algebraic relations existing between the po lars of a binary quanlic, from 

Leipzig University on 31 July 1875 [22]. lIe then returned to the USA, becoming a tutor at 

Harvard University. Story had been known to have made an impression on Benjamin 

Peirce when he was an undergraduate at Harvard and that impression increased as Story 

carried out his duties as a tutor. Peirce was sufficiently impressed that \\'hen Sylvester 

approached Peirce for suggestions of suitable mathematicians worthy of consideration to 

join the newly founded Johns Hopkins Department of Mathematics, Peirce recommended 

Story. Sylvester decided to return to England for the summer months of 1876 so as to 

avoid the American heat at that time of year, and so it was left to Gilman to interview 

Story and make any decision regarding his employment as Sylvester's assistant. Gilman's 

initial telegraphed approach was not enthusiastically received as Story found it a little 

patronizing and his reply was perhaps a trifle sharp, but did ask for an intervie\v. During 

the interview Story outlined his ideas for a learned mathematical journal and a student 

society. Before accepting the offered position at Johns Ilopkins, Story endeavoured to 

better his status at Harvard but met \vith no success. 
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In the autumn of 1876, Story moved to Baltimore as an ' Associate' (equivalent to an 

assistant professor at some other universities); in 1883 the University introduced the title of 

Associate Professor, and Story was promoted to this position. 

Initially things went well for Story. He set about helping to develop the mathematics 

department, and his preference was to model it on the example he had experienced whilst 

in Germany. He assisted Sylvester in setting up the American Journal of Mathematics and 

was intimately involved in the founding of a Mathematical Society within the University. 

Roger Cooke and V Frederick Rickley have said [22]: 

There is evidence that Story succeeded in founding his student mathematical society. The Johns 

Hopkins University Circulars, which are a rich source of information about the university, contain 

titles and reports of the talks given at the monthly meeting of the "Mathematical Society". From one 

of these we learn that when Lord Kelvin lectured at Hopkins in 1884, he spoke to a group of 

mathematicians who called themselves "the coefficients" [Gilman 1906a, p. 75] 

As Sylvester was not good with finance or management, he appointed Story as 

Associate Editor-in-Charge of the Journal, and praised his second-in-command [17]: 

Story is a most careful managing editor and a most valuable man to the University in all respects 

and an honor to the University and its teachers from whom he received his initiation. 

However, the way that the Journal was run caused friction between Story and 

Sylvester. This was not a personal difference, but a difference in the way that they believed 

that the journal should be edited. The situation was brought to a head during Sylvester's 

absence from America by the publication of Kempe's famous but flawed paper on thefour

c%ur problem, which is reviewed below. The four-colour problem is - can every map 

drawn on the plane be coloured with at most four colours such that no two neighbouring 

countries are coloured the same? 

During his time at Johns Hopkins, it was Sylvester's custom to spend each summer in 

England, leaving the USA in late spring and returning for the start of the next academic 

year. Story was left in charge for the duration of Sylvester's annual leave [22]. 
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Cayley also worked on the four-colour problem. On 13 June 1878, he and Kempe \vere 

present at a meeting, of the London Mathematical Society where he raised a query that \vas 

recorded in the Society's Proceedings [23]: 

Questions were asked by Prof. Cayley F.R.S. - Has a solution been given of the statement that in 

colouring a map of a country, divided into counties, only four colours are required, so that no two 

adjacent counties should be painted in the same colour. 

This was repeated in a report of the meeting in Nature on 11 July 1878 [24]. These reports 

were, for many years, believed to be the earliest printed references to the four-colour 

problem. 

In a short note in 1879 [25], Cayley set out to dcscribe succinctly the difficultics 

inherent in tackling the four-colour problem. The paper included a positive suggestion that 

when developing a proof, restrictions could be imposed on maps, a portent of things to 

come. One restriction was that they can be cubic maps (those with exactly three countries 

at each meeting point). He also pointed out that if the four-colour conjecture \\'ere true then 

a map can be constructed so that only three colours are adjacent to the exterior boundary. 

Alfred Bray Kempe (1849-1922), a fonner student of Cayley, was yet another English 

mathematician who was also a barrister. Most of Kempe's early mathematical \\'ork \\'as 

associated with the application of geometry to mechanical linkages. He is, ho\\,cvcr, 

remembered most for his celebrated (but fallacious) proof of the four-colour conjecture. 

His interest in the topic had been initiated by Cayley's query to the London Mathematical 

Society [23] and Cayley's memoir [25] in the Proceedings of the Royal Geographical 

Society in April 1879. Shortly afterwards, on 17 July 1879, Kempe announced a 'solution' 

in Nature [26]. On 26 February 1880 Kempe's 'simplified' versions were published, onc 

an untitled abstract [27], in the Proceedings of the London Afathematical Society and thc 

second in Nature, under the title How 10 colour a map withfour colours [28]. 
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Kempe's paper was entitled On the geographical problem of the four colours [29] and 

it is in this work that he claimed to have solved the four-colour conjecture. He explained it 

thus: 

Some inkling of the nature of the difficulty of the question, unless its weak point be discovered and 

attacked, may be derived from the fact that a very small alteration in one part of a map may render it 

necessary to recolor it throughout. After a somewhat arduous search, I have succeeded, suddenly, as 

might be expected, in hitting upon the weak point, which proved an easy one to attack. The result is, 

that the experience of the map-makers has not deceived them, the maps they had to deal with, viz: 

those drawn on simple connected surfaces, can, in every case, be painted with four colours. How 

this can be done I will endeavour - at the request ofthe Editor-in-Chief - to explain. 

The Editor-in-Chiefwas the journal's founder, J. J. Sylvester. 

Unfortunately, Kempe's paper contained a fatal error, which was uncovered eleven 

years later, during which time his proof was generally accepted. Percy John Heawood (see 

Chapter 3), had heard of Kempe's paper from Henry Smith, Oxford's Savilian Professor of 

Geometry at Oxford University, who found the error in 1890. Kempe's complete paper 

was published later in the year in Volume 2 of the American Journal of Afathematics and 

led to a falling out between Sylvester and Story. 

2.3 Kempe's paper [29] 

In the first part of his paper, Kempe created a version of Euler's formula applicable to 

maps, from which he developed the formula: 

5d. + 4d2 + 3d) +2d4 + ds - etc. = 0, 

where, for each k, die denotes the number of districts of the map with k boundaries. Since 

only the first five terms are non-negative, not all of d l to ds can be zero. Kempe noted: 

... every map drawn on a simply connected surface must have a district with less than six 

boundaries. 

Using this result, Kempe went on to develop an algorithm for colouring any map, using a 

system of patches. This process involved selecting a district with five or fewer neighbours, 
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and then covering it with a blank piece of paper - a patch - a little bigger. He then joined 

all the boundaries that touch the edge of the patch to a single point on the patch; this has 

the effect of reducing the number of districts by 1. The process is then repeated until only 

one district remains; as Kempe put it, 'The whole map is patched out'. This remaining 

district is then coloured with any of the four colours. 

lIe then reversed the patching process, taking ofT one patch at a time and successively 

colouring the uncovered districts with any of the four colours available, until the original 

map was coloured with four colours. Unfortunately, his explanation of this step failed to 

provide a rigorous argument. This patching procedure works provided that each restored 

district has at most three boundary lines. However if a district has four or five boundary 

lines, then it may be surrounded by districts using all four colours. To overcome the 

difficulty, Kempe developed a strategy now called the method of Kempe-chains; a method 

of colouring maps or planar graphs in which two colours are interchanged so that regions 

that previously could not be coloured properly be coloured. Although the paper did not 

provide the proof of solution to the four-colour problem as it claimed, this important line of 

argument became one of the standard tools for tackling the colouring of maps and other 

colouring problems. It was in the incorrect application of the method of Kempe-chains 

\vhen recolouring a map that contains a five-sided district that gave rise to his famous filler 

pas. 

His argument was that, given a map where all districts except one are coloured and 

assuming that the coloured districts surround the uncoloured district and arc assigned all of 

the four available colours then his method could be applied. (If fewer than four colours are 

used, the uncoloured district can be assigned one of the unused colours without further 

development of the argument). 

As an example, the following map has an uncoloured district surrounded by four 

coloured districts. 
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c.. (b\"'-A.) 

The districts assigned the colours red and blue can either be connected by a continuous 

chain of red and blue districts or not so connected. In the latter case, it is pennissible to 

exchange the colours red and blue in the chain of red-blue districts connected to district A 

without altering the colour of C; this results in both districts A and C being coloured blue, 

so that the uncoloured district can be coloured red. However, if a continuous chain of red

blue districts joins A and C then there would be no advantage in making such an 

interchange of colours. In this case, it follows that no continuous chain of yellow-green 

districts canjoin B and D. Therefore, either of the yellow-green chains connected to B or D 

can be recoloured, making B and D either both yellow or both green. This procedure allows 

the four districts surrounding the uncoloured one to be coloured with three colours, leaving 

the fourth colour for the centre district. 

The mistake that Kempe made was to make two colour interchanges at the same time, 

without realising that in so doing the result would be that some adjacent districts would be 

the same colour. He \vas considering the colouring of a map containing a district with five 

sides, when he made two simultaneous recolourings on strings of districts; either 

recolouring by itself would have been valid. 

Kempe's hvo further papers on this subject in the following two years, although they 

were intended to be improved versions of his 'proof, both contained the fundamental error 

of the original paper. The first, an untitled abstract [27], was published in the Proceedings 
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of the London Mathematical Society in 1879, where Kempe states that he has presented a 

proof of the four colour conjecture in the American Journal of Mathematics and that his 

abstract is 'simpler, and is free from some errors which appeared in the former'. The paper 

does indeed provide a simpler description of his reduction and patching method and 

includes instructions for interchanging colours within chains, but it does not indicate a 

recognition of his fatal error. 

The second follow-up paper, How to colour a map with four colours [28], \vas 

published in Nature in 1880 and was similar in content to the untitled abstract. It \vas again 

offered as a simplification, and in Kempe's own words, 'I have succeeded in obtaining the 

following simple solution in which mathematical formulae are conspicuous by their 

absence'. On reading these two papers today, one cannot help arriving at the conclusion 

that Kempe was by no means trumpeting aloud his claimed achievement, but was modestly 

confident that he had found the solution to a problem that had vexed and entertained a 

considerable number of mathematicians, both professional and amateur. 

2.4 Story's note 

Story had reviewed Kempe's paper and on 5 November 1879 presented the salient points 

of the 'proof to an audience of 18 at a meeting of the Johns Hopkins Scientific 

Association. After presenting Kempe's paper, Story offered 'a number of minor 

improvements' which he put in the form of a note that was intended 'to make the proof 

absolutely rigorous'. Story's Note on the preceding paper [30] published in the American 

Journal of Mathematics, immediately followed Kempe's paper. In his note, Story 

addressed special cases that Kempe had not covered in his paper. He used both the patch 

method and Euler's formula, as Kempe had done, but endeavoured to be more precise in 

the use of the formula for various examples contained in Kempe's paper. It is unfortunate 

that Story was not able to identify the major flaw in Kempe's 'proof in his review of 
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Kempe's paper and in the development of his own contribution. Story's opening paragraph 

set out his intention, saying: 

... it seems desirable, to make the proof absolutely rigorous, that certain cases which are Jiable to 

occur, and whose occurrence wi1l render a change in the formulae, as well as some modification of 

the method of proof, necessary, should be considered separately ... 

Story concentrated on two major parts of Kempe's paper; the first expanded on the 

patch method, applied to Kempe's Figures 1, 15, and 16, and the second dealt with cases 

where more than three boundaries meet at a point of concourse. 

Figure 1 Figure 15 Figure 16 

Kempe had denoted the number of districts as D, the number of boundaries as B, and 

the number of points of concourse as P at any stage of the development of the patch 

method, with D' districts, B' boundaries, and P' points of concourse after the next patch 

was removed. Story took up the argument that if the next patch had no point of concourse 

or line on it when it was removed, an island was then disclosed, and he concluded that, in 

that case, P' = P, D' = D + 1, and B' = B + 1. However if the patch had no point of 

concourse but only a single line, so that when it was removed a peninsula or a district with 

two boundaries was disclosed, then for the peninsula P' = P + 1, D' = D + 1, and B' = B + 

2, and for the district with two boundaries P' = P + 2, D' = D + 1, and B' = B + 3. In the 

second case Story referred to Kempe's Figure 15, shown above. 

Story went on to assert that the preceding 'formulae hold only if the boundaries joined 

by the line on the patch counted as two before the patch was put on'. He then considered a 

a point of concourse where boundaries met and when the patch was removed, a district was 

disclosed with P boundaries. This gave: 
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p' = P + P - 1, D' = D + 1, and B' = B + p. 

Story concluded that these equations were identical to those of Kempe's (although Kempe 

used l1 rather than P) 'only when three and no more boundaries meet at each point of 

concourse about the district patched out', giving: 

P'+ D'-B'-I=P + D-B-l. 

He continued by detailing the alternative situation where the patch had no point of 

concourse, but only a single line that formed part of the boundary of an island or a district. 

Removing the patch revealed either Kempe's Figure 16 or Figure 1, shown above. For the 

island, P' = P + 2, D' = D + 1, and B' = B + 2, and for the district P' = P + 1, D' = D + 1, 

and B' = B + 1, so in both cases P' + D' - B' - 1 = P + D - B. 

Story then defined a contour as an aggregate of boundaries, the contour being either 

simple or complex, according to whether it comprised one, or more than one, district. He 

asserted that by including contours in the patching procedure, the theorem derived by 

Kempe could be improved. Kempe's theorem stated that: 

In every map drawn on a simply connected surface the number of points of concourse and the 

number of districts are together one greater than the number of boundaries. 

whereas Story's theorem read: 

In every map drawn on a simply connected surface the number of points of concourse and the 

number of districts are together one greater than the number of boundaries and number of complex

contours together. 

As Story explained: 

I f then x of the contours formed by the boundaries of any map are complex, for that map: 

P+D-B-}=x 

In the second half of Story's paper, Story questioned one of Kempe's claims that: 

... if we develop a map so patched out, since each patch when taken off, discloses a district with 

less than six boundaries, not more than five boundaries meet at a point of concourse on the patch. 

He claimed that this was valid only when the number of boundaries meeting in each point 

of concourse does not exceed 3. He then proceeded to detail a procedure to overcome this 
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restriction. His solution was to use an auxiliary patch whenever more than three boundaries 

meet, thereby reducing the number of boundaries at a point of concourse to 3. After 

carrying out this procedure, the method of patching could be continued as described by 

Kempe. On completion of the patching, and arriving at a map containing one district and 

no boundary, Story stated that colouring could commence and the map developed by 

removing patches, including auxiliary patches, in reverse order. He maintained that by this 

method 'the map will be coloured with four colours'. 

2.5 The consequences 

Sylvester believed that during his absence in England there had been an undue delay in the 

publication of the second volume of the Journal, and additionally that previously agreed 

editorial decisions had been changed and that Story should not have published his note. 

Sylvester went on to say that it was 'unprofessional', and the relationship between the two 

scholars became strained. He wrote to the President of Johns Hopkins University, Daniel 

Gilman, complaining of Story's 'conduct' and of 'disobeying my directions'. In June 1880, 

Sylvester again, wrote to Gilman asking why Story had not sent him an acknowledgement 

regarding a paper that Sylvester had sent from England. Then, still aggrieved, Sylvester 

sent a further letter of eight pages to Gilman on 22 July 1880 [31]. Indeed, such was his 

annoyance that his haste made parts of the letter illegible. In this letter Sylvester 

complained that he was not advised of whether the Journal had been published, and if so, 

when. He also objected to his treatment by Story and questioned whether other contributors 

had received equally poor conduct. Sylvester was so incensed that he formally requested 

that Story have no further involvement with the Journal as he (Sylvester) no longer had 

confidence in Story. He made it clear that Story could be made aware of his opinion and 

the contents of the letter. 
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Gilman mediated between the two, but Story's name did not appear in later issues of 

the Journal. Story resigned from the editorial board and started to look for a new position, 

a task that took him a number of years. Like all disagreements, it would be wrong to put all 

of the blame on one party. Sylvester most certainly contributed to the delay in publishing 

by making late changes to his own paper and rearranging the order of its contents. 

However, it is worth quoting from a letter dated 7 August 1880 from C. S. Peirce to 

Gilman [32], which included: 

I have received from Sylvester an account of his difficulty with Story. I have written what I could of 

a moJJifying kind, but it reaJJy seems to me that Sylvester's complaint is just. I don't think Story 

appreciates the greatness of Sylvester, and I think he has undertaken to get the Journal into his own 

control in an unjustifiable degree ... It is no pleasure to me to intenneddle in any dispute but I feel 

bound to say that Sylvester has done so much for the University that no one ought to dispute his 

authority in the management of his department. 

There has been some discussion as to who was really the founder of the American 

Journal of Mathematics. Most commentaries give the credit to Sylvester; however, Story 

proposed the creation of such a publication to Gilman when he was first interviewed for 

the position at Johns Hopkins. At Sylvester's farewell leaving banquet, on 20 December 

1883, Gilman gave the credit to Sylvester. However, Sylvester's response asserted [33]: 

You have spoken about our Mathematical Journal. Who is the founder? Mr Gilman is continuaJJy 

teJJing people that I founded it. That is one of my claims to recognition which I strongly deny. I 

assert that he is the founder. Almost the first day that I landed in Baltimore ... he began to plague 

me to found a Mathematical Journal on this side of the water something similar to the Quarterly 

Journal of Pure and Applied Mathematics ... Again and again he returned to the charge, and again 

and again I threw all the cold water I could on the scheme, and nothing but the most obstinate 

persistence and perseverance brought his views to prevail. To him and to him alone, therefore, is 

really due whatever importance attaches to the foundation of the American Journal of Mathematics. 

The reality is that Sylvester had the international standing, with links in Europe and 

previous experience of being involved in the creation of a mathematical periodical, the 

Quarterly Journal of Pure and Applied Mathematics of which he was editor until 1878. 
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Independently, Story had formulated the idea of a learned mathematical publication and 

wanted to be involved in its creation. However, without Gilman's continual 

encouragement, direction, and belief that such a journal would be of great benefit to 

mathematics in America, it most probably could not have happened as it did in 1878. 

Even though Sylvester had left Johns Hopkins at the end of December 1883, Story 

continued to believe that he needed to move to pastures new, so in 1887 he was relieved to 

be offered employment at the newly opened Clark University in Worcester, Massachusetts. 

This additionally allowed him to develop a mathematics faculty according to his own· 

ideas. Although Story was not considered as a great mathematician, the President of Clark 

believed that he was the best available at that time. Indeed, Story was so successful in his 

new position that by 1892 it was generally accepted that Clark had the best mathematics 

department in North America. 

Story's situation is best summed up by Roger Cooke and V. Frederick Rickey [22]: 

There are many reasons why Story might have wanted to leave Hopkins. He was not a full professor 

there, though he had been there thirteen years. He was not the editor of the American Journal of 

Mathematics, which had been one of his youthful ideas. Finally, he had come to feel that Hopkins 

was not the wonderful place intellectually that he thought it might and should be ... But perhaps 

most importantly of an, he would have the opportunity to develop a department that focused on 

graduate education and on research. And he could do it the way that he thought best. For all these 

reasons, it is likely that the opportunity to move to Clark would have attracted Story. 

2.6 Charles Sanders Peirce (1839-1914) 

Returning to the history of graph theory in America; C. S. Peirce attended the Johns 

Hopkins Scientific Association on 5 November 1879 when Story presented Kempe's paper 

and his own follow-up note. 

Charles Sanders Peirce is remembered as a philosopher, mathematician and logician, 

and for his controversial and unconventional lifestyle. He studied at Harvard University, 

where his father, Benjamin Peirce, was Perkins Professor of Mathematics and Astronomy. 
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After graduating, Charles remained there doing graduate research and then worked as an 

assistant at Harvard Observatory for three years. From 1859, for approximately thirty 

years, he had a parallel part-time employment with the Coast Survey as an assistant, where 

his father was the director. Either through choice, or because he was not considered 

suitable, he did not obtain a permanent position within a mathematical faculty of a 

university until 1879. This did not prevent him from producing significant seminal work in 

a wide range of subjects, including probability and statistics, psychophysics (or 

experimental psychology) and species classification. In addition, he carried out major 

astronomical research, as well as exploring associative algebras, mathematical logic, 

topology and set theory. 

In the early 1860s, Peirce encountered the four-colour problem, most probably by way 

of De Morgan's review of Whewell's book in the Athenaeum, and it is probable that he 

was the first American scholar to take an interest in the subject. In the late 1860s, possibly 

1869, he presented an attempt to prove that four colours are sufficient to colour a map to 

the Mathematical Society of Harvard University. His attempt was never published, but he 

claimed that those who attended the meeting 'discovered no fallacy in it'. His manuscripts, 

held in the Houghton Library at Harvard University, give no details of his solution to the 

problem. He later wrote [34]: 

About 1860 De Morgan in the Athenaeum. called attention to the fact that this theorem had never 

been demonstrated; and I soon after offered to a mathematical society at Harvard University a proof 

of this proposition extending it to other surfaces for which the numbers of colours are greater. My 

proof was never printed, but Benjamin Peirce, J. E. Oliver, and Chauncey Wright, who were 

present, discovered no fallacy in it. 

A second manuscript by Peirce, dated October 1869, includes map colouring in 

connection with his 'logic of relatives'; this too can be found in the Houghton Library [34]. 

In the early 1870s, Peirce made a lengthy tour of Europe and in June 1870 visited De 
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Morgan in London. Although De Morgan was in poor health at the time, it would be 

logical to assume that their discussions included the four-colour problem [35]. 

As mentioned earlier, Story was much involved in the four-colour problem, and 

remained so throughout the rest of his life. Indeed, he was still corresponding on the 

subject with C. S. Peirce at the end of 1900 and their letters indicate that they, like many 

others who worked on the four-colour problem, were at times frustrated at their lack of 

progress. Peirce's approach to the four-colour problem was algebraic and it is more than 

likely that they discussed the subject during their time together (1879-84), at The Johns 

Hopkins University. An indication of their continuing efforts and frustration can be seen 

from their correspondence; a letter from Peirce to Story dated 17 August 1900 [34] 

included mention that he had found the proof contained in his unpublished paper. In 

addition, in a double-dated letter from Story to Peirce, the first part dated 1 December 1900 

and the second dated 6 December 1900 [34], Story blamed Peirce for the delay in sending 

the letter. The letter included: 

Dec. 1, 1900 

... As to my not answering your letter about the four-color problem, I am heartily tired of the 

subject. I have spent an immense amount of time on it, and all to no purpose. Your first method had 

occurred to me years ago, but I did not succeed in getting anything out of it. 

Dec. 6, 1900 

My delay in sending this off is largely your own fault. You have again reminded me of that 

fascinating but elusive problem, and I have spent the time since writing the above in trying to solve 

it, but alas! I believe that the case of exception to Kempe's method requires that the map shall have 

at least one triangle or quadrilateral district, in which case the pentagon is not the next district to be 

colored, Le. the exception does not occur. But I cannot prove it ... 

It indicates that between the two dates Story had received some communication, possibly a 

letter, from Peirce suggesting a further approach to the problem that Story attempted 

without success. 
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The following extracts from Peirce's writings give a hint to his involvement in the 

subject and his attempts to provide a proof. These include [34]: 

Some time in the early sixties Augustus De Morgan mentioned in the Athenaeum that experience 

showed that four colours would suffice to distinguish confine regions on any map ... a reproach to 

logic and to mathematics that no proof had been found of a proposition so simple. 

He also believed that because of Cayley's work in logic he must have tried that route to 

find a solution but had failed. Also included in [34] is the following, which indicates 

Peirce's involvement in the search for a solution to the four-colour problem: 

But his writings over the years are interlaced with references to the problem; his notebooks are full 

of sketches and diagrams of various regional possibilities reflecting his continuing interest and 

experimentation. The fragmentary nature of these attempts is evidence of the frustration that never 

ceased to haunt him. 

In 1879, Peirce was appointed a part-time lecturer in logic in the Department of 

Mathematics at Johns IIopkins University, headed by Sylvester. Initially things went well 

there and Peirce was exposed to new people and ideas. On 5 November 1879, he attended 

the meeting of the University's Scientific Association where Kempe's paper was outlined 

and the minutes record that Peirce contributed to the discussion [36]: 

Remarks were made upon this paper by Mr. C. S. Peirce. 

Peirce, still working on the four-colour conjecture, presented a paper on the subject at 

the next meeting on 3 December of that year; no copy of this work has survived but the 

following record of the meeting included a reference that Peirce [35]: 

... discussed a new point in respect to the Geographical Problem of the Four Colors, showing by 

logical argumentation that a better demonstration of the problem than the one offered by Mr. 

Kempe is possible. 

IIis years at Johns Hopkins were perhaps his most productive and significant period 

and he had many papers published in the American Journal of Afathematics, with at least 

one (in 1878) at the request of Sylvester. The following appears in an article by Carolyn 

Eisele [37]: 
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A year earlier Peirce had been invited by Sylvester to publish a paper on map projections in the 

forthcoming issue of the American Journal of flrfathematics. 

Peirce's employment at the Johns Hopkins University was not to be a long tenure. In 

1884 shortly after Simon Newcomb was appointed professor of mathematics and 

astronomy there, he felt that it was his duty to inform the University's trustees that Peirce 

had been living with his mistress whilst still being married to his first wife. The 

consequence was that Peirce's contract was not renewed, so that the University would not 

attract scandal by association. Peirce was never to hold another academic post. In October 

1876, Peirce had separated from his wife of thirteen years and embarked on a path that 

would cause him considerable discomfort and greatly affect his career. A short while later 

he set up house with a French gypsy, Juliette Froissy Pourtales. He was divorced from his 

first wife on 24 April 1883, and married Juliette six days later. Newcomb was a 

contemporary of Peirce, and had also studied at Harvard under Benjamin Peirce and 

graduated the year before Charles Peirce. Over the years, Newcomb and Charles Peirce 

kept up an active correspondence which displayed a mutual respect, if not a closeness, 

between the two. Nevertheless, this relationship did not prevent this unfortunate event. 

In later years, Peirce became increasingly more withdrawn from public life and 

colleagues and more erratic in his behaviour. He did however present a paper The map

coloring problem at the Scientific Session of a meeting of the National Academy of 

Sciences, held in New York City on 14-15 November 1899. Again, no manuscript of this 

work has survived [38]. 

Conclusion 

Through the efforts of scholars such as Sylvester, Story and Peirce, a climate was provided 

for American-born and American-educated mathematicians to make significant 

contributions to mathematics, and to trees and the four-colour problem in particular. 
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Additionally the support of graduate schools, Johns Hopkins at first, then Harvard, Yale, 

Princeton, and others, advanced the development of American mathematics and 

postgraduate study that continued through the 1890s and into the twentieth century. By 

1910, America had several native professors who had received all their training in the USA 

and would go on to earn international reputations. This healthy state of affairs in American 

mathematics would pave the way for the USA to become the leading mathematical country 

by the middle of the twentieth century. 

Additionally, Kempe's paper provided the impetus for other mathematicians, mostly 

American, to develop his ideas, two of which were later to be called an 'unavoidable set' 

and a 'reducible configuration' . 

The solid foundations laid, and the encouragement gIven by the leading 

mathematicians around the tum of the century, provided a foundation for American 

mathematicians to make their mark. Near the beginning of the twentieth century, American 

mathematicians were beginning to take a serious interest in graph theory and the four-

colour problem. This move was initiated and influenced by Oswald Veblen and George 

David Birkhoff (see Chapter 4). 

Before evaluating the major contributions of some important American 

mathematicians, the next chapter reviews the work done in Europe in graph theory from 

1890 to 1930. 
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Chapter 3 

Graph theory in Europe (1880-1930) 

While scholars in the United States of America were beginning to take an active interest in 

graph theory in the last quarter of the nineteenth century, work on the subject continued in 

Europe. Peter Guthrie Tait endeavoured to improve on Kempe's work on the four-colour 

map problem and also studied the colouring of the edges of countries. Percy John Heawood 

published a major paper in 1890, in which he located the mistake in Kempe's paper of 1879 

(see Chapter 2), and discussed the colouring of maps on surfaces. Later contributions were 

by Lothar Herner (1891), who worked on the colouring of maps on orientable surfaces, and 

Heinrich Tietze (1910), who studied the colouring of maps on certain non-orientable 

surfaces. Julius Petersen, Paul Wernicke, Hermann Minkowski, Kazimierz Kuratowski and 

Alfred Errera were among other Europeans who were interested in graph theory and the 

four-colour problem. 

Further information of several of the topics and mathematicians covered in this chapter 

can be found in [1]. 

3.1 Peter Guthrie Tait (1831-1901) 

Tait, a Scottish applied mathematician, who was acquainted with Hamilton and Kirkman 

(see Appendix I), was an accomplished teacher and productive author. Having learned of 

the four-colour problem from Cayley [1], Kempe's supposed improved solution to the 

problem stimulated his interest [1]. Tait advanced a number of 'more simple solutions 

than Kempe's', in two papers one presented to the Royal Society of Edinburgh in 15 

March 1880 [2] and the second [3] in July of that year. These more simple solutions were 

based on the Kempe's incorrect proof. The first paper included suggestions of approaches 

that could be used to provide alternative proofs. This paper turned out to be of little merit. 
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Undeterred, he was back before the society in July with the second paper which expanded 

upon an idea that was fleetingly mentioned in his previous one. Tait observed that utilising 

four colours to colour the countries of a cubic map is equivalent to using three colours to 

colour the edges of the countries so that all three colours meet at each vertex. Although 

interesting, this substitute problem was found to be as difficult to prove as the original 

four-colour conjecture. However, this was the first suggestion of an alternative form of the 

problem. This colouring became known as a Tail colouring or an edge colouring; giving 

rise to the conjecture 'The edges of a bridgeless cubic planar map are three-colourable'. 

Many later equivalent forms of the four-colour conjecture were based on it. 

In a paper [3] published in 1880, Tait returned to the idea of colouring boundary lines, 

this time focusing on cubic maps. His 'theorem' was that every cubic polyhedron has a 

Hamiltonian cycle. Of this Kirkman commented [4] 

A rigorous demonstration is much to be desired, flowing from the simple definition of a p-edron 

with triedral summits. But [ share the opinion of Professor P. G. Tait, that our prospect of obtaining 

such demonstration is very remote indeed. It is my impression that he knows more about these 

circles that any other. 

Tait reiterated this assertion in a paper published four years later [5] but was unable to 

prove that every cubic map had a Hamiltonian cycle, and this was later shown to be false. It 

was shown to be false by William Thomas Tutte (see Chapter 9) using a counter-example 

with forty-six vertices, but he observed that if the graph of a cubic map has a Hamiltonian 

cycle the map could be coloured with four colours. 

3.2 Percy John Hcawood (1861-1955) 

In 1890 a major error in Kempe's proof of the four-colour theorem was announced by 

Percy Heawood from Durham [6], although his words were somewhat apologetic. Although 

he is remembered mainly for uncovering the flaw in Kempe's arguments, he was a fine 

scholar and serious contributor to map colouring for nearly sixty years. In his paper, he 
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modified Kempe's chain method to show that five colours are sufficient for colouring any 

map on the plane or sphere. 

In addition, in this paper Heawood took up the question that had been suggested by 

Kempe of finding the number of colours required to satisfy the normal criteria of colouring 

maps on the sphere and other closed surfaces, including the torus; and presented an upper 

bound for the chromatic number of a map embedded on a given surface. The paper also 

included a proof that: 

... seven colours are necessary and sufficient to colour aU maps on a torus. 

Orientable surfaces (2-sided surfaces) can be classified by their genus. An orientable 

surface is of genus g if it is topologically homeomorphic to a sphere with g handles. 

Examples of orientable surfaces are the sphere (g = 0) and the torus (g = 1). There are also 

non-orientable surfaces (I-sided surfaces), also classified by their genus. Examples of non

orientable surfaces are the projective plane (q = 1) and the Klein bottle (q = 2). 

The chromatic number of a surface S is the smallest number of colours that are 

required to colour all maps on S so that neighbouring countries are differently coloured. In 

his paper Heawood tried to establish the chromatic number of any orientable surface Sg, a 

torus with g holes, which gives Sg for all positive numbers g. He asserted that for, g ~ 1, 

every map on Sg can be coloured with H(g) colours, where: 

H(g) = [ ~ (7+~(l + 48g»] 

The square brackets are to indicate that the result should be rounded down if it is not an 

integer. For example for a two-holed torus, the number of colours is: 

H(2) = [ Y2 (7 + ~97] = [8.4244 ... ] = 8. 

Regrettably he was unable to prove that for g ~ 2 there are maps on Sg that require the 

number of colours calculated by his formula. He proved that H(g) colours are sufficient, but 

not that this many were required. His claim later became known as the Heawood 

Conjecture; 
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For each positive number g, there is a map on the surface of an g-holed torus that 

requires H(g) = [ ~ (7+~(l + 48g»] colours. 

It would be a further 78 years before it was proved by Ringel and Youngs (see Chapter 9). 

It was also in his 1890 paper that Heawood addressed the Empire Problem; ho\v to 

colour a map which includes several empires each comprising a mother country and any 

number of colonies - the mother country and its dependent colonies all being coloured the 

same. lIe presented a number of examples and posed the question if 'any country may exist 

of two distinct portions but riot more~ how many colours are needed. Using Euler~s formula 

he demonstrated that the number of colours required does not exceed 12 and more generally 

for a country comprising r distinct portions, r greater that 1, the number of colours required 

does not exceed 6r. 

Heawood~s revelation of Kempe's error was not widely known for several years, and 

Heawood received little recognition for his paper. Not only did many people fail to accept 

his correction at the time, but six years later, when Charles-Jean-Gustave-Nicolas de la 

Vallee Poussin (1866-1962) rediscovered the fault in Kempe's solution, no mention was 

made of Heawood's priority. It is also on record that certain later mathematicians assumed 

that Kempe had solved the four-colour problem and even based their own work on his 

'proof [7]. 

IIeawood's second paper (1898) on map colouring [8], included the observation that if 

the number of edges around each region of a regular map is divisible by 3, then the regions 

can be coloured with four colours. He elaborated this idea as a general result. To each 

vertex of a cubic map (a map where exactly three edges meet at each vertex) he assigned 

the values + 1 and -1 such that the sum of the values of the three edges of each region is 

divisible by 3; if this is achieved then the map can be coloured with four colours. As Tait 

had found, a colouring of a cubic map with four colours is equivalent to colouring its edges 
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with three colours; if the vertices of a cubic map are labelled V}, V2, ••• Vn, then a system of 

congruences of the fonn 

Xi + Xj + ... XI;;; 0 (mod 3) 

can be generated with one congruence for each region. Each of the unknowns Xi is either 

+ I or -1, and Xi appears in the congruence corresponding to a region if and only if Vi is on 

the boundary of that region. 

This paper, together with later ones in 1932 [9] and 1936 [10], explored systems of 

congruences associated with map colouring. The 1898 paper included a proof that the 

regions of a cubic map can be coloured with three colours if and only if each face has an 

even number of boundary edges, which had already been mentioned in Kempe's paper. 

Almost fifty years after his 1890 paper, Heawood was still pursuing map colouring. In 

his 1936 paper, he developed an estimate for the probability that the four-colour conjecture 

was true, and although his argument was rather loose, he gave an indication that the 

probability of failure did not exceed e -41113, where n is the number of countries. At the time 

of publication it had been proved that all regular maps with twenty-seven countries could 

be coloured \vith four colours, and so his estimate would have been e-36 ~ 0.67 x 10-12
, a 

very small probability. 

In 1\\'0 notes, in 1943 [11] and 1944 [12], Heawood published corrections to his 1936 

paper. In his 1936 paper Heawood had conjectured that, if two adjacent regions of a 

complete map were left out of account, the congruences (mod 3) corresponding to the 

remaining regions could always be solved, no matter what constraints were assigned to 

these remaining regions. However, in the first part of his 1943 paper he presented an 

example that showed that this conjecture is not true. If it had been true then the four-colour 

theorem would necessarily have been proved. Daniel Clark Lewis Jr. (see Chapter 8) 

revie\\'ed the 1943 [13] and 1944 [14] papers and in the later review Lewis wrote: 

The subject of map congruences led the author to the following problem. Consider a sequence of n 

(not necessarily distinct) symbols, each one of which is either a 1,2 or 3. Let Un denote the set of all 
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3n such sequences. Let Vn denote any subset of Un such that every sequence of Un "avoids" at least 

one sequence in Vn . When we say that one sequence "avoids" another, we mean that every symbol 

in one sequence is different from the symbol in the corresponding place of the other sequence. Let 

j{n) denote the minimum number of sequences which such Vn must have. The problem is to evaluate 

j{n). It is easily shown thatj{l) = 2,/(2) = 2,/(3) = 5,/(4) = 9,/(5) = 16, and thatj{n) < 2j{n-I). 

The author gives an upper bound for j{n) ... It is not known whether the author's upper bound is 

actually equal toj(n). 

At the age of nearly 90, Heawood published his final paper on map colouring [15]. On 

this occasion it was reviewed by a mathematician important to this narrative, Philip 

Franklin (see Chapter 5) [16]. The paper explored an arithmetic problem equivalent to the 

four-colour conjecture, given certain restrictions that make the problem correspond to a 

map. Heawood developed the arithmetic and attempted to show that, for a number of cases, 

it can be solved without restriction. He did not propose any proof, but suggested that the 

work could lead to a method for solving the four-colour problem. 

3.3 Lothar Wilhelm Julius Heffter (1862-1962) 

The German mathematician Lothar Heffter studied the colouring of maps on orientable 

surfaces. In his 1891 paper [17], he constructed maps in which every face meets every 

face, and he called this a system of neighbouring regions. The problem being considered 

was that of embedding the complete graph thus indicating that the genus of the surface is 

the Heawood number. It was in this paper that the first real use of dual graphs was made, 

although Kempe had mentioned the concept earlier. 

The deficiency in Heawood's argument was pointed out by Hemer, who showed that 

the Heawood conjecture is true for g = 2, 3, 4, 5, 6, and a few other values, although he 

was not able to provide a general proof. His proof involved fixing the number of 

neighbouring regions n and varying the genus p, and then investigating the least value of p 
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such that n neighbouring regions could be constructed on the two-sided surface Sp. His 

paper stated: 

We next enquire after the minimal value of the genus ofa surface which does admit n neighbouring 

points, and call this number Pn; that is to say it will be supposed that on a surface of genus Pm there 

really exist n neighbouring points, but not on one of lower genus. Then it is easy to determine a 

lower bound for Pn. 

His paper continued by stating that the n neighbouring points and their ~n(n - 1) 

connecting edges give a system of n vertices and a number of faces (all simply-connected) 

on a surface. Heffter developed an upper bound for the number F of simply-connected 

faces, arguing that n - 1 faces surround each of the n points and that the faces are at least 

triangles. In his paper he used the generalised form of Euler's polyhedral theorem for Sg, 

V -E+ F= 2 -2g, 

where V is the number of vertices, E the number of edges and F the number of faces and 

stated: 

For the number F of these simply-connected faces, we obtain the upper bound 

FS. n(n - ]); 
3 

this is because around each of the n points lie n - 1 faces, which certainly are at least triangles, since if 

digons were to be found two of the n points would be doubly joined with each other. Now we apply to 

the system of vertices, edges and faces of the surface of genus Pn the generalized Euler polyhedral 

theorem, thus obtaining 

2Pn - 2 = n(n - 1) - n - F, 
2 

2Pn - 2 ~ n(n - 1) - n - n(n - 1) , 

2 3 

Pn ~ (n- 3)(n-4), 
12 

and since in every case Pn must be an integer, we can write 

Pn ~ (n - 3)(n - 4) + 2a" , 
12 

where 2an is the smallest positive integer which makes the numerator divisible by 12. 
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Although Heffter was unable to provide a complete general proof of X(Sp) = /[(p) for 

infinitely many values of p, it is significant that the above expression includes the number 

12 as the eventual proof of the Heawood conjecture in 1968 (see Chapter 9) [18] was split 

into twelve separate cases, depending on the remainder when n is divided by 12. 

3.4 Heinrich Franz Friedrich Tietze (1880-1964) 

Another mathematician working in a similar vein to Heffter was the Austrian Heinrich 

Tietze who was later highly regarded for his book Famous Problems of Mathematics [19]; 

this book included colour plates illustrating the colouring of maps on different surfaces. 

His 1910 paper [20] developed Heffter's approach, but for non-orientable surfaces, 

employing Heftter's terminology of neighbouring regions and applying the arguments of 

Heawood; he found an upper bound for X(Nq), "the chromatic number of the surface Nq, for 

q ~ 2, the upper bound is: 

Y1Nq) :5 [~ (7 + ~(1 + 24q»], 

Applying Euler's generalised polyhedral formula in this case gives: 

so 

q - 2 = nen - 1) - n - F, 
2 

q - 2 ~ nen - 1) - n - nen - 1), 
2 3 

q ~ en - 3)(n - 4) (n ~ 7). 
6 

The Mobius strip is a distinct case in that it is one-sided, but it has a boundary. In his 

paper, Tietze showed 'that it is possible for six, but no more, neighbouring regions to be 

marked on a Mobius strip'. lIe also concluded that the chromatic number X(NJ) of the 

projective plane NJ is 6, but was unable to determine the chromatic number of the Klein 

bottle N2• 
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3.5 Julius Peter Christian Petersen (1839-1910) 

Julius Petersen was a Danish mathematician who published papers on graph theory in the 

1890s and later. Many of his ideas would spark the interest of a number of young 

American mathematicians. He had regular correspondence with Sylvester [21], on map 

colouring and on the factorisation of graphs. 

Petersen's work was principally in geometry, but his pioneering paper on the 

factorisation of regular graphs was perhaps his most important pUblication. Published in 

1891, the paper [22] was the first to describe a theoretical approach to the problem of 

factorising regular graphs. He showed that all such graphs of even degree could be 

resolved into 2-factors (graphs regular of degree 2). 

In his paper, Petersen commented that the factorisation of regular graphs, when 

applied to graphs of odd degree, was more challenging than when applied to those of even 

degree. However he continued by exploring graphs of odd degree and proved a significant 

result regarding cubic graphs: 

Provided that a graph has no more than two leaves, then a regular graph of third degree always 

possesses a I-factor. 

(A leaf is a part of a graph which can be disconnected from the remainder of the graph by 

removing a single edge). 

He also recalled that Tait had demonstrated that the four-colour conjecture IS 

equivalent to a conjecture about the colouring of edges. He developed Tait's methods and 

showed that the four-colour conjecture is related to Hamiltonian cycles and the traversality 

of certain graphs, giving rise to the following conjecture: 

In a bridge less cubic map, it is possible either to tour all the vertices by a Hamiltonian cycle, or to 

find a group of disjoint even-length cycles covering all the vertices. 

Petersen also published two short notes on cubic graphs - one in 1898 [23] and one 

in 1899 [24]. In the first he proved the theorem: 

An indecomposable graph of the third degree must have at least three leaves. 
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He restated Tait's theorem as: 

A graph of the third degree which has no leaves can be decomposed into three graphs of the first 

degree. 

He went on to say that: 

... a graph of the third degree which has no leaves can be decomposed, either into three graphs of 

the first degree, or into one of degree one and one of degree two. 

In my terminology, Tail's conjecture can be stated as f01l0ws: 

A graph of the third degree which has no leaves can be decomposed into three graphs of the first 

degree. 

and commented that this is: 

... stronger than my theorem and it seems to me impossible that it can be true without the adjunction 

of extra conditions. What is more, as I shall show, I have succeeded in constructing a graph to 

which Tait's theorem does not apply. 

This graph now called the Petersen graph, shown below, is the most notable part of 

his 1898 note (although Kempe had published a version of the graph twelve years earlier). 

The Petersen graph 
(takenfrom his paper) 

e 

An alternative illustration of the 
Petersen graph showing its symmetry 

In the second paper he commented that' M Kempe only skimmed over the problem; he 

committed his error just where the difficulties began' and went on to say somewhat 

unexpectedly, as he failed to give any reason: 

I know nothing with certainty, but if it came to a wager I would maintain that the theorem of the 

four colours is not correct. 
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3.6 Paul August Ludlvig Wernicke (1866 or 1868-c1940) 

Another Gennan whose imagination was captured by the four-colour problem was Paul 

Wernicke; who was born in Berlin. He was Professor of Modern Languages at the State 

College of Kentucky between 1894 and 1906; however, during this time he turned to 

mathematics and studied under Hermann Minkowski (see 3.7) obtaining his doctorate in 

that subject from Gottingen University in 1903. 

It is interesting to note that he was elected a member of the American Mathematical 

Society in 1897 as Professor Wernicke, whilst he was at the State College of Kentucky, but 

the entry in the Society's records does not state the discipline of his subject. His first 

notable contribution to mathematics was as a delegate to the Fourth Summer Meeting of 

the American Mathematical Society held in Toronto in 1897, which was chaired by the 

Society's president Simon Newcomb. Wernicke gave a lecture or presented a paper 

entitled On the solution of the map-color problem, which has not survived. The Society 

included an abstract of the work in their Bulletin [25], but it does not give a clear 

description of the paper's contents. From the abstract, it appears that the paper or lecture 

was concerned with Tail's relationship connecting the 3-colouring of the edges of a cubic 

map with that of the 4-colouring of the countries. Wernicke's method appeared to be that 

of adding new countries to a map to convert it into one that he could colour with four 

colours. The abstract in the Bulletin included: 

Given a map correctly colored and with its frontiers marked, the author proves that any triangles, 

quadrangles, and pentagons can be introduced and correctly marked at the same time. The main 

theorem then follows by induction. 

It is considered that this approach had little merit [7]. 

He must have returned to the USA after obtaining his doctorate and here he published 

his main paper [26] in 1904 which was written in Gottingen in May 1903. In it he proved 

that a cubic map that contained no digon, triangle, or quadrilateral must contain, not only a 

59 



pentagon (as shown by Kempe), but also either two adjacent pentagons or a pentagon 

adjacent to a hexagon. This can be expressed, for all F, as: 

In a cubic map which satisfies p*(F) 2: 5, where p*(F) represents the number of boundary edges in 

the faces F, then there must be a pentagon touching another pentagon or a hexagon. 

This extended the list of country shapes that fonn unavoidable sets to: 
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I 
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~ 
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I • 

triangle 

, , , , 

''0' 
, , , , , , 

square 
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.. " ~ ---co-- -'\A).:~ 
, , - . 

I -. , • 

two pentagons pentagon/hexagon 

This paper presaged the interest in unavoidable sets in maps and was the most significant 

advance in the field since the work of Kempe and Heawood. 

3.7 Hermann Minkowski (1864-1909) 

Minkowski was another mathematician caught up in the quest for a solution to the four-

colour problem. He was a Lithuanian-born naturalised Gennan who taught for a while at 

Gottingen University, originated the geometry of numbers, and worked on mathematical 

physics and the theory of relativity. 

For all his brilliance, he was unable to solve the four-colour problem. It is recorded 

[27] that he interrupted a topology lecture he was giving to infonn his student audience 

that the four-colour conjecture had not been solved because only 'third-rank' scholars had 

addressed it. He further infonned the students that he believed that he could prove it. The 

story is described in [7]: 

Finally one rainy morning, Minkowski entered the lecture hall, followed by a crash of thunder. At 

the rostrum, he turned towards the class, a deeply serious expression on his face. 'Heaven is angered 

by my arrogance', he announced. 'My proof of the Four-colour Theorem is also defective'. He then 

took up the lecture on topology at the point where he had dropped it several weeks before. 
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3.8 Kazimierz Kurato\vski (1896-1980) 

Kuratowski was a Polish mathematician whose work was mainly in the area of point-set 

topology but who made a significant contribution to graph theory in his paper published in 

1930 [28]. The paper contained the following theorem which is now called Kuratowski's 

theorem: 

IfG is a non-planar graph, then it contains a subgraph which is a subdivision of Ks or K3•3• 

The American Orrin Frink (1901-1988) and a colleague, P A Smith, independently 

arrived at the same conclusions as Kuratowski, but did not publish their results as the 

details were too close to those of Kuratowski. Frink published work in many areas of 

mathematics, including lattice theory and topology, and is remembered by graph-theorists 

mostly for his simplified proof of Petersen's theory, published in 1926 [29], which was 

described by Denes Konig [30]: 

Final1y Frink succeeded in reducing the theorem in an elegant and comparatively easy way ... in 

which, in contrast to all his predecessors, he was able to avoid any counting process. 

3.9 Alfred Errera (1886-1960) 

Alfred Errera was a Belgian mathematician who spent most of his career at the University 

of Brussels and who made significant contributions to graph theory and map colouring, in 

parallel with his American colleagues with whom he was in correspondence. He began an 

interest in map colouring in the 1920s and corresponded with Heawood on the subject 

during that decade. In any event, Errera was a lone Belgian voice in graph theory, but 

published many papers on the subject, several of which contained significant contributions. 

During the 1920s he was working along similar lines as American mathematicians and his 

graph-theoretical papers contained many references to them. 
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His 1921 paper [31] dealt with the use of chains for attacking the four-colour problem. 

His 1922 paper [32] provided another simple proof of Petersen's theorem. In 1923 he 

published a paper [33] on planarity where he addressed the utilities question: 

In the plane are three houses and three wells: the problem is to join every house with every well by 

nine paths in all, so that no two of these paths cross each other. 

He proved the generalisation: 

If the points A h A2, ••• , Au: Bh B2, ••• , Bv lie in a plane, then exactly 2u + 2v - 4 of the uv edges A,B" and 

not more, can be drawn without any two of the edges crossing each other in the plane (u > I, v> I). 

Over the next five years, he returned to map-colouring problems with one paper in 

1923 [34], two in 1924 [35] [36], one in 1925 [37], and one in 1927 [38]. The highlights of 

these papers included the following. 

In his second paper of 1924 [36], presented at the International Congress of Mathematics 

held in Toronto, he started with a brief overview of the four-colour problem mentioning 

Cayley, Kempe, IIeawood, Petersen and Tait. He outlined the results of BirkhofT's 1913 

paper The reducibility of maps and Franklin's 1922 paper The four color problem. Errera 

stated that a fuller version of his summary could be found in his 1925 paper [37]. In this 

latter paper he proved that an irreducible configuration must contain at least thirteen 

pentagons. The concept of reducibility is explained clearly in [1] as: 

If there are plane maps which need five colours, then there must be among them a map with the 

smallest number of regions; such a map is said to be irreducible. The basic idea is to obtain more 

and more restrictive conditions which an irreducible map must satisfy, in the hope that eventually 

we shaH have enough conditions either to construct the map explicitly, or, alternatively, to prove 

that it cannot exist. 

This paper also included a proof that maps with only vertices of degree 5 and 6 cannot 

occur in a minimal counter-example to the four-colour theorem. His 1927 paper [38] like 

his second paper of 1924 [36] gave a comprehensive history on the four-color problem. 

After World War II Errera revisited colouring problems and published papers in 1947 

and 1948. In the first [39], he explored the decomposition of a regular map into concentric 
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rings indicating how this may relate to the four-colour problem. In the second [40] he 

developed fonnulae for the number of ways of colouring particular configurations of 

graphs. In 1950, he published two further papers [41] [42] both of which were reviewed by 

Tutte (see Chapter 9). In these Errera investigated the classification of cubic maps on the 

sphere and discussed the reducibility of cubic maps being coloured with four colours using 

Tait's edge-colouring method. In the second paper, he fonnulated a new version of the 

four-colour conjecture by fusing Heawood's expression in terms of congruences (mod 3) 

with Whitney's theorem on Hamiltonian cycles (see Chapter 6). 

In a paper of 1952 [43], Errera addressed the classification of polyhedra, agaIn 

building on work by Whitney. Also in the same year he published an expository paper [44] 

reviewing the problems associated with the four-colour problem. In another paper [45], but 

published a year later, he returned to the classification of spherical polyhedra and again 

cited the work of Whitney. 

Conclusion 

So although many European mathematicians had devoted significant time and effort to the 

four-colour problem for over seventy years, no solution had been found. However, in that 

time considerable work had been published on graph theory. Europeans had carried out 

nearly all of this work, but this situation was soon to change as American mathematicians 

began to make their mark on the development of the subject. 

The next chapter covers the graph-theoretic work of the first Americans to make major 

contributions to the subject - Oswald Veblen and George David BirkhofT. 
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Chapter 4 

Os\vald Veblen and George Birkhoff 

The first American mathematicians to publish important work on graph theory were two of 

the most notable men in American mathematics in the early twentieth century. They were 

Oswald Veblen and George David Birkhoff, and between their first meeting in 1902 and 

the latter's death in 1944 they remained friends and colleagues in advancing mathematics 

in the USA. 

In the volume of the American Mathematical Society's publication in which Veblen's 

first paper on graph theory appeared, so too did the first significant on the same subject by 

Birkhoff. These two papers, and a follow-up paper of Birkhoff, were to provide the 

impetus for the ever-increasing contributions from American mathematicians to graph 

theory and map colouring. 

4.1 Oswald Veblen (1880-1960) 

Oswald Veblen attended the University of Iowa where his father was professor of 

mathematics and physics, graduating with an AB degree in 1898, and staying there for a 

further year undertaking work in the physics department as an assistant. He then went to 

Harvard University for a year, earning a second AB in 1900. On leaving Harvard, Veblen 

spent three years at the University of Chicago, gaining much of his early mathematical 

training and knowledge from an inspiring trio of scholars - his supervisor Eliakim H 

Moore, Oskar Bolza (1857-1942), and Heinrich Maschke (1853-1908). Veblen's doctoral 

dissertation, entitled A System of Axioms for Geometry, was inspired by Poincare and 

written under the direction of Moore, and earned him his PhD degree in 1903. Veblen 

taught mathematics at Princeton University from 1905 to 1932, initially as a preceptor, and 
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then as a full professor from 1910. During the academic year 1928-29, he taught at Oxford 

University as part of an exchange arrangement with G H Hardy. 

Veblen's most significant contributions to graph theory were his 1912 paper An 

application of modular equations in analysis situs [1] and the book published in 1922, The 

Cambridge Colloquium 1916, Analysis Situs [2]. Referring to Veblen's book, the graph

theorist W T Tutte (see Chapter 9) was later to remark [3]: 

I learned a little Combinatorial Topology at Cambridge. That subject dealt with structures called "n

complexes". These were made by fitting together units called "n-simplexes~~, n-dimensional 

analogues of the point, the segment, the triangle and the tetrahedron. The graphs of Graph Theory 

appeared as the case n = 1, and by combinatorial topologists they were usually looked upon as 

trivialities. However O. Veblen devoted part of a textbook to them and to their associated maps on 

surfaces. 

What made Veblen disposed to apply himself to graph theory can only be speCUlation. 

It is possible that during his time at the Universities of Iowa and Chicago he attended 

meetings of the American Mathematical Society, \",here papers on the subject were 

presented. Additionally, he would have had access to learned journals and may have read 

articles such as Wernicke's 1904 paper. He may also have heard C S Peirce's unpublished 

presentation The map-coloring problem in 1899. Certainly, reports of these meetings 

would have been available to him. There does not seem to be evidence of Veblen having 

any contact or correspondence with Peirce or Wernicke, who were known to be working 

on map colouring around the turn of the century. 

The First World War interrupted Veblen's career, and when he returned to Princeton 

he quickly became regarded as a leading geometer. Because of his work, many graduate 

students applied to study there or to be employed by the mathematics faculty; one of these 

students was Philip Franklin (see Chapter 5); the two had worked together during their war 

service. Veblen's research and influence ranged over many areas of mathematics, 

including the foundations of geometry and topology, relativity theory and symbolic logic. 
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Through the work of Veblen and his students, Princeton became one of the leading centres 

of topology; as a result, he earned the rare designation 'statesman of mathematics' around 

the world, a description found in many articles on Veblen [4]. Although Veblen only 

published two papers on graph theory they were influential- the best introduction to the 

subject for many years. 

Every fe\v years two prominent mathematicians were selected by the American 

Mathematical Society to give a series of summer lectures to the membership one of the 

highest recognitions of a mathematician in America. These meetings were well attended, 

giving rise to considerable discussion. As was usual with the Colloquium Lectures the 

papers were revised, extended, and then published as a monograph. Because of the First 

World War and the Society's lack of funds, the publication of Veblen's lectures was 

delayed. They eventually appeared in 1922 and gave the first comprehensive description of 

the fundamental concepts of topology and greatly assisted the advance of modem 

combinatorial topology. 

Following his successful AMS lectures, Veblen turned his attention to work other than 

graph theory. Subsequent to the publication of Einstein's General Theory of Relativity in 

1915, he became interested in differential geometry, and from 1922 most of his 

publications were on this subject and its connections with relativity. This work led to 

important applications in relativity theory, and atomic physics made some use of his work. 

Veblen \vas much involved in the recruitment into the American academic world of 

many notable foreign mathematicians. These included Richard Courant (1888-1972), 

founder and director of the Mathematics Institute at Gottingen University, who was 

dismissed by the Nazis in 1933 and went to the USA via England in 1934. He became 

director of the Institute of Mathematical Sciences at New York University. In 1938, the 

historian of mathematics Otto Neugebauer (1899-1990), joint director of the Mathematics 

Institute at Gottingen University, was offered a chair at Brown University, arranged by 
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Veblen, becoming Professor of the History of Mathematics there; after his retirement in 

1969 he worked at the Institute for Advanced Study at Princeton where he was made a 

permanent member in 1980. In addition, Hermann Weyl (1885-1955), a professor of 

mathematics at Gottingen University moved to the Institute for Advanced Study in 1933, 

where he remained until his retirement in 1952. Veblen's work in these matters earned him 

considerable respect and not a little gratitude. 

Just before Veblen gained his doctorate at Chicago, George David Birkhoff enrolled 

there as an undergraduate. His son Garrett Birkhoff (1911-1996) later recalled [5] that his 

father: 

... entered the University of Chicago in 1902. There he soon began a lifelong friendship with 

Oswald Veblen, a graduate student who had received an AB from Harvard (his second) two years 

earlier. 

It may seem surpnslng that, despite their very different personalities and their 

disagreements on at least two major issues (the encouragement of European immigration of 

scholars during the 1930s and the initiation of Alathematical Reviews in 1940), they 

remained close friends. It is likely that Veblen was influential in BirkhofT's early work and 

selection of research subject matter. It is certainly true that when Veblen's paper, An 

application of modular equations in analysis situs, was published in 1912, algebraic 

topology (or analysis situs as it was called then) was not widely pursued in the USA. 

After his death in 1960, the American Mathematical Society founded an Oswald 

Veblen Prize in Geometry, although the first seven years' recipients were all rewarded for 

their work in topology. It was not until 1976 that any work in geometry was found to be 

worthy of the prize [6]. 

4.2 An application o/",odular equatiolls ill analysis situs [1] 

Veblen's paper on modular equations in analysis situs was presented to the American 

Mathematical Society on 27 April 1912. It was the first substantial contribution to the four-
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colour problem by an American mathematician, and the ever-increasing development of 

the subject by American scholars was essentially due to him and Birkhoff. In his paper, he 

drew on ideas from finite geometry and incidence matrices over a finite field. He 

represented them by matrices by arbitrarily numbering the vertices, edges and countries of 

a map. 

His paper attempted to clarify, using matrices, those linear equations in a finite field 

that could result in a solution of the four-colour problem. He intended that these equations 

display the basic properties of a map; he said that they would provide 'an ... easy proof ... 

of Euler's formula' and in his argument he used the rank + nullity theorem. His 

fundamental premise was that 'a map could be ... described by means of two matrices'. He 

also gave credit to Poincare, noting that: 

These matrices are identical on interchanging rows and columns with those employed by Poincare, 

if the + and - signs used by the latter are omitted. [7] 

In the following example, matrix A represents the incidences of vertices, numbered VI 

to V4, as rows, and edges, numbered XI to X6, as columns; matrix B represents the 

incidences of edges as rows, and countries, numbered A, B, C, D, as columns. In matrix A, 

1 appears where a vertex is on an edge, otherwise 0 appears; and for matrix B, 1 is used 

where an edge is a boundary of a country; otherwise 0 is entered. As his example Veblen 

used: 

... the map obtained by projecting an inscribed tetrahedron from one of its interior points to the 

surface of a sphere ... 

The following represents this: 

V,) ~------------~" .. 
Xf. 
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0 1 0 1 

1 1 1 0 0 0 0 0 1 1 

0 1 0 1 1 0 0 1 1 0 
A= 

0 
B= 

0 0 1 1 0 1 0 1 1 

0 0 1 0 1 1 1 0 1 0 

1 1 0 0 

the elements of these matrices are to be regarded as integers (mod 2). 

Veblen observed that four sets of linear homogeneous equations could be developed 

from these matrices. He stated that: 

In each case the variables and coefficients are regarded as integers reduced modulo two. In other 

words, let us add according to the rules 1 + 1 = 0, 1 + 0 = 1, 0 + 1 = I, 0 + 0 = 0; and multiply 

according to the rules 1 x 1 = 1, 1 x 0 = 0, 0 x 1 = 0, 0 x 0 = O. All the formal laws of elementary 

algebra are satisfied by this field. 

The first set (1) corresponds to the rows of the matrix A, Veblen explained that: 

There is one variable for each edge of the map and one equation, 

(I) Xu + Xb + Xc + ... = 0 

for each vertex, the variables in the equation representing the edges which meet at a corresponding 

vertex. A solution of this system of equations represents a way of labelling the edges of the map 

with O's and 1 's so that there shall be an even number of I 's on the edges at each vertex. The edges 

labelled with I 's in this manner form a number of closed circuits no two of which have an edge in 

common. For let us start with an arbitrary edge labelled I and describe a path among the edges 

labelled I. Whenever there is by which this path approaches a vertex, since the number of I-edges 

at this vertex is even, there is a I-edge by which the path can go away. Hence the path may be 

continued till it intersects itself. A portion of the path then forms a closed circuit. It this be removed 

there are still an even number of I-edges at each vertex. Another circuit may be removed and so on 

till all the I-edges are accounted for. 

Xl', ... , Xa + xa.) is also a solution. The boundary of each of the a2 countries of the map is represented 

by a solution in which each edge of the boundary is marked with a 1 and each other edge with a O. 

One such solution is supplied by each column of the matrix B. 
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Veblen called these 'fundamental solutions'. He pointed out that the number of linearly 

independent solutions of the first set of equations is the number of countries less one (that 

is, a2 - 1), and that the total number of solutions is 2(a2 -I). 

The second set of equations (2) is developed from the columns of the matrix A, being 

va - Vb = 0, for each edge VaVb. Veblen goes on to say: 

The only possible solutions are such that all the variables are equal. For if Va is given, Vb must be 

equal to Va; ifvc is connected with Vb by an edge, Vc is alos equal to Va, and so on. Since there is a 

path along the edges joining any vertex to any other it follows by this argument that al1 the variables 

are equal to va. Hence the only solutions to the equations are (0, 0, ... , 0) and (I, I, ... , 1). There are 

ao variables. Hence the number of the UI equations which are linearly independent must be llo - I. 

Hence the rank of the matrix A is ao - 1. 

From these equations, Veblen stated that, as there are ao equations (vertices) among Ut 

variables (edges), and a2 - 1 solutions, the rank of the matrix A is ao - 1. This gives: 

a I - (ao - 1) = a2 - 1, or ao - a I + a2 = 2, 

which is Euler's formula. 

A third set of equations (3) is taken from the rows of B and, as Veblen stated, they are 

'entirely analogous to the equations (2)'; this gives the rank of the matrix B as a2 - 1. The 

fourth set of equations (4) is derived from the columns of B. The solutions of these 

equations are given in the rows of A, with ao - 1 rows linearly independent. This result can 

also be found from Euler's theorem, since the rank of the matrix B is a2 - 1 and the 

number of linearly independent solutions is al - a2 + 1. 

Having established his matrices, Veblen turned to the four-colour problem. Using a 

field of four elements (0, 1, i, i + 1) to represent the four colours, he defined two elements 

a and P of the field to be equal if and only if a + p = ° (mod 2). It follows that if a set of 

values (yt, Y2, ... ,Ya2) can be found that satisfies none of the equations (3), corresponding 

to the rows of the matrix B, then this provides a solution to the four-colour problem. 

Veblen continued by saying that the: 
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... set of values (Yh Y2, ... , Ya2) may be regarded as a point in a finite projective space of a2 - I 

dimensions provided we exclude the set (0, 0, 0, ... , 0). 

He then explored different spaces and reformulated the four-colour problem in terms of 

subspaces of a projective space to the following statement: 

In a finite projective space of (a2-1) dimensions with three points on a line there are a certain 

number of spaces Sa2-n of dimensionality a2-n, one for each odd cycle en. They all have one 

point in common. The map can be colored in the four colors if and only if there exists a point not on 

any of these S:a2-n's There are as many distinct ways of coloring the maps (aside from 

pennutations of the colors) as there are real lines in the (a2-I)-space which do not meet any ffa2-n 

(n odd). 

The paper then investigated further solutions to the sets of equations that provided 

conditions under which the four-colour problem could be solved. It concluded by pointing 

out that the generated equations were essentially the same equations of congruence defined 

by Heawood in his 1898 paper. Veblen's final paragraph, which summed up the paper's 

content, reads: 

To solve the four-color problem it is necessary and sufficient to find a solution of these equations in 

which none of the variables vanish. The variables may be interpreted as coordinates of points in a 

finite projective space of l1o-dimensions in which there are four points on every line. 

The paper may not have contained new steps upon which the eventual solution of the 

four-colour theorem was built, but it gave a reformation of the problem, generalising the 

'system of Heawood congruences' [8]. 

4.3 The Cambridge Colloquium 1916: Analysis Situs 

This publication was the collected addresses presented by Veblen to the American 

Mathematical Society as their Colloquium Lectures in 1916. The following paragraph from 

the Preface succinctly sets the scene for the book's content and indicates the modest and 

unassuming personality of its author: 
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The Cambridge Colloquium lectures on Analysis Situs were intended as an introduction to the 

problem of discovering the n-dimensional manifolds and characterizing them by means of 

invariants. For the present publication the material of the lectures has been thoroughly revised and 

is presented in a more formal way. It thus constitutes something like a systematic treatise on the 

elements of Analysis Situs. The author does not, however, imagine that it is in any sense a definitive 

treatment. For the subject is still in such a state that the best welcome which can be offered to any 

comprehensive treatment is to wish it a speedy obsolescence. 

Also in the preface, Veblen recorded his indebtedness to Dr Philip Franklin, who 

'assisted with ... the manuscript, the drawings, and the proof-sheets'. These papers, when 

later published as a book, constituted Veblen's most important work on graph theory and 

became a standard reference work on topology for many years. 

The publication was divided into five chapters, the first titled Linear Graphs. At the 

start of this first chapter Veblen established his Fundamental Definitions, illustrated using 

K4, the graph used in his earlier paper (but with a different notation) and shown earlier in 

this thesis. He built on the following basic definitions to cover the then-known parameters 

and formulas for linear graphs: 

• O-dimensional simplex = single point 

• I-dimensional simplex = segment or edge 

• O-dimensional cell (O-cell) = end or vertex 

• I-dimensional cell (I-cell) = the points of a segment 

• O-dimensional complex = the set of distinct O-cells 

• I-dimensional complex = I inear graph 

Veblen assembled Kirchhoff's ideas, as developed by Poincare, to define the number 

of cycles in a fundamental set, a value related to the rank of the incidence matrix. Veblen 

went on to outline how Kirchhoff developed a fundamental set of cycles related to a 

spanning tree within a graph. lIe also detailed a way to show that every connected graph 

contains a spanning tree. 
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Veblen developed incidence matrices for these multidimensional structures and 

included a discussion of the theory of the n-cell, regular complexes, manifolds, and the 

dual complexes associated with them. He also included a description of Betti numbers. The 

Betti number is the nullity N of a graph G, and relates the number of vertices V, edges E, 

and faces F, by a development of Euler's polyhedron formula given as: 

N=£-V+F. 

Veblen's contribution to graph theory was not just through the work he published, but also 

by his direct influence on other mathematicians such as Birkhoff and Franklin. Birkhoff, 

followed closely behind Veblen chronologically and their academic lives were closely 

linked, not just through their mathematical work, but also in the development of American 

scholarship and its standing in the world. As Franklin's postgraduate supervisor, Veblen 

was undoubtedly directly instrumental in Franklin's thesis subject and for his continuing 

interest in graph theory and the four-colour problem (see Chapter 5). 

4.4 George David Birkhoff (1884-1944) 

George David Birkhoff was a complex man. He was arguably the foremost American 

mathematician of the 1920s and 1930s. None other than Albert Einstein accused him as 

being 'one of the world's great anti-Semites' [9], but he was warmly praised for the 

encouragement and support he gave his research students. He was known not to support 

women in academia, but was described as 'intensely social'. Despite these contradictions, 

he was highly respected in his homeland and around the world. 

Birkhoff attended the University of Chicago in 1902, where he met Veblen, then 

studied at Harvard University from 1903 to 1905, being awarded an AB in 1905 and an 

AM in 1906. He returned to the University of Chicago in 1905 for postgraduate study 

under E H Moore, and was awarded a PhD degree in 1907 for his thesis Asymptotic 

76 



Properties of Certain Ordinary Differential Equations with Applications to Boundary 

Value and Expansion Problems, the work being heavily influenced by the mathematics of 

Poincare. Subsequent to being awarded his doctorate, Birkhoff took up an appointment in 

1907 as an instructor of mathematics at the University of Wisconsin. In 1909, he moved to 

Princeton University as a preceptor in mathematics, and in 1911 he was appointed a 

professor where he worked mainly on dynamics and mathematical physics. In 1912, he 

returned to Harvard as an assistant professor and became a full professor there in 1919, 

remaining at Harvard for the rest of his life. 

Birkhoff's first contribution to the story of graph theory in America was his 1912 

paper entitled A determinant formula for the number of ways of coloring a map [10], in 

which he introduced chromatic polynomials. His second was his 1913 pioneering paper, 

The reducibility of maps [11], which would prove to be significant in the development of 

the solution to the four-colour problem. His interest and subsequent mild obsession with 

the four-colour conjecture was triggered by his attending Veblen's seminar in analysis 

situs when they were together at Princeton [12]. His son Garrett also became a prominent 

mathematician, and in later life recorded that his mother whilst on honeymoon was 

requested by her new husband to prepare complicated maps for him to colour [13]. In later 

life [13], the older BirkhofT was to rue the effort he had expended on the problem, even 

though it had been a keen ambition of his to provide a solution - then again, perhaps it 

was because his ambition was not realised. In 1935, Hassler Whitney (see Chapter 6) wrote 

of the work [14]: 

A major step in advance was given by G.D. Birkhoff ... In the early 1930s, when I was at lIarvard, 

exploring the problem among other things, Birkhoff told me that every great mathematician had 

studied the problem, and thought at some time that he had proved the theorem (I took it that 

BirkhofT included himself here). 

In 1972, Thomas L Saaty (1926) honoured Birkhoff's quest for a solution to the four-

colour problem by defining the BirkhojJ number which he defined to be the minimum 
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number of countries that a map must have if it cannot be coloured admissibly with four 

colours. However as the four-colour problem has been solved the definition needs to be 

revised. In their book The Four-Color Problem Rudolf and Gerda Fritsch [15] state: 

The Birkhoff number is b on day t if on day t it has been shown that a map that cannot be 

admissibly colored with four colors must contain at least b countries. For the years 1852 to 1879, by 

the Weiske theorem (Theorem 4.5.1), the Birkhoffnumber was 6 (Corollary 4.5.2). In 1879, by way 

of Kempe's deliberations, the Birkhoffnumber had risen to 13. 

The search for reducible configurations had begun soon after the conjecture had been posed in 

1852. It continued until the solution was provided in 1976 by K Appel and W Haken (see Chapter 

9) whose proof of the four-colour theorem implies that the Birkhoffnumber is infinite. Before then, 

the Birkhoffnumber (based on [15]) was: 

Name Date t BirkhoffNumber b 

B G Weiske [15] before 1852* 6 

A B Kempe [16] 1879 13 

P Franklin [17] 1922 26 

eN Reynolds [18] 1926 28 

P Franklin [19] 1938 32 

C E Winn [20] 1940 36 

o Ore and J G Stemple [21] 1970 41 

W R Stromquist [22] 1973 45 

J Mayer [23] 1974 48 

W R Stromquist [24] 1974 52 

J Mayer [25] 1975 96 

* 'For the years 1852 to 1879, by the Weiske theorem, the Birkhoffnumber was 6'. [15]. 

The Weiske theorem is 'There exists no map with five pairwise neighbouring countries' 

Also in 1913, Birkhoff proved Henri Poincare's Last Geometric Theorem, a special 

case of the three-body problem, which Poincare had posed in 1912 but had been unable to 

solve. This work was primarily the reason for BirkhofT's international fame, and he \vas 

regarded, at that time, as North America's leading mathematician; his proof is still widely 
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used today. Marston Moore said that 'Poincare was Birkhoff's true teacher' [12]; indeed, 

few scholars knew and understood Poincare's work better than BirkhofT. Scholars in 

Gottingen were somewhat aggrieved and surprised that an American had solved this 

problem. After working on other areas of mathematics Birkhoff later returned to the 

problem of colouring maps and in 1930 published a paper entitled On the number oj ways 

oj co/Dring a map [26], also on chromatic polynomials. 

The American Mathematical Society celebrated its fiftieth anniversary in 1938 and 

invited Birkhoff to give the main address, on fifty years of American mathematics. His 

paper [27] included not only a proud claim of the standing and quantity of 'highly creative 

... American mathematicians', but also a warning regarding the influx into the USA of 

scholars from the oppression being experienced in Europe. Birkhoff believed that young 

American mathematicians would be deprived of opportunities for higher positions and 

research posts in the University system, that they would be restricted to what he described 

as 'hewers of wood and drawers of water' - that is, employed - provided that they could 

obtain a position against increasing competition as full-time teachers at high schools and 

colleges, but without the chance to carry out research. In this matter, Birkhoff was wrong: 

the very people about whom he was concerned became leaders in American mathematics 

and helped the USA to become the leading mathematical country in the world. 

In 1939, Birkhoff became involved in correspondence with a Cleveland newspaper, 

which (he believed) had published the fact that he had solved the four-colour conjecture. 

Perhaps it was a badly worded article [28] and intended not to claim that Birkhoff had 

found a proof, but Birkhoff believed that somewhere in his work on chromatic polynomials 

there contained a way to the answer. The article was sufficiently ambiguous that Birkhoff 

felt it necessary to write to the newspaper. The reply [29] that it solicited did not contain an 

apology, but said: 

I don't think that my original article gave the impression that you had solved the problem, although 

it did say that you were making progress. 
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Birkhoff saw the potential of calculating devices as aids to mathematicians and, using 

funds from a bequest to Harvard and considerable assistance from IBM financed the 

building, by Howard Aiken, of a large calculator at Harvard that was in operation before 

the end of World War II. Because of the success of this machine, the U. S. Navy ordered 

three more of improved specification for use in naval laboratories. 

Birkhoff often appeared somewhat detached from the goings-on in the world around 

him, including in his attitude towards politics and social intercourse. This sometimes gave 

rise to misunderstandings and hostility. His approach to discussion was one of brevity and 

simplicity without explanation. He was also able to appreciate and enunciate opposing 

views of a problem, which on occasion led to a hearer obtaining an incorrect impression of 

Birkhoffs own opinion. It was sometimes difficult to understand where Birkhoff stood on 

a particular subject [12]. 

During World War II Birkhoff and his wife were good-will ambassadors, travelling to 

South America and Mexico, and cooperating in Nelson Rockefeller's effort to promote 

solidarity against Hitler. 

4.5 A determinantforn,ulafor the "un,ber of ways of coloring a Inap [10] 

Just one week after Veblen gave his paper on modular equations, his Princeton colleague 

Birkhoff published the first of his major papers on the four-colour problem. Like other 

scholars who worked on the problem, he was unable to provide a solution, but did suggest 

a new avenue of investigation, a quantitative approach; this was the development of a 

polynomial P(A.) to count the number of ways of colouring the regions of a map AI using A. 

colours. 

His paper included two examples. The first was of a map AI (Figure 1) with three 

mutually adj acent regions (ignoring the outside region), where region A can be coloured 
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with any of the 1 colours; region B by any of the remaining 1 - 1 colours; and region C by 

any of the remaining 1- 2 colours. This gives the total number of ways of colouring Mas 

P(l) = 1(1-1)(1- 2), 

so if only three colours are available, then the number of ways of colouring Mis: 

P(3) = 3(3 - 1)(3 - 2) = 6. 

Figure 1 Figure 2 

His second example was of a map of five regions (Figure 2). Here region A can be 

coloured with any of the 1 colours available; B with l- 1 colours; C with l- 2 colours; D 

with 1- 3 colours; and E also with l- 3 colours, so: 

P(l) = 1(1- 1)(1- 2)(1- 3i, 

so for 1 = 4 P(4) = 4(4 - 1)(4 - 2)(4 - 3i = 24. 

The above equations were also calculated from his general formula: 

n n-i 
P(l) = L i L (_1)* (i, k), 

;=1 k=O 

\vhere n is the number of regions of AI and (i, k) denotes 'the number of ways of reducing 

down the map AI to a submap of i regions by k simple or multiple coalescences'. The 

boundary conditions given were (i, k) = 0 for k > n - i; (n, 0) = 1; and (i, 0) = 0 for i < n. 

Birkhoff found that the function P is always a polynomial in 1 and provided a proof of the 

general formula for the coefficients of P(l) which was somewhat complex and twenty 
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years later Hassler Whitney provided a simpler procedure (see Chapter 6). BirkhofT also 

included the warning that 'the value of (i,k) is not immediately obtained' and indicated that 

'more complicated maps would require ... considerable computation ... to determine P{}w) 

from the above equation or by inspection of the map itself. 

His main objective was to show that P(4) > 0, but he was unable to achieve this. 

However, many properties of P{A) were obtained and the paper was the first solid step in 

the use of a quantitative approach to the four-colour problem. His polynomial function is 

now known as the chromatic polynomial of the map. 

BirkhofT had hoped that his theory of chromatic polynomials could be built upon and 

that analytic function theory methods could be utilised to achieve a solution to the four

colour problem. A lengthy paper [30], written jointly by Birkhoff and Daniel Clark Lewis, 

Jr. (see Chapter 8) but published in 1946 after Birkhoff's death, attempted to collect into 

one document a significant amount of quantitative work on the colouring of maps and 

graphs. 

4.6 Reducibility 

Birkhoffs pioneering paper The reducibility o/maps [11] was published in the American 

Journal of Mathematics in 1913. In the introduction to the paper, Birkhoff maintained that 

all previous work on the four-colour problem could be stated as in tenns of four 

'reductions' (restrictive conditions), which he stated as: 

If more than three boundary lines meet at any vertex of a map, the coloring of the map may be 

reduced to the coloring of a map of fewer regions. 

If any region of a map is multiply-connected, the coloring of the map may be reduced to the 

coloring of maps of fewer regions. 

I f two or three regions of a map form a multiply-connected region, the coloring of the map may be 

reduced to the coloring of maps of fewer regions. 
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If the map contains any 1-,2-,3- or 4-sided region, the coloring of the map may be reduced to the 

coloring of a map of fewer regions. 

The introduction concluded with the purpose of the paper: 'to show that there exists a 

number of further reductions which may be effected with the aid of the notion of chains 

due to A B Kempe'. 

Earlier, in 1904, Wernicke had defined some unavoidable sets; he proved that a cubic 

map that contains no digon, triangle, or square must contain either two adjacent pentagons 

or a pentagon adjacent to a hexagon. 

In his paper, Birkhoff employed a qualitative approach, developing Kempe's 

arguments by looking at rings of regions to find reducible configurations; that is an 

arrangement of countries that cannot occur in a map comprising a number of countries that 

cannot be coloured with four (or any given number of) colours, while a map with fewer 

countries can be coloured. He referred to the diagram below: 

R 

(0 
BirkhofT considered a ring R of regions that divided a map M into two sets of regions All 

and AI2 that collectively made AI = MI + A/2 + R. The colouring of the maps MI + R and AI2 

+ R can be combined to give a complete colouring of AI providing that the two maps have 

the same colouring on R. Birkhoff applied the method of Kempe-chains to four colourings 

of All + R and AI2 + R and proved that an irreducible map can contain no ring of four 

regions. He also considered rings of five and six regions surrounding a given 

configuration, showing that for five rings the configuration is reducible except where the 

ring encloses a pentagon. He had less success with rings of six regions. 
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Included in his paper was a list of three possible outcomes of the four-colour problem. 

Two of these possibilities stated that 'All maps can be colored in four colors ... with maps 

either including reducible rings or more complex reductions.' The third possibility given 

was that 'There exist maps which can not be colored in four colors', thereby showing a 

little caution. However, his logical evaluation of possible reducible configurations 

provided the basis upon which future mathematicians would continue the work. One of 

these was Philip Franklin (see Chapter 5). Many of these scholars would use Birkhoffs 

theorem on rings of five regions. 

4.7 On the number of ways of colouring a nlap 

In this 1930 paper [26], BirkhofT returned to the subject of chromatic polynomials and as 

with his 1912 paper on chromatic polynomials, he employed the quantitative approach to 

the problem of colouring maps. The paper contains a proof of the theorem: 

If Pn()..) denotes the number of ways of colouring any map of n regions on the sphere in A. (or fewer) 

colors, then for n ~ 3 and At 4 

Then Pn().) ~ 1(A. - 1)(A. - 2)(1- 3)n-3. (1) 

Had he been able to include A. = 4 in this inequality, he would have proved the four colour 

theorem. 

He investigated those maps which had a single central region enclosed by rings with 

increasing numbers of regions. He explained his approach as: 

Consider a map J.,f [of n regions] ... If there is a region a of Af which is multiply connected, form a 

new map Ml by drawing together two boundary lines, one on each side of this region till they touch 

at a point, forming a new vertex. Continue this process until a map N still of n regions but with none 

of its regions multiply connecte<L is obtained. Since the pairs of regions having a common boundary 

are the same for N as for J.,f, any colouring of N furnishes a colouring for J.,I. Hence we need only to 

prove that (1) holds for maps N in which there are no multiply connected regions. 

He then detennined all possible ways to colour the resulting map. 
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From these colourings, he developed polynomials in A, which resulted in the above 

inequality. He concluded the paper with the statement: 

It is deserving of remark that the inequality (1) of the theorem is the best equality of its type, i.e. for 

every pair of numbers A. > 4 and n ~ 3 there is a map M in which 

PnO.) = 1(1- 1)(1- 2)(1- 3)n-3 

Throughout his life Birkhoff carried out a considerable amount of work on chromatic 

polynomials. He always hoped that they would lead to a solution to the four-colour 

problem, but that was not to be. We return to Birkhoff, and his monumental paper of 1946 

[30], in Chapter 8. 

Conclusion 

In the quest for a solution to the four-colour problem, little of major significance was 

accomplished for some time after Birkhoff's initial papers on the subject were published. 

Ho\vever, from the 1920s, some modest but positive contributions were made in America., 

following the work of Veblen and Birkhoff. These were by, amongst others, Franklin, 

Clarence N Reynolds, C E Winn, and Hassler Whitney (see Chapters 5 and 6). A solution 

of the four-colour problem had to wait until the 1970s before a major breakthrough was 

made, but that is outside the scope of this narrative; however there was still a considerable 

amount of work done in America in that period in the field of graph theory. 

Before progressIng further with the history of graph theory in the United States of 

America, the following considers the effects on mathematics in that country by the Great 

War and the depression. 
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4.8 The First World War 

When the USA declared war on Germany on 6 April 1917, it initiated a programme of 

deployment of academics from universities and colleges across the country to assist in the 

war effort. Included in that deployment were nearly two hundred mathematicians who, in 

various capacities, became engaged in war service during World War I. Indeed, some \vere 

to make considerable contributions again in World War II, and to have a significant 

influence on the participation of mathematicians in the second global conflict. 

Of the mathematicians called to arms, some saw active service with the army, navy or 

air force, while others acted as instructors and technical administrators. However, the 

majority were employed in research into war-related technologies. While most \vere 

stationed in North America, some served in France, Italy and Britain. Included among 

them were three who feature in this thesis: 

• E H Moore, aged 55 in 1917, and head of the mathematics department at the 

University of Chicago, became Chairman of the National Research Council (representing 

mathematics), although he remained in Chicago. 

• Oswald Veblen, aged 37 and Professor of Mathematics at Princeton University, 

was commissioned Major in the US army and assigned to research in ordnance at the 

Aberdeen Proving Ground, Maryland. 

• Philip Franklin, aged 19 and an undergraduate at the College of the City of New 

York, was to work at the Aberdeen Proving Grounds alongside Veblen. 

No mentions of G D BirkhofT in connection with the patriotic contribution of 

American mathematicians during the Great War were found during the research for this 

thesis. In particular, his name is not included in the list American Afathematicians in 1Var 

Service published by the American Mathematical Society [31]. Additionally no mention of 

Wernicke in relation to war service has been found but it is possible that he had not 

become a US citizen by the time of America's entry into the war; although whilst he was 
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Professor of Modem Languages at the University of Kentucky in the years 1894-1906 'he 

was in charge of the University's military training, holding a commission as a colonel in 

the Kentucky militia' [13]. 

This involvement of academics in the practical world of war-related technologies 

meant that many mathematicians used only to the pure variety became exposed to more 

applied topics. This had a two-fold benefit; applied mathematics became more highly 

regarded, and some great mathematical minds saw opportunities for significant research in 

that area. 

After the war, life returned to normal for these mathematicians. Most returned to their 

academic positions, while some, like Franklin, completed their degrees. Life was later 

disrupted again with the stock market collapse in 1929, which led to a worldwide 

economic depression and hard times for all. During the Great Depression, there were many 

business failures, including banks, leading to high levels of unemployment and privation 

for a substantial part of the population. At times, unemployment ran at 25 per cent, at a 

time of no unemployment benefit and little in the way of pension plans. 

The effects of this global disaster aided Adolf Hitler in becoming Chancellor of 

Germany in 1933. The economy of Germany, still recovering from the effects of the Great 

War, was in a sorry state and the German people were experiencing a poor existence. The 

Wall Street crash only worsened their plight, so many took the easy option and voted 

overwhelmingly for someone who promised to improve their lot. A considerable majority 

of the German people elected Hitler and thereby opening the door to another global 

conflict. 

In America, as in other countries, the depression affected most academics although 

less so for full professors with their tenure of position and with salaries reasonably 

protected. Although their remuneration was subject to reductions of between 10 to 15 per 

cent around 1932 or 1933, this coincided with a general fall of costs and prices, so those at 
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the higher end of the academic ladder remained relatively well off. This was not the case 

for those on the lower rungs, or those with recently acquired degrees: in the 1930s, too 

many with mathematics doctorates were chasing too few jobs. Both state and central 

governments drastically reduced their funding of establishments of higher education, while 

many colleges and universities were forced to terminate the contracts of some junior staff. 

Research grants became rare, and economies were made in the areas of travel and 

accommodation for attending meetings and conferences, sabbaticals and secretarial 

assistance. Added to this were instances of increased teaching workloads to cover for 

released staff [32]. 

In the 1930s, many mathematicians with doctorates were unemployed, whilst others 

were engaged in positions such as high-school teaching or industry that were not closely 

related to their research (or, indeed, to mathematics). In 1933 a commission set up by the 

Mathematical Association of America reported that between forty and fifty (out of around 

150) new PhDs in mathematics had not found satisfactory employment by the beginning of 

October 1934. 

Even forsaking colleges and universities and attempting to obtain a position at a high 

school was not without its problems. Many heads of high-school mathematics departments 

were wary of bringing in those who were better qualified and had greater mathematical 

knowledge and understanding than themselves, and who may not teach well. Additionally, 

the secretary of the American Mathematical Society, R D G Richardson, reported that 

seventy-five scholars with PhDs in mathematics were unemployed in 1935 [32]. For 

Jewish postgraduates the situation was already being made worse by the prevalent anti

Semitism in America, particularly at some of the top universities. Even if a mathematician 

were fortunate enough to obtain a teaching position at a college, university or high school, 

it was unlikely that an increase in salary would be awarded unless it was attached to a 

promotion that could take some years to achieve. 
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This situation had a number of benefits. One was that with the employment of highly 

qualified mathematicians, the potential level of teaching at high schools could possibly be 

raised. Another was that, as in many institutions at that time, faculty members did not give 

talks outside of their classroom duties, attend seminars or learned meetings, or publish 

papers; but \vith all the young new PhDs and the shortage of jobs came severe competition 

that resulted in an increased number of publications. Another result of the Depression was 

that some scholars were lost to mathematics, most going into industry, and many more 

never reached their full mathematical potential. The whole situation, further aggravated in 

the latter 1930s by the influx of mathematicians from mainly German-speaking countries, 

continued until the USA declared war on Japan and Germany in December 1941. 

Although the effects of the Great War and the Depression were not unique to America, 

the situation was a brake to the academic development of that country. This was 

particularly regrettable, as America had really begun to put in place a higher education 

programme and a research culture only around the beginning of the century. Nevertheless, 

the USA had enough remarkable and resolute mathematicians to continue their increase in 

standing around the world. 
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Chapter 5 

American graph theory bet\veen the ,vars 

In the second decade of the twentieth century, some US mathematicians followed the 

example of Veblen and Birkhoff. One, a postgraduate student of Veblen, was Philip 

Franklin whose doctoral thesis subject was on the four-colour problem. Others were Henry 

Roy Brahana, Clarence Reynolds, C E Winn, and Hassler Whitney (see Chapter 6). 

5.1 Philip Franklin (1898-1965) 

Philip Franklin was a quiet unassuming man who seemed less able or willing than others to 

promote himself, but who nevertheless provided undemonstrative encouragement and 

support to his students. He was loyal to his colleagues and to the faculties to which he was 

appointed. Because he preferred to maintain his privacy, there is less biographical 

information available for him than of other mathematicians in this thesis. 

In 1914, he enrolled at the College of the City of New York and graduated with a BS 

degree in 1918. He undertook postgraduate study at Princeton University where he 

received an MA degree in 1920 and his PhD in 1921. The influence of his supervisor, 

Oswald Veblen, is indicated by his choice of research subject, the four-colour problem. It 

was a time of increasing interest in graph theory and colouring problems in America. 

As mentioned earlier, the First World War interrupted Franklin's undergraduate 

studies, when he spent time in the range-firing section of the Army's Ordnance Proving 

Grounds at Aberdeen. Whilst there, he met another member of Veblen's group, Norbert 

Wiener (1894-1964), the inventor of cybernetics. A child prodigy, Wiener enrolled in 

college at age 11 and obtained his PhD from Harvard at age 18. Wiener believed that 

IIarvard's newly appointed assistant professor, G D Birkhoff, was partly responsible for 

his not getting an appointment claiming that Birkhoff showed him a special antipathy, as a 
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Jew and, ultimately, as a possible rival. Birkhoff was to cross paths with Wiener on two 

more occasions at least, and it can be surmised that Birkhoffs anti-Semitism and fear of a 

possible challenger played no small part in the encounters. Birkhoff was one of a small 

number of Harvard mathematicians in the 1920s who warned Wiener off pursuing the 

then-topical subject of potential theory so as to leave the field clear for other Harvard 

selected scholars. He was also involved in Wiener's being badly treated during an invited 

year-long stay in Gottingen on a Guggenheim grant, a situation that drove Wiener to 

depression and the verge of a nervous breakdown. Wiener eventually found a position in 

the mathematics faculty at the Massachusetts Institute of Technology, which he entered in 

1919 and remained there for forty-five years until his death. 

Wiener was to become Franklin's brother-in-law, as Franklin married Norbert's sister 

Constance who was a mathematician in her own right. During their war service, a fellow 

mathematician was David V Widder, who had a bunk in the same barracks as Franklin and 

Wiener and recalled [1]: 

I learned a lot from these enthusiasts, but at times they inhibited sleep when they talked' 

mathematics far into the night. On one occasion I hid the light bulb, hoping to induce earlier quiet. 

After the war and returned to academic life Franklin presented some of his researches 

to the National Academy of Sciences on 17 November 1920. In his full thesis, he showed 

that each of the configurations listed below is reducible: 

• a pentagon in contact with three pentagons and one hexagon 

• a pentagon surrounded by two pentagons and three hexagons 

• a hexagon surrounded by four pentagons and two hexagons 

• any n-sided polygon in contact with n - 1 pentagons 

Franklin remained at Princeton as an instructor in mathematics for a year after gaining 

his doctorate, and then spent two years at Harvard University as Benjamin Peirce 

Instructor. In 1924, he moved to the Massachusetts Institute of Technology as an instructor 

in mathematics, becoming an assistant professor in 1925 and an associate professor in 
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1930. He became a full professor in 1937, a position he held until his retirement in 1964. 

Even then, he continued to give classes there on a part-time basis. Franklin was influential 

in the introduction of graph theory to MIT as recorded by Dirk J. Struik [2]: 

Since Franklin brought topology to MIT in his "analysis situs" form, and Wiener in his "point-set

Lebesgue" form, we see that it came to the Institute through two brothers-in-law. 

Franklin published the following five papers on graph theory: 

1 The four color problem (1922) 

2 The electric currents in a network (1925) 

3 A six color problem (1934) 

4 Note on the four color problem (1938) 

5 The four color problem (1941) 

5.2 Franklin's graph theory papers 

Paper 1 Tile jOllr color problem 

Following the appearance of his PhD thesis the previous year this paper [3] was published 

in 1922. In it Franklin made use of Kempe chains and developed the work of Wernicke and 

Birkhoff on reducible configurations. This paper was a significant contribution to the idea 

of reducibility as an avenue towards solving the four-colour problem. It was the first in a 

continuing line of papers using this approach over the years. Franklin's development of the 

subject was a model of clarity and precision. 

The counting formula, which is an application of Euler's polyhedron formula (similar 

to that used by Kempe in his 1879 paper - see Chapter 2), that details the numbers of each 

k-sided country in a cubic map is: 

if Ck is the number of k-sided countries in a cubic map, then 

4C2 + 3C3 + 2C4 + Cs - C7 - 2C8 - 3C9 - 4ClO - ... = 12. 
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Franklin used this fonnula to deduce the important result that every cubic graph must 

contain at least one digon, triangle, square, or one of the following: 

• a pentagon adjacent to two other pentagons 

• a pentagon adjacent to a pentagon and a hexagon 

• a pentagon adjacent to two hexagons 

This gives rise to an unavoidable set with nine configurations. Additionally, he proved that 

no 6-vertex region can have three consecutive 5-vertices regions as neighbours. 

Franklin then introduced new reducible configurations including; a pentagon in contact 

with three pentagons and a hexagon; a pentagon surrounded by two pentagons and three 

hexagons; and a hexagon surrounded by four pentagons and two hexagons; and any n-sided 

polygon in contact with n - 1 pentagons. He then deduced the theorem: 

Every map containing 25 or fewer regions can be colored in four colors. 

This was the first increase in the Birkhoffnumber since 1879 (see Chapter 4), when Kempe 

proved that maps of up to twelve regions can be coloured with four colours. Franklin 

continued: 

The question naturally arises whether 25 is the greatest number for which we can prove such a 

theorem as the above on the basis of the reductions already described. 

He was unable to answer this question but went on to say: 

We exhibit a map of 42 regions which satisfies all the properties of irreducible maps given by 

previous writers as well as those derived in this paper 

His example can be coloured in four colours. This paper was an encouraging step along 

the way that others were to follow. 

Paper 2 Tlte electric currents in a network 

Franklin's second graph theory paper [4] had nothing to do with map colouring. It gave a 

shorter and alternative proof to that of Kirchhoff for the calculations of electric currents in a 

circuit in terms of voltages and resistances. As Franklin pointed out, Kirchhoff's paper 'was 
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essentially the first contribution to the study of analysis situs of a linear graph'. 

Additionally, Franklin's proof intended, to 'also bring to light the mathematical nature of 

the result'. It was presented to the American Mathematical Society on 25 October 1924. In 

it he credited Veblen's Cambridge Colloquium Lectures on Analysis Situs for the 

terminology and treatment of linear graphs, using as his example the graph K4 and its 

corresponding matrix that Veblen had included in his own paper. Franklin's approach was 

to consider an electrical network as an oriented linear graph. 

Paper 3 A six color problem 

This paper [5] was published in the 1933-34 issue of the Massachusetts Institute of 

Technology Journal and in it he showed that Heawood's bound for the Klein bottle was 

not attained. The Introduction, foIIowing considerations of Kempe, Heawood and Heffter, 

begins: 

The problem of coloring a particular map in such a way that any two countries contiguous along an 

edge have distinct colors leads to a more general question. For any surface, what is the smallest 

number of colors sufficient to color any map drawn on it? For surfaces topologically equivalent to 

the plane or sphere it is known that four colors are sometimes necessary, and that five will always 

suffice. Whether five are ever actually needed is an open question. 

This paper was presented to the American Mathematical Society and was published in their 

Journal in 1934. In it he reviewed Heawood's fonnula for the number of colours sufficient 

for any map on any surface, and pointed out that for the I-sided (non-orientable) surface of 

characteristic 0 (the Klein bottle), the Heawood number is 7. However Franklin developed 

an argument that resulted in the two following fonnulae: 

Theorem I. Every map on a manifold with K = 0, except that of seven mutually contiguous 

hexagons, is reducible with respect to six colors. 

Theorem II. Every map on a Klein sack is colourable in six colors. 

Franklin further stated that as Heawood's 'formula is incorrect for this surface' then it 

'may also fail in other cases'. 
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Franklin discussed a closed surface (2-dimensional manifold) of characteristic K such 

that the number of regions (a2), edges (al), and vertices (ao) are related by: 

ao-al +a2 =K. 

Paper 4 Note on ti,e jour color problem 

In this paper [6], published in 1938 and read to the American Mathematical Society, 

Franklin extended the Birkhoff number to 31 stating: 

I shall prove that every map on a sphere containing not more that 31 regions can be colored. 

After introducing equations previously developed by Kempe, Birkhoff, Euler, 

Reynolds (see later), and himself (in his paper The four color problem), he postulated that 

any irreducible map must contain at least 32 regions. This was based on his equation 

a= 2+ v/2 

which he derived from work by Kempe, Birkhoff and Euler, where a is the number of 

regions and v is the number of vertices; additionally he stated that "all vertices are triple 

and all polygons have at least five sides". Since a is an integer, Franklin hypothesised that 

if it could be shown that for an irreducible map v must exceed 58, then a ~ 32, and thereby 

satisfies his assumption. To achieve this Franklin explored a number of configurations of 

maps, namely: 

• 

• 

• 

• 

exactly 6 heptagons and no other polygons with more than 7 sides 

more than 6 heptagons and no other polygons with more than 7 sides 

1 octagon, 5 or more heptagons and no other polygons with more than 7 sides 

either 1 polygon with more than 8 sides, or at most 2 polygons with more 

than 7 sides 

• 3 or more polygons with more than 7 sides 

In each case Franklin showed that the number of vertices in all possible configurations 

considered is greater than 58, which confinned that every irreducible map must contain at 
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least 32 regions, and therefore every map on a sphere with at most 31 regions is colourable 

with four colours. 

The final three sections of the paper contained details of four individual reducible 

configurations and a generalisation of a result of Heawood's in his 1936 paper Failures in 

congruences connected with the four-colour map theorem (see Chapter 3). 

Paper 5 Tile four color problem 

This paper [7] was a revised version of a lecture on the four-colour problem that Franklin 

gave at the Galois Institute of Mathematics at Long Island University, New York in 1939. 

It was an expository paper and as was usual from Franklin, the paper was well written and 

lucid. 

His introduction described the topics he intended to cover, providing an appropriate 

historical setting and continued: 

What I propose to do here is to prove the result concerning five colors and illustrate how the 

problem may be simplified to the consideration of regular maps. I shall then define the notion of 

reducible configuration, establish some of the simplest of these, and describe several others. 

He defined regular maps as: 

The vertex of a map is called a triple vertex if three and only three edges meet there. A map all of 

whose vertices are triple, and all of whose regions are simply connected, is called a regular map. 

lIe went on to say that he would mention some alternative problems that were equivalent 

to the four-colour problem, or that would imply that four colours would be sufficient to 

colour maps. lIe also stated that he would introduce 'specialized' and generalised 

theorems including some on 2, 3, 5, 6 and 7 colours. 

He introduced reducibility and stated that if five colours are available then regions of 

two, three, and four sides are reducible. Then using the fact that every regular map must 

contain at least one region of fewer than six sides, he concluded 'that every such map is 
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reducible in five colors'. Then by contradiction, Franklin proved that every map on a 

sphere can be coloured in five colours. 

The paper then investigated reducible configurations when only four colours are 

available and summarised possibilities, giving credit to the originators: 

Among the simpler reducible configurations are non-triple vertices, multiple connected regions, and 

rings of four or fewer regions (Birkhoft). Some other known reducible configurations are: 

(a) A ring of five regions not surrounding a single pentagon (Birkhoft). This is fundamental in the 

proof of most of the other reductions. 

(b) A pentagon adjacent to three consecutive pentagons (Birkhoft). 

(c) A hexagon adjacent to three consecutive pentagons (the writer). 

(d) A heptagon adjacent to four consecutive pentagons (Winn). 

(e) A ring formed of an even number of pentagons and one or two adjacent additional regions 

(Winn). 

(t) A ring formed of an even number of hexagons and zero or more pairs of adjacent pentagons 

surrounding one, two, or three contiguous regions (Errera). 

The reductions (e) and (t) originated with Birkhoff for rings surrounding a single region, without 

the additional regions or pairs of pentagons. The extension to them was due to the writer. Later 

Errera gave the extension for both types indicated in (f), and with certain restrictions, to any such 

rings. Finally Winn removed the restrictions for (e). 

In Section 8 Franklin went on to discuss Special Coloration Theorems saying: 

Several interesting results concerning special coloration have been proved. 

One was the two-colour theorem: 

A necessary and sufficient condition for a map to be coloured in two colours is that all the vertices 

be even. 

A chessboard map is an example. Another special case is the three-colour theorem: 

A necessary and sufficient condition for a regular map to be coloured in at most three colours is that 

each region has an even number of sides. 

These theorems were previously formulated by Kempe. 

lIe then discussed in, Special Classes of Colorable Afaps, classes of maps which can 

be coloured in not more than four colours. Stating the theorem: 
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A regular map with each region of 3n sides can be coloured in four colours. 

giving as an example the icosahedrons; he also gave a result of a less restrictive character: 

A regular map containing at most one region of more than six sides can be coloured 

This was proved by Winn (see later). Franklin continued with Methods Involving Vertices 

and Edges, developing Tait's argument that the colouring of the regions of a regular map 

in four colours is equivalent to the colouring of its edges in three colours. There followed a 

review of Tait's conjecture and Petersen's theorem (see Chapter 3), together with results of 

Kuratowski, Frink, Hamilton, and Whitney. 

Franklin then looked at the problem of colouring volumes in space, noting, as had 

Frederick Guthrie in 1880, that the number of colours required remains unlimited. In later 

sections of the paper he explored Surfaces of Higher Genus - and One-sided Surfaces. 

Franklin concluded with a review of the requirements of IIeawood's Empire problem. 

He also mentioned the chromatic polynomial of Birkhoff and stated: 

In a number of later papers he [Birkhoff] and Whitney have studied the properties of this 

polynomial. with a view to showing that it does not vanish for p = 4. However, while the 

polynomial is quite tractable for other values of p, and its values have even been interpreted for 

fractional values, it has not yet been shown that the polynomial cannot have 4 as a root. 

In his conclusion, Franklin calculated that the probability of being unable to colour a 

map of over thirty-five countries with four colours is less than 1 in 1010
,000, a strong 

argument in favour of the four-colour theorem, but still a long way from a proof. Of this 

paper, D C Lewis (see Chapter 8) wrote [8]: 

In this purely expository paper is given a very comprehensive introduction to the four color problem 

and its generalizations. Practically all of the methods and results at present in the literature are 

touched upon to some extent. A few (particularly those pertaining to various classical results of 

Heawood) are given in considerable detail. 
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5.3 Henry Roy Brahana (1895-1972) 

Another American mathematician who studied map colouring problems around this time 

was Henry Roy Brahana. He attended Dartmouth College in New Hampshire, and 

Princeton University, where he obtained his PhD in 1920 under the supervision of Oswald 

Veblen. After gaining his doctorate he went to the University of Illinois, becoming a 

professor and remaining there until his retirement. 

His contributions to graph theory comprised three papers: A proof of Petersen's 

theorem [9], The four-color problem [10] and Regular maps on an anchor ring [11]. The 

first was written in 1917 during his postgraduate studies at Princeton. It provides a simpler 

proof of Petersen's 1891 theorem (see Chapter 3). It was published at a time when 

American scholars were beginning to take an interest in graph theory and colouring 

problems. The second paper, in 1923, presented the history of the four-colour problem 

from its origin in De Morgan's letter up to the early 1920s. This paper included some 

entirely human, rather than mathematical, observations such as: 

The problem is sti11 unsolved. It has afforded many mathematicians experience and very little else. 

In this survey of the subject Brahana managed to mention most of the hitherto 

mathematicians who had worked on colouring problems, including De Morgan, Cayley, 

Kempe, Tait, Heawood, Wernicke, Petersen, Veblen, Birkhoff, Franklin and Errera. 

The third paper was published in 1926 and studied the property that 'the group of a 

regular map of n k-sided regions is of order kn' and: 

... that any regular map on an anchor ring have triangular, quadrangular or hexagonal regions. In 

none of these cases is there a restriction on the number of regions. I f the regions are triangular they 

appear six at a vertex; if quadrangular, four at a vertex; and if hexagonal, three at a vertex. Since 

two adjacent vertices are joined by a line and two adjacent regions are separated by a line there is a 

sort of duality between the maps of triangles and the maps of hexagons. The quadrangular maps are 

self-dual. 

He therefore only dealt with hexagonal regions and quadrangular regions. 
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In part 1 Brahana assumed the existence of regular maps and used the theory of 

abstract groups to give conditions on n to state the existence of the map. He gave the 

following conditions for these two groups of maps: 

A necessary condition that there exist a regular map of n hexagons is that there exist a group of order 

6n generated by two operators of orders two and three respectively whose product is of order 6. 

A necessary condition that there exist a regular map of n quadrangles is that there exist a group of 

order 4n generated by two operators of orders two and four respectively whose product is of order 4. 

In the second part after stating: 

We have shown that the existence of a regular map of n hexagons or quadrangles implies the 

existence of a group of order 6n or 4n of a certain type 

(These groups being G6n and G4,J. He showed that these conditions were sufficient to 

define the orders of regular maps. In the third part, after giving credit to G A Miller [12] 

for establishing the values of n for groups G6n, Brahana developed the values of n for 

groups G4n• 

In the final part of the paper Brahana showed that there is a 'uniqueness of the map for 

a given group'. He stated that: 

As a result of our definition of regular map it foHows that every such map has a group. 

As a consequence of this statement then each group has a corresponding unique map. 

5.4 Clarencc Nc\vton Reynolds, Jr. (1890-1954) 

c. N. Reynolds undertook his postgraduate studies at Harvard, first supervised by Maxime 

Bacher and then, on Bacher's death, gaining his PhD with a thesis entitled On the zeros of 

solutions of linear differential equations in 1919 under Birkhoff. After leaving Harvard he 

moved to the University of West Virginia, becoming head of the Mathematics Department 

in 1938 and remaining there until his retirement in 1946. 

Although it has not been possible to ascertain how or when he learned of the four

colour problem, possibly through BirkhofT, he became another American who studied 
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colouring problems. Whilst at Harvard, and still possibly under the influence of Birkhoff, 

he published six graph theory papers between 1924 and 1932, five on colouring ([13], [14], 

[15], [16], [17]), and one concerned with circuits on polyhedra [18]. His note [12] was his 

first publication on graph theory and in it he offered a modification to the restrictions on 

the number of regions that can be coloured in four colours, given by Philip Franklin in his 

1922 paper [3] 

His papers [14], [15] and [16] are all concerned with map-colouring problems. In the 

first of these he considers, using analytical methods, the problem of developing the 

previously published geometric reductions of the map-colouring, including those by 

Kempe, BirkhofT and Franklin. He applies the theory of linear difference equations to 

examine the topological properties of irreducible connected configurations of pentagons. 

He shows that the reductions considered in the paper imply that a map on any spherical 

surface that is divided into not more than 27 regions may be coloured in four colours. He 

gave as examples two maps, each comprising 28 countries, both of which can be coloured 

in four colours but are also irreducible. This was to show that there was a correspondence 

between his analytical approach and the geometry considered. This result increased the 

Birkhoff number to 28. 

Papers [15] and [16] gave a considerable amount of historical content of the four

colour problem and mention of those mathematicians who had made contributions to the 

quest for a solution, and particularly those who had contributed to the growing list of 

reducible configurations. The mathematicians mentioned included Euler, Kempe, 

Wernicke, Tait, Petersen, Birkhoff, Brahana, Errera, Frink, and particularly Franklin to 

whose work these two papers owe much. The intention of these papers is, as Reynolds 

states in the Introduction of [15]: 

In this paper we shall develop some methods of so analysing the known geometric reductions of our 

problem as to discover and to prove some of their more important implications. 
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After stating that he would use reductions developed by Kempe, Birkhoff and Franklin, 

together with Errera's reduction of pairs of adjacent pentagons. surrounded by hexagons, he 

continued: 

Our fundamental method will be a systematic study of geometric operations which suffice to build 

any connected configuration of pentagons which exist in an irreducible map. Under these operations 

certain numerical topological characteristics are found to undergo well defined increments. Linear 

relations between these increments imply homogeneous linear difference equations which yield 

certain homogeneous relations between our topological characteristics. 

Secondly we shall prove synthetically certain inequalities between the topological characteristics of 

an irreducible map, making use of the linear relations mentioned above to reduce them to more 

serviceable fonns. 

Applying these inequalities he proved the most important result contained in these papers: 

Any map of a simply connected closed surface containing not more than twenty-seven regions may 

be colored in four colours. 

5.5 Charles Edgar Wino 

C E Winn was yet another American mathematician captivated by colouring problems 

who, between 1937 and 1940, published six papers on the subject. He spent most of his 

career at the Egyptian University in Cairo. In 1936, Winn along with Ismail Ratib, a 

colleague at the university, published a paper [19], presented to the International Congress 

of Mathematics in Oslo in 1936, which developed a generalisation of the Errera's reduction 

of the four-colour problem. In his two papers of 1937, one [20] returned to the four-colour 

problem, whilst the other [21] dealt with reducibility. In the latter paper he proved that a 5-

vertex, all of whose neighbours have degree 6 is reducible, and a 5-vertex with one 5-

neighbour, all the others being 6-vertices, is also reducible. 

Continuing with reducible configurations in a 1938 paper [22], he proved that a 7-

vertex with four consecutive 5-neighbours is reducible. In 1939, he published a paper [23] 

giving the history of the four-colour problem. 
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Perhaps his 1940 paper [24] was his most important contribution to graph theory. In 

this paper he proved that every map on a plane or sphere with 35 or fewer countries is 

colourable in four colours, thereby increasing the Birkhoff number to 36. To do this, he 

employed reductions by Birkhoff, Errera, Franklin, and himself, some of which he 

developed in the paper. As Franklin said in his review of the paper the work [25]: 

... centres around a series of inequalities in which the number of pentagons in the map figure 

predominantly. 

Conclusion 

Whilst the mathematicians mentioned in this chapter made notable contributions to graph 

theory in the period between the two world wars, none of them came near the significance 

to the subject of Hassler Whitney. The next chapter is devoted to his work in graph theory. 
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Chapter 6 

Hassler Whitney 

Hassler Whitney was probably the leading American mathematician of the second quarter 

of the twentieth century; his insightful ideas had considerable influence in many areas of 

mathematics; indeed, he founded and provided the tools for a number of mathematical 

areas, particularly algebraic topology. He came from a long line of distinguished men and 

women, some were privileged, some learned, many highly intelligent, and most of whom 

left tangible legacies of knowledge and achievement (see his biography in Appendix I). 

Whitney made significant contributions to graph theory beginning with his doctorate on 

graph theory and the dozen papers on the subject he presented to the American 

Mathematical Society in the years 1930 to 1934. During the last twenty years of his life 

Whitney devoted considerable time and effort to improving the teaching of mathematics, 

particularly at the elementary school level. 

6.1 Hassler Whitney (1907-1989) 

IIassler Whitney was born on 23 March 1907 in New York City into an extremely 

influential family. He was only 3 years old at the time of his father's death on 5 January 

1911, and only 2 when Simon Newcomb (his maternal grandfather) died, so their direct 

influence was limited. He gained bachelor degrees in physics in 1925 and music in 1929, 

both from Yale University. 

After graduating in physics, he visited Gottingen University; Germany was then 

considered as the foremost centre for mathematics in the world. During his time there he 

decided to change from physics to mathematics. In his response to the Steele Prize in 1985, 

he said 'in physics it seems you have to remember facts, so I gave it up and moved into 
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mathematics'. He became very keen on logic, and developed an interest in graph theory 

and the four-colour problem whilst in Gennany [1]. 

Following his graduation in music, Whitney moved to IIarvard University to 

undertake his doctoral studies. Most authorities name G D Birkhoff as being his supervisor 

during his postgraduate study at Harvard, but in 1984, during an interview [2] conducted 

by Albert Tucker and William Aspray, Whitney remembered it otherwise: 

Tucker: Was it [James W] Alexander that supposedly was your supervisor or [Solomon] Lefschetz 

or [Oswald] Veblen? 

Whitney: It was essentially Alexander. I don't remember if there was a formal requirement that I 

have a supervisor, but he served as one most of the time. 

Two of the most credible authorities on the subject are the American Mathematical Society 

and Birkhoff's son Garrett. The AMS publication The Presidents [3] includes the 

statement: 

The following 38 students have prepared their thesis for the doctorate in association with Professor 

Birkhoffat Princeton, Yale and Harvard U., and Radcliffe C., 1911-1937. 

The list included Hassler Whitney. Garrett Birkhoff's article Mathematics at Harvard, 

1836-1944 [4] stated: 

During the next two decades [from 1912] G 0 Birkhoff would supervise the PhD theses of a 

remarkable series of graduate students. 

He then gave a partial listing that included Hassler Whitney. Whoever his supervisor was, 

Whitney wrote up Birkhofrs 1930 paper on chromatic polynomials for him. 

It is interesting to note that, for a second time during the interview, Whitney failed to 

recall Birkhoff, especially as the time being discussed was when Whitney was carrying out 

research under him. Another part of the interview was: 

Aspray: Which of the faculty members did you work with most closely? 

Whitney: I wouldn't say I worked with anybody really. I saw a lot of various people and chatted 

with them, but never really talked mathematics that much .... 
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Tucker: And indeed you may very well have attended the dedication ceremony, because it was held 

there in October 1931 .... And for that occasion some visiting people came: G 0 BirkhofTwas there, 

G A Bliss was there, and there was a one-day symposium of mathematical talks. 

Whitney: That has entirely gone out of my mind. 

It may be that in old age (he was 77 at the time of the interview) his memory had 

somewhat deteriorated. However, as he provided his interviewers with considerable detail 

from his past, the reason for his lapses of memory regarding his supervisor was perhaps a 

more personal one. Harvard records that BirkhofTwas Whitney's supervisor. 

Another indication of the closeness between Whitney and BirkhofT around this time is 

that Whitney's doctoral thesis, The Coloring DIGraphs, for which he was awarded his PhD 

in 1932, was inspired by Birkhoff's 1912 paper on chromatic polynomials, as was his work 

on the logical expansion [6]. Part of his thesis was published in 1932 as a paper [11] of 

which it was said in [1] 

In this paper he continued his study of chromatic polynomials, showing that the numbers mij (in the 

notation of [9D]) may be obtained by considering only the non-separable subgraphs, instead of the 

much larger set of all subgraphs. - (9D was the reference to [6]). 

Overlapping these studies was a fellowship from the National Research Council, 

which allowed him to go to Princeton University (1931-1933). Several of his subsequent 

graph-theoretical papers were extensions of his postgraduate work and many were written 

during his time at Princeton. 

In 1930, Whitney had become an instructor in mathematics at Harvard and returned to 

that position in 1933, was appointed an assistant professor in 1935, an associate professor 

in 1940 and a full professor in 1946, a position he held until 1952. 

As mentioned earlier, Whitney made unique contributions to many areas of 

mathematical learning. IIis work on graph theory will be commented on later in this 

chapter, but his other studies included combinatorics, characteristic classes, classifying 

spaces, stratifications, manifolds, cohomology, fibre bundles, differential topology, 
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matroids, and geometric integration; in each of these subjects, he advanced knowledge and 

left results for others to build on. Many of these areas of study owe their parentage to 

Whitney and his work set the standards for others entering these fields during the second 

half of the twentieth century. This is certainly true of algebraic topology, as he is regarded 

as one of the recent founders of this subject. 

In manifolds his work was seminal. His paper on this topic was influenced by previous 

work by both Oswald Veblen and J II C Whitehead (1904-1960) a British mathematician 

who was highly regarded for his work in the study of knots, and was a considerable step 

forward in the understanding of manifolds. Whitney was an invited speaker at a Topology 

Congress in Moscow in 1935, where he gave two talks. 

Whitney later claimed that one of his more trivial papers, (On the abstract properties 

of linear independence), became a basis of a 'large new branch of combinatorial theory' of 

which he said in 1985: 'I do not attempt to understand'. Perhaps a little too self

deprecating a remark? Like many other mathematicians, Whitney contributed to the war 

effort in World War II. He served as part of the Applied Mathematics Group at Columbia 

University and was primarily responsible for that part of the programme studying the use 

of rockets in air warfare. His duties included the integration of the work being carried out 

by the groups at Columbia and Northwestern Universities in the general field of fire 

control for airborne rockets. He also carried out liaison work with the Fire Control 

Division of the National Defense Research Committee in rocketry and with numerous 

Anny and Navy units - notably, the Naval Ordnance Test Station, the Dover Anny Air 

Base, the Wright Field Annament Laboratory, the Naval Bureau of Ordnance, and the 

British Air Commission. 

In 1952 he moved to the Institute for Advanced Study, Princeton, as Professor of 

Mathematics, a position he held until his retirement in 1977 when he was made Professor 

Emeritus, holding this position until his death. 
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It was said of Whitney that he was friendly and shy, but with a wry sense of humour, 

and although a little reticent, was straightforward and displayed artlessness. He was a man 

who very noticeably did not get upset easily when things went wrong. This was 

commented upon by those who witnessed such incidents as when he dropped his spectacles 

in a lake, locked the car keys inside his car, or had his wallet stolen by a pickpocket on the 

New York subway. He was tolerant and patient: he did not teach or preach, but rather 

provided suggested avenues of thought and gave opportunities for reflection. He was a man 

who listened to what others had to say. He certainly possessed considerable capacity for 

deep and complex thought whilst perusing mathematical ideas. 

In graph theory, Whitney invented numerous tools that would be of lasting importance 

to graph theory in general, and also to the eventual solution of the four-colour conjecture in 

particular. These included his theory of duality, used to characterise planar graphs, and his 

theory of linear dependence and independence introducing the theory of matroids. 

6.2 Whitney's graph theory papers 

In the early 1930s he wrote some dozen papers on topics within graph theory; these papers 

are reviewed in the following pages in the order of their presentation to the American 

Mathematical Society, the first in February 1930 and the last in September 1934. Some of 

these, such as the third, ninth, and twelfth, are combinatorial in content and deal with 

planarity, whereas others, including the first, second, fourth and eleventh, are related to 

colouring problems. These papers are, with their year of publication: 

1 A theorem on graphs. (1931) 

2 A logical expansion in mathematics. (1932) 

3 Non-separable and planar graphs. (1932) 

4 The coloring of graphs. (1932) 

5 Congruent graphs and the connectivity of graphs. (1932) 

6 A characterization of the closed 2-cell. (1933) 

7 A set of topological invariantsfor graphs. (1933) 
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8 On the classification of graphs. (1933) 

9 Planar graphs. (1933) 

10 2-isomorphic graphs. (1933) 

11 A numerical equivalence of the four color problem. (1937) 

12 On the abstract properties of linear independence. (1935) 

Paper 1 A theorem Oil graphs 

Whitney's first graph-theoretical paper [5] states and proves that every triangulation of a 

graph has a Hamiltonian cycle, and introduces the concept of a dual graph. It was 

presented to the American Mathematical Society on 22 February 1930 and had a notable 

significant result, succinctly put in the book Graph Theory 1736-1936 [1] as: 

He (Whitney) proved that if we have a cubic plane map with no loops, then its dual graph must be 

Hamiltonian. So, in the dual form of the four-colour conjecture - the assertion that every planar 

graph may be coloured with four colours - it is sufficient to consider only Hamiltonian planar 

graphs. This is undoubtedly a deep result, as anyone who tries to understand Whitney's paper will 

agree, and its implications have yet to be exploited fully. 

The paper was in four parts. The first, Results of this paper, stated his two main theorems 

that were proved in the second and third parts. The final part, Further remarks dealt with 

the necessity of a particular assumption in the statement of Theorem II. 

In the first part of the paper, Whitney defined his graphs with vertices as points on a 

plane or sphere and edges as arcs. The surface was thus divided into connected regions 

with elementary polygon circuit boundaries. He then applied a triangulation by dividing 

his graph into circuits of elementary triangles. 

After setting out his definitions, Whitney stated his main theorem: 

Theorem I. Given a planar graph composed of elementary triangles, in which there are no circuits of 

), 2, or 3 edges other than these elementary triangles, there exists a circuit which passes through 

every vertex of the graph. 

(This circuit is a Hamiltonian cycle, although Whitney did not call it that.) The first part 

concluded with a statement of the four-colour problem. 
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In the second part, Whitney proved Theorem I. In the following quotations from the 

paper 'line' means 'path' and 'touch' means 'adjacent'. He first stated a lemma: 

Lemma: Consider a circuit R in a graph of the type considered in Theorem I, together with 

the vertices and the edges on one side, which we shall call the inside. Let A and B be two 

distinct vertices of R, dividing R into the two parts R. and R2, in each of which we include 

both A and B. Suppose 

(1) No pair of vertices of R. touch each other inside R (are joined by an edge which lies inside 

R), and 

(2) Either no pair of vertices of R2 touch each other inside R, or else there is a vertex C in R2 

distinct from A and B, dividing R2 into the two parts R3 and ~, in each of which we 

include C, such that no pair of vertices of R3 and no pair of vertices of ~ touch each other 

inside R. 

Then we can draw a line from A to B, passing only along edges of and inside R, and 

passing through each vertex of and inside R once and only once. 

He took as his basis the circuit R from the graph defined at the beginning of the paper. This 

circuit and the additional circuits defined in the lemma are: 

circuit R is a, b, B, c, d, e, A,/, a 

circuit RJ is A,j, a, b, B, A 

circuit R2 is A, e, d, c, B, A 

Q. 
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Whitney went on to say: 

In brief, if we can divide the circuit R into either two or three parts, such that in any part, including 

end vertices, no pair vertices touch each other inside R, we can draw the required curve from any 

one end vertex to any other end vertex of these parts. 

He also said that with these conditions, there is a Hamiltonian path from A to B in RI. 

Similarly there is a Hamiltonian path from B to A in R2• Combining these Hamiltonian 

paths gives a Hamiltonian cycle. The lemma was proved by assuming that it was true for: 

... all circuits which, with the vertices inside, contain m vertices, m = 3, 4, ... , n-I. It is obvious for 

the case where m = 3. We will prove it for all circuits which, with the vertices inside, contain n 

vertices. Then by mathematical induction, it is true in general. 

The proof of the lemma was divided into four parts 'according to which pairs of 

vertices of the circuit touched inside the circuit'. The proof of the lemma included a 

complicated argument using four defined cases, and Theorem I followed from the 

lemma. 

Whitney went on to state 'a theorem on maps', his Theorem II, which he asserted was 

'deducible immediately' from Theorem I: 

Theorem II. Given a map on the surface of a sphere containing at least three regions in which: 

(AI) The boundary of each region is a single closed curve without multiple point, 

(8) Exactly three boundary lines meet at each vertex, 

(A2) No pair of regions taken together with any boundary lines separating them fonn a multiply 

connected region, 

(AJ) No three regions taken together with any boundary lines separating them fonn a multiply 

connected region, 

we may draw a closed curve which passes through each region of the map once and only once, and 

touches no vertex. 

In the third part Whitney set out his 'Proofs of the theorems on maps', starting by 

showing that any graph of the type being considered has a dual graph, with the following 

properties (a), (fJ) and (y): 
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(a) Each vertex touches at least three other vertices in cyclic order, distinct from each other and 

distinct from the first, 

(fJ) I f a touches b and next c, then b touches c and next 0, 

(y) There are no triangles other than elementary triangles. 

Whitney coupled Theorem II with a lemma, which he also proved in Part 2 of the 

paper, to address what he called a 'conundrum'. This conundrum was 'Suppose a man, 

living in a certain country (state), wishes to visit all the countries about him, but does not 

wish to pass through any country more that once on his voyage' - that is, a closed cycle. 

This is similar to the Icosian Game devised by Hamilton. 

He then applied Theorem I to the dual graph, which gave a closed curve of vertices 

passing through every region of the map. He continued by considering maps of the type 

defined in Theorem II, and concluded, as observed by Kempe in 1879, that if the dual 

graph can be coloured using four colours, then the corresponding map can also be coloured 

with four colours. These comments on the four-colour problem formed a prelude to the 

contents of the second of the papers in this series. 

Paper 2 A logical expansion in mathematics 

In the second paper [6] being considered, the part of which concerned graph-theory, 

Whitney developed the ancient principle of inclusion and exclusion of de Moivre and de 

Montmort (see Appendix 1). He used a quantitative approach to the four-colour problem 

and was influenced by, and developed, work of G 0 BirkhofT. But whereas Birkhofrs 

work had applied to maps, Whitney concentrated on graphs. Additionally, the paper 

showed how the principle of 'logical expansion' might be applied to a number of other 

topics in mathematics. This paper was presented to the American Mathematical Society on 

25 October 1930. 

In the Introduction Whitney defined his basic logical notation, which he used not only 

in this paper but, as he noted, in his yet-to-be published paper Characteristic functions and 
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the algebra of logic [7] (This paper, not reviewed here, was published by the American 

Mathematical Society in 1933 and referred to by Whitney as CF). Whitney took a finite set 

of objects, his example was 'books on a table', comprising those that had or had not a 

property A, his example 'say of being red'. If n is the total number of objects in the set, 

n(A) is the number with property A, and n(A ~ is the number of those not having property A, 

then, clearly, n(A ~ = n - n(A). That is: given a set and a number of properties, how many 

elements of the set have none of these properties. 

The principle of inclusion and exclusion, also known as the sieve principle, provides a 

method to obtain the number of elements in the union of a given group of sets, the size of 

each set and the size of all possible intersections among the sets. The general fonnula for 

two sets is: 

2 
I U Ai I = I A I I + I A2 1- I A I n A21 
;=1 

and for 3 sets is: 

3 
I U Ai I = I A I I + I A2 I + I A31-1 A I n A21-1 Al n A31-1 A2 n A31 + I A I n A2 n A31 
;=1 

Whitney was presenting an alternative way of writing the inclusion-exclusion principle 

so that for a set of objects n that has properties A and B where nCAB) denote the number of 

objects with both properties A and B then the number of objects with neither property is: 

n(A' B~ = n - n(A) - nCB) + nCAB) 

and for a set of objects n that has properties A, B and C the fonnula for the number of 

objects with none of these properties is: 

n(A' B' C~ = n - [n(A) + nCB) + n(C)] + [n(AB) + n(AC) + n(BC)] - [n(ABC)] 

Whitney commented that the extension of these (onnulas to the general case where any 

number of properties was considered is simple. He added that the general case was \vell 

known to logicians and should be better known to mathematicians. (That may well have 
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been the case in 1930, but surely not now in the early years of the twenty-first century.) 

In the second part of this paper, he presented an inductive proof of the general formula 

for the number of objects without certain properties in terms of the numbers of objects with 

several of these properties. 

In part three, The measure of characteristic functions, Whitney related this paper to 

his paper Characteristic functions and the algebra of logic mentioned previously. He 

developed a class of formulas which contains the logical expansion as a special case, 

making use of characteristic functions, saying: 

With each element x of a set of n objects R we associate an integer A(x), either positive, 

negative or zero. We define the measure of A by the equation 

n(A) = L A(x). 
xinR 

Suppose A were one for certain elements of R (which elements form a set A') and zero for 

the rest. Then A is the characteristic function of A', and n(A) is just the number of 

elements in A'. 

In part four, On prime numbers, Whitney used the logical expansion formula to derive 

an expression for the number of integers less than or equal to a given number and not 

divisible by any of a given set of primes. 

In part five, A problem in probabilities, Whitney addressed the probability that no card 

of a second pack of cards to be dealt out on top of a first pack laid out in a row will lie on 

the same card as the first row. The probability is the sum of the first m + 1 terms in the 

series for lie where m is the number of cards in the pack. This is the derangement problem, 

studied earlier by de Moivre and Euler (see Appendix 1). 

In the sixth part, On the number of ways of coloring a graph, he used the logical 

expansion formula to consider a set of objects and pairs of these objects. He then supposed 

that there were a fixed number of colours A available and that these colours be assigned to 

the vertices such that any two vertices which are joined by an arc be of different colour. 

This he called an admissible colouring of the graph and stated that: 
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We wish to find the number Arl(l) of admissible colourings, using A. or fewer colors. 

He then considered a special case of the general problem - the four-colour problem. 

He developed an expression for the number M(l) of ways of colouring a map on a sphere 

with a fixed number of 1 of colours. He stated that the 'graph (which is just a dual graph of 

the map) is constructed by placing a vertex in each region of the map, and joining hvo 

vertices by an arc if the corresponding regions have a common boundary'. By building on 

the work of Birkhoff, Whitney developed the function M, a polynomial function of )., 

which included the terms mij, which were defined as the number of subgraphs of rank i, 

nullity j. The formula is: 

M(l) = L (-li+j mij lV-i, 
iJ 

where V is the number of vertices of the graph, s the number of arcs and p the number of 

connected components of the graph; j is its rank, defined as j = V - p, and j is its nullity 

defined asj = s - i = s - V + p. 

Whitney had developed a simpler method for determining the coefficients of the 

chromatic polynomial than BirkhofT's in [8]. Additionally, although implicit in DirkhofT's 

paper, it was Whitney who specifically drew attention to the fact that the coefficients of the 

polynomial alternate in sign. 

In part 7, The mil in terms of the broken circuits of G, Whitney showed that the 

coefficients m; of M(l), can be found directly in terms of the 'broken circuits' and 

subgraphs of a graph and that mi are related to mij by:. 

;+j 
mi = Ii (-1) mij 

A broken circuit is a cycle with one edge removed. As an example, he considered a graph 

G with vertices a, b, c, d and defined the arcs ab, ac, bc, bd, cd, stipulating that they be in 

that order. lIe listed the cycles in G, in each case listing their edges in the order fixed 

previously. From these cycles he found broken circuits Pi by deleting the last arc of each 

circuit. From these he stated: 

... the number (-1 i m, is the number of subgraphs of G of; arcs which do not contain all the arcs of 
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any broken circuit. 

He developed his argument arriving at the formula: 

M(l) = Li (-Ii lilv-i, 

where V is the number of vertices, and I; is the number of subgraphs with 1; = (_I)i mi. 

Whitney took as an example the complete graph K3 on vertices a, b, c, with arcs ab, 

ac, bc, and one broken circuit: ab, ac. This resulted in one subgraph with no arcs (rno = 1), 

three sub graphs with a single arc (m. = 3), three subgraphs with 2 arcs, one of which 

contains the broken circuit (m2 = 2), and one subgraph of 3 arcs containing the broken 

circuit. With V = 3: 

Af(l) = l3 - 312 + 2A. = l(l - 1 )(,1 - 2). 

At the beginning of part 7 Whitney also gave as an example the following graph G: 

0. 

c .---------------------~ b 

and developed the equation: 

AI(l) = l4 - 513 + 812 
- 4l = l(l - 1 )(l - 2i 

This was an important paper for graph theory, which advanced the quantitative 

approach to the four-colour problem, and included his explicit formula for the values of 

pel). 

Paper 3 Non-separable and planar graphs 

This long and complex paper [9] on planarity was in two parts. The first part, which 

contained the main result of the paper, concerned non-separable graphs, detailed nineteen 
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theorems, and a lemma dealing with separability of graphs. The second part, developed 

from Euler's polyhedra formula, related to duals and planar graphs and included thirteen 

theorems and three lemmas. 

Whitney presented his third paper to the American Mathematical Society on 25 

October 1930, together with his previous paper [6]. A three-page summary of the main 

results of this paper, without proofs, was published by the National Academy of Sciences 

in 1931 [10]. 

In both parts of the paper he utilised the rank, r, R, and nullity, n, N, of graphs, 

together with their associated equations, as aids to many of the fonnulas. Whitney's 

approach was purely combinatorial and concerned abstract graphs only. 

In the first part of the paper he began by setting out the definitions, including those for 

rank and nullity, which he considered fundamental to his work. He then developed the 

decomposition of separable graphs, cycles in graphs and the construction of non-separable 

graphs. The important theorems in this section, which Whitney used to prove the main 

result of the paper, are: 

If G is not non-separable, we say G is separable. Thus, a graph that is not connected is separable. 

Suppose some connected piece G. of G is separable. If II. and III joined at vertex a form GJ, we say 

a is a cut vertex of G. 

Theorem 5. A necessary and sufficient condition that a connected graph be non-separable is that it 

have no cut vertex. 

Theorem 6. Let G be a connected graph containing no l-circuit. A necessary and sufficient 

condition that the vertex a be a cut vertex of G is that there exist two vertices b, c in G, each distinct 

from a, such that every chain from b to c passes through a. 

Theorem 8. A non-separable graph G containing at least two arcs contains no I-circuit and is of 

nullity> O. Each vertex is on at least two arcs. 

Theorem 9. Let G be a graph nullity I containing no isolated vertices, such that the removal of any 

arc reduces the nullity to O. Then G is a circuit. 

Theorem ) 8. If G is a non-separable graph of nullity N > ), we can remove an arc or suspended 

chain from 0 ', leaving a non-separable graph g of nullity N - I. 
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Whitney used the tenn non-separable and as explained in [1]: 

Unfortunately, he used this term in a non-standard way. We say that a graph is non-separable if it 

is connected and cannot be disconnected by removing a single vertex (a cut vertex). In Whitney's 

sense, a 'component' is a maximal non-separable part ofa graph. Nowadays we call this a block. 

In the second part, Whitney characterised planar graphs as those with a dual. This dual 

was not the usual geometrical dual, but one defined in tenns of cycles and cutsets. lIe said 

that 'We used fonnerly the word homeomorphic' and stated that 'Throughout this section 

R, R', r, r', etc., will stand for the ranks of G, G, H, H, etc. respectively, with similar 

definitions for V, E, P, N. (V = number of vertices, E = number of edges, P = number of 

connected pieces, N = nullity). 

Whitney pointed out that: 

Up to now, we have been considering abstract graphs alone. However, the definition of a planar 

graph is topological in character. This section may be considered as an application of the theory of 

abstract graphs to the theory of topological graphs'. 

His Definitions included: 

A topological graph is called planar if it can be mapped in a (I, 1) continuous manner on a sphere 

(or a plane) 

and the following theorem was included in this section: 

Theorem 29. A necessary and sufficient condition that a graph be planar is that it have a dual. 

Whitney developed relationships between a map formed by a planar graph G drawn in 

the plane and a dual map, formed by the geometrical dual G*. Also if G was non-separable 

then G** = G; this result does not hold if G has more than one 'component'. From this, it 

can be stated that a graph is planar if and only if it has what is now known as a JVhitney 

dual. A Whitney dual is a combinatorial definition of abstract duality which concerns the 

cycles and cutsets of two graphs and satisfies the requirements of a dual graph that is 

planar. Because of this result, Whitney said that for the rest of the paper, the word 'graphs' 

could apply 'equally well to either abstract or topological graphs'. 
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Whitney concluded the paper with a proof of Euler's fonnula which he derived from 

rank and nullity, similar to the method used by Veblen (see Chapter 4). Whitney stated: 

Map any connected planar graph G on a sphere and constructed its connected dual G' as described 

in the proof of Theorem 29. 

With Fbeing the number of regions (or faces) and E the number of arcs of the planar graph 

G and using the rank R and nullity N of both graphs he developed the fonnulas: 

R' = N, R = V-I, R'= V' -1, V' = F. 

Hence V - E + F = R + 1 - E + N + 1 = 2, which is Euler's fonnula. 

Paper 4 Tile coloring of graphs 

This paper [11], which dealt with chromatic polynomials, was a revised versIon of 

Whitney's doctoral thesis and was presented to the American Mathematical Society on 25 

October 1930, the same day that he presented his two previous papers. Like the previous 

paper, a summary of the main results of this paper was also published by the National 

Academy of Sciences in 1931 [12]. 

This new paper, in which Whitney again worked on chromatic polynomials, 

comprised an introduction and five parts. It studied the coefficients mij that appear in the 

chromatic polynomial fonnulas for M(l), and gave a method of calculating them. It was in 

this paper that he demonstrated the important concept that in order to find the numbers mij, 

""here i is the rank and j the nUllity, it was necessary to consider only non-separable 

subgraphs, rather than the set of all subgraphs. 

The Introduction began by referring to the fonnulas for Af(l), the number of \vays of 

colouring a graph with A. colours, contained in his logical expansion paper [6]. It concluded 

by referring to the four-colour problem and stating the theorem: 

If G is a planar graph and G' is a dual of G, and mij and m'ij are their numbers, then m'ij = mR -j. N i 

- this followed from the definition of dual graphs in his paper on planar graphs [9]. He 

then considered: 
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... the class of graph G with numbers mij for which the above numbers m'ij are also the numbers for 

the graph G'; this class then includes all planar graphs. 

and continued with the proposal that implied the four-colour theorem for the class of 

graphs G: 

For any graph G of the above class, L (_l)i+j mij 4V
-
i > 0 mOl -t o. 

i,j 

Whitney stated: 

This proposition is stronger than the four color map theorem; for there are graphs in the above class 

which are not planar. 

In the first part of this paper, The polynomial M(A.), Whitney made use of his work in 

[6] and paper [7] which he referred to as CF. He explored the polynomial M(A.) in terms of 

the number miJ and calculated the sum of all the coefficients for a particular sub graph G 

which contains i arcs (i being the rank of G). 

In the second part, miJ in terms of non-separable subgraphs, Whitney showed that 

when calculating miJ it is not necessary to count all the subgraphs of a graph, but simply to 

count the non-separable subgraphs. Whitney defined a non-separable sub graph as: 

We say a subgraph is non-separable if it becomes so when any isolated vertices there may be are 

dropped out. This operation alters neither the rank nor the nullity of the subgraph. 

In the third part, The transformation T, Whitney addresses the theory of algebraic 

transformations and details two versions of the transformations, the first to calculate for a 

single subscript i (rank) and the second for two subscripts ij (rank and nullity). The 

transformations are: 

mj = I Ilk! R;k (j) and my = I 11k! R/ (j), 
k k 

where Rl (j) is the sum of all terms formed by multiplying together k numbers .ht,};2' ... , .hk 

whose subscripts (which need not be distinct) add up to i, and R/ is defined as R/ (j) is 

defined, \vith the extra condition that the first subscripts add up to i, and the second ones 

add up toj. 
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In the fourth part he allows the elements that were used to develop mi in the previous 

part to be graphs, and again sets out the procedure for calculating mij. 

In part five, Calculation of the !if and mij, Whitney states that Nij is the number of non

separable subgraphs of rank i, nullity j and includes diagrams of all the non-separable 

graphs with ranks 1 to 4. He also details the calculations of values !if and mij for some of 

these graphs. 

The paper concludes with a short discussion on regular maps, in relation to the four

colour problem, where he defines regular maps as: 

(l) All the vertices are triple. 

(2) There are no rings of one, two, three or four regions; that is, no set of four or fewer regions, 

together with all boundary lines separating them, form a multiply connected region. 

(3) There are no regions of five regions except about a single region. 

He developed many specific values for jij and mij and ended with a calculation of the 

polynomial M(A) for the dodecahedron graph, stating: 

The regular map of the fewest number of regions is the dodecahedron, containing twelve regions, each 

touching five others. For this map 

V= 12, E = 12, T= 20, Qs = 12, R6 = 40. 

We can thus calculate the first six coefficients. The whole polynomial, which was calculated by direct 

means, is 

AI(l) = l(l - I )(l - 2)(l - 3)[l8 - 24l' + 26016 
- 1670ls + 699914 

- 1969813 + 3640812 
- 40240l + 

20170]. 

Here V is the number of regions in the map (number of vertices in the dual graph); E = 3( V 

- 2), the number of boundary lines (number of arcs); T = 2( V - 2), the number of vertices 

(=N21 ); Q5 is the number of 5-sided regions (number of vertices of degree five) and R6 is 

the number of rings of six regions, no two having a common boundary unless they are 

adjacent in the ring (number of 6-circuits in which only vertices adjacent in the circuit are 

joined by arcs in the graph): 
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This was a lengthy and significant paper which advanced the algebraic approach to the 

four-colour problem. 

Paper 5 Congruent graphs and tlte connectivity of graphs 

The opening paragraph of this paper [13], presented to the American Mathematical 

Society, on 28 February 1931, gives a succinct description of its contents: 

We give here conditions that two graphs be congruent and some theorems on the connectivity of 

graphs, and we conclude with some applications of dual graphs. 

For the definition of congruent graphs Whitney made reference to a previous paper on 

planar graphs [9] which included: 

Congruent graphs. We introduce the following 

Definitions. Given two graphs G and Gr
, if we can rename the vertices and arcs of one, giving 

distinct vertices and distinct arcs different names, so that it becomes identical with the other, we say 

the two graphs are congruent. 

He stated that 'The definitions and results' of his paper [9] 'will be made use of 

constantly' and Whitney used the formulas contained in that paper to develop the 

proofs in this paper. 

In the first section, Congruent graphs, Whitney considered graphs with no I-cycles 

(loops) or 2-cycles (multiple arcs) i.e. simple graphs, and stated the theorem: 

Theorem 1. Let G and G' be two connected graphs, neither of which consists of three arcs of the 

form ab, ac, ad. Let there be a 1-1 correspondence between their arcs so that to any two arcs having 

a common vertex in one graph correspond two arcs having a common vertex in the other. Then G 

and G' are congruent. 

His proof examined exhaustively the different configurations of the defined graph, dealing 

with both non-separable and separable graphs. 

He then looked at the congruency of two triply-connected graphs, again with a 1-1 

correspondence between their arcs, but this time the correspondence was between sets of 

arcs forming a cycle, and stated the theorem: 
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Theorem 2. Let G and G' be two triply connected graphs, and let there be a 1-1 correspondence 

between their arcs so that to any set of arcs forming a circuit in one graph, corresponds a set of arcs 

forming a circuit in the other. Then G and G' are congruent. 

At the conclusion of the proof of Theorem 2 he pointed out that the theorem does not 

hold for all non-separable graphs, and referred to an example given in his paper on logical 

expansion [6]. Theorem 3 also dealt \vith the congruency of two triply-connected graphs 

with a 1-1 correspondence between their arcs, but this time it was between arcs that form a 

subgraph of nullity 1. Whitney used Theorem 9 of [6] to prove that circuits correspond to 

circuits and therefore the above-mentioned Theorem 2 applies. 

In the second section., The connectivity of graphs, Whitney let his graphs contain 2-

cycles, but not I-cycles. In this section, Theorem 4 gives conditions for a graph to be n

tuply connected., while Theorem 5 characterised graphs that are not so connected. Theorem 

6 gives the conditions for a n-tuply connected graph to be (n - 1 )-tuply connected, by 

deleting a vertex. 

In the last section of the paper, Applications to dual graphs, Whitney proved the 

requirements for two graphs to be dual graphs in terms of their connectivity, and in 

Theorem 9 he explored their connectivity. Theorem 10 proved that a dual G' of a triply

connected graph G containing no I-cycles or 2-cycles, has similar properties, and Theorem 

11 went on to prove that a triply-connected planar graph, containing no I-cycles or 2-

cycles, has a unique dual. 

Paper 6 A characterization of the closed 2-cell 

This paper [14] is concerned with the classification of the 2-cell, a set homeomorphic to a 

closed disc. It was presented to the American Mathematical Society on 31 October 1931, 

although it was not published in their Transactions until 1933. Because this paper is 

combinatorial in content it has been included in this thesis. 
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The fundamental theorem of the paper is his Theorem I. As Whitney stated 'The 

fundamental theorem is partly of a combinatorial and partly of a continuity nature': 

Theorem I. Let R be a continuous curve containing the simple closed curve J, such that 

(1) J is irreducibly homologous to zero in R. and 

(2) Ify is an arc with just its two end points a and b on J, then R-y is not connected. 

Let R' and J' be defined similarly. Then Rand R' are homeomorphic, with J corresponding with J'. 

That R is a closed 2-cell then follows immediately from the following theorem. We note that J 

corresponds with the circle, that is, J is the boundary of R. 

Whitney provided an extremely detailed proof of this theorem I, which included the 

posing and solving of nineteen lemmas. He also provided a shorter proof of his Theorem 

II, which utilises the Jordan Theorem, and read: 

Theorem II. If I is a circle in the plane and S is I with its interior, then S and I satisfy the conditions 

prescribed for R and J in the above theorem. [Theorem I] 

Section 4 included, as Whitney said in the Introduction, 'The exact meanIng of 

Condition (1) of Theorem I is given in 4': 

Suppose the closed set R contains the simple closed curve J. If for every e>O there is a 0 >0 such 

that any (0, I)-cycle on J is e-O in R, then we say that J - 0 in R. If J is -0 in R but is not -0 in any 

proper closed subset of R containing J, then we say that J is irreducibly -0 in R. 

Paper 7 A set of topological invariants for graphs 

This paper [15] dealt with topological graphs and gave 'a set of topological invariants 

which come from a set of miJ defined by the author' from [6]. The paper, presented by 

Whitney to the American Mathematical Society on 28 December 1931, was brief and made 

numerous references to four of the previously considered papers [6, 9, 11, 13]. 

In his Introduction he defined a topological graph and, by considering arcs and 

vertices as abstract elements, he developed an abstract graph. A topological graph as 

defined by Whitney, 'is a point set consisting of a finite number of points, or vertices, and 

a finite number of open arcs (topological images of an open segment) which do not 
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intersect, joining pairs of these points'. He went on to say 'If we consider the vertices and 

arcs as abstract elements instead of as point sets, and name the two vertices which each arc 

joins, we obtain the corresponding abstract graph G'. 

The paper had four further parts. The first, The invariants, Whitney introduced as: 

Given the table of the sum mlj for a graph G, if we sum over elements in each row with alternating 

signs, we get the mi, the coefficients of the polynomial Af('() for the number of ways of coloring G 

in.( colors. Suppose, instead, we sum over the columns; we get a set of numbers P, which we shall 

show are topological invariants of the graph. The numbers are, ifG is of rank Rand nulJity N: 

Pi = L (-IY+jmR). N;· 
} 

The number of non-zero numbers Pi (if there are any) equals one plus the nulljty N of G. For a graph with no 

arcs, Po = I, andp; = 0, i i-= O. 

The following section, Broken cut sets of arcs, contained a proof that '(_l)ip; is the 

number of subgraphs of i arcs of G which do not contain all the arcs of any broken cut set 

of arcs'. 

The next part, Separable graphs, demonstrated how to calculate the numbers Pi for a 

graph G that is the union of two graphs, G' and G" with at most a single common vertex. In 

the last section, Completeness of the invariants, Whitney proved that if two graphs are 2-

homeomorphic, then the corresponding values of Pi are equal. In this paper, after the \\'ords 

'2-homeomorphic' Whitney wrote '(see the following paper)', which is paper [16] and the 

comments on this paper that follow will include Whitney's definitions of isomorphic and 

homeomorphic graphs. 

Paper 8 On tile classification of graphs 

This paper built on the work of Ronald M Foster, an employee of the Dell Telephone 

Company, in his 1932 paper on the graph theory underlying electrical networks [17]. It \vas 

presented to the American Afathematical Society under the title Basic graphs on 28 

December 1931, although when published it was entitled On the classification of graphs 

[16]. 
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Whitney's opening paragraph succinctly outlined the contents of the paper: 

Introduction. R M Foster has given an enumeration of graphs, for use in electrical theory. He uses 

two distinct methods, classifying the graphs according to their nullity, and according to their rank. 

In either case, only a certain class of graphs is listed; the remaining graphs are easily constructed 

from these. In the present paper we give theorems sufficient to put the first method of classification 

on a firm foundation. 

Whitney went on to say that the 'manner of constructing the graphs, and in particular, the 

important notation of basic graphs, is due to Foster', but 'the definition of elementary 

graphs and the proofs are, in general, due to the author' [Whitney]. 

Whitney stated that the terminology of electrical circuit theory would be used: ab, bc 

are in series if vertex b is on no other arc, and ab, ab are in parallel. In electrical 

terminology, for two resistors RI and R2 in series, with the topological vertices a, b and c, 

this is: 

And for two resistors RI and R2 in parallel, with the topological vertices a and b, this is: 

R, 

He then listed four types of operations on graphs: 

(la) Replace an arc ab by two arcs ac and cb in series (c being a new vertex). 

(I b) Replace two arcs ac and cb in series by a single arc ab, dropping out vertex c. 

In these operations a and b need not be distinct. 

(2) Break the graph at a single vertex into two connected pieces. or join two connected pieces at a 

single vertex. 

By operations of this sort we can make one graph isomorphic with another if its components are 

respectively isomorphic with the components of the other. 
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(3) Suppose G = HI + H2• where HI and H2 have vertices a and b and no others in common, and a 

and b are connected in both HI and H2• If aCh aC2 • •..• aCm. and bdJ, bdl • ... , bdn are the arcs of HI 

on a and b respectively (there is at least one arc in each set). replace these by the arcs bCh hC2 • ..• , 

hCm. adh ad2 • •.• , adn• We shall say simply, tum HI around at the vertices a and h. 

From these he developed the relationships between two graphs if one is formed from 

another by using, at most the operations listed in the left-hand column belo\v; with the 

relationship entered in the right-hand column: 

no operations isomorphic 

(2) I-isomorphic 

(2) and (3) 2-isomorph ic 

(Ia) and (1 b) homeomorphic 

(1 a), (Ib) and (2) I-homeomorphic 

(Ia), (Ib), (2) and (3) 2-homeomorphic 

Using these operations, Whitney proved a number of theorems classifying elementary 

graphs, according to their nullity and according to their rank. In the penultimate part of his 

paper, Whitney outlined a standard method for the construction of graphs, which he 

categorised as follows: 

(I) The basic graphs of nullities 1 and 2 are known. We fonn successively the basic graphs of 

nullities 3, 4, ...• as in Theorem 13. 

(2) From the basic graphs of a certain nUllity, we fonn all elementary graphs of the same nullity 

as in Theorem 11. Any non-separable graph we can fonn thus is elementary (Theorem 10). A given 

elementary graph may, however. be derived from different basic graphs. If we wish, we can forget 

all graphs formed which have 2-circuits (arcs in paralle)). 

(3) Taking all elementary graphs of as given nullity. we fonn all non-separable graphs of the 

same nullity by operations first of type (Ia) and then of type (3) (Theorem 3). If we left out 

elementary graphs with 2-circuits and wish to include graphs with 2-circuits now. we must add arcs 

in parallel with various arcs of non-separable graphs with lesser nullity. We fonn finally any graph 

by taking non-separable graphs and letting vertices coalesce in such a manner that the graphs are the 

components of the final graph. 

In the final part of the paper Whitney discussed classifying graphs by nullity. 
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Paper 9 Planar graphs 

In this seminal paper [18] dealing with planar dual graphs Whitney gave a converse 

argument to that in his paper Non-separable and planar graphs [9] regarding the definition 

of planar graphs involving the graphs Ks and K3,3. It was the third paper that Whitney 

presented to the American Mathematical Society on 28 December 1931, but it was not 

published until 1933. 

Kuratowski's theorem stated that, in a topological way, a graph is planar if it does not 

contain either GI (Ks) or G2 (K3;3). Therefore, this argument may be used to provide an 

alternative proof that a graph that has a Whitney dual must be planar. In this current paper, 

Whitney reversed the argument by proving that a graph not containing Ks or K3,3 must have 

a \Vhitney dual. 

The main purpose of the paper was to give a proof of Kuratowski's theorem: 

Theorem 12. A necessary and sufficient condition that a graph have a dual is that it contain neither 

of the two following types of graphs as a subgraph: 

K •. This graph is formed by taking five vertices, and joining each two by an arc or suspended chain. 

K2• This graph is formed by taking two sets of three vertices each, and joining each vertex in one set 

to each vertex in the other set by an arc or suspended chain. 

Ks (Whitney's KI ) 

(Kuratowski's GI ) 

K3,3 (Whitney's K2) 
(Kuratowski's G2) 

To\vards the end of his paper, Non-separable and planar graphs [9] Whitney had 

included the following theorem, acknowledging that the theorem had been proved 

previously by Kuratowski [19]: 
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Theorem 31. A necessary and sufficient condition that a graph be planar is that it contain neither of 

the two following types of graphs as a subgraph: 

G •. This graph is formed by taking five vertices a, b, c, d, e, and joining each pair by an arc or 

suspended chain. 

G2• This graph is formed by taking two sets of three vertices, a, b, c, and d, e, f, and joining each 

vertex in one set to each vertex in the other set by an arc or suspended chain. 

This alternative proof provided a combinatorial rather than a topological 

characterisation of planarity and of Kuratowski's theorem. Additionally Kuratowski's 

theorem implies that every non-planar graph contains at least one subgraph homeomorphic 

to Ks or K3,3. Homeomorphic is defined in [1] as: 

If G is a given graph and H is a graph derived from it by subdividing some of the edges, then H is 

said to be a subdivision of G. Any two subdivisions of G are equivalent from a topological point of 

view, and they are said to be homeomorphic to each other, and to G. 

Although Kuratowski's paper was published in 1930, his results had been submitted to 

the Polish Mathematical Society in June 1929. At the same time two other mathematicians 

had been independently carrying out similar work. They were the Americans Orrin Frink 

(1901-1988) and Paul Althaus Smithl: an abstract of their paper was published in the 

Bulletin oj the American Afathematical Society [20], indicating that it had been received on 

10 February 1930, but as their paper was too similar in content and in its proof, it was 

rejected by the Transactions of the Society. 

In his paper Whitney called upon many definitions, arguments, and theorems from two 

of his earlier papers [9] and [13], and from [21] (the next paper), some parts of which were 

used to prove Theorem 2. Theorem 4 defined a correspondence, using Theorem 9 from 

paper [9], in dual graphs between cycles in one graph and cut sets in the other. Theorem 9 

deals with the relationship of vertices on a cycle in dual graphs with chains consisting of 

distinct vertices, whilst Theorem 11 gives conditions for preserving the correspondence 

between arcs in dual graphs. 

1 The author has been unable to ascertain his dates of birth and death, although an unconfirmed source gave 
his year of death as 1980. 
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In fact, Whitney describes the content of the paper thus: 

In § 1 we show tha4 to detennine whether two graphs are duals or n04 it is not necessary to regard 

all their subgraphs, but merely a part of them. This section will not be used in the sequel. In § 2 cut 

sets of arcs are discussed. In §§ 3, 4, and 5 some properties of planar graphs are described which 

correspond to common point set theorems in the plane. The rest of the paper is devoted to the proof 

of Theorem 12.ln this proof we need only Theorems 4, 9, and 11. 

Paper 10 2-isomorpltic graplts 

On 30 August 1932 Whitney presented this paper [21], to the American Mathematical 

Society, and published it in the same issue of the American Journal of Afathematics, and 

directly followed his earlier paper [16]. In this new relatively short paper he made 

reference and use of the previous paper [18], although as previously noted this paper, 

presented in 1931, was not published until 1933 along with his papers [6,9, 11, 13]. 

This paper contained a lengthy detailed proof of Whitney's theorem: 

Theorem: If there is a 1-1 correspondence between the arcs of the two graphs G and G' so that 

circuits correspond to circuits, then the graphs are strictly 2-isomorphic. 

This was described by Tutte as [22]: 

This is Whitney's famous theorem that a 3-connected planar graph can be drawn on the spherc in 

essentially only one way. 

Paper 11 A numerical equivalent to lite/our color map problem 

On 26 December 1933, Whitney presented this paper [23] to the American Mathematical 

Society. It began with Whitney pointing out in the Introduction the 'essential difficulty of 

the problem' (referring to the four-colour problem) and going on to say that the difficulty 

is because the problem involves two disparate types of questions, described as: 

What kind of a configuration is a map, and what kind of configuration can be colored in four colors; 

the first problem is geometric in character, and the second, combinatorial. 
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In this paper he established the method of studying the four-colour problem as a 

numerical problem. The intention of the paper was to develop a statement that is entirely 

combinatorial but which is equivalent to the four-colour conjecture. 

In Section 2, TIle Problems, Whitney defined the problems: 

I. A map is colored by assigning to each region a color in such a manner that no two regions with a 

common boundary are of the same color. 

Problem I. Given any map on the surface of a sphere, is it always possible to color it in four colors? 

II. Draw a regular polygon; divide the inside into triangles in any manner by drawing non-

intersecting diagonals; divide the outside into circular triangles in any manncr by drawing non-

intersection arcs (which we also call diagonals). The result we shall call a polygonal configuration. 

It is colored by assigning to each vertex of the polygon a color in such a manner that two vertices 

which are joined by a line, either a side of the polygon or a diagonal, are of the same color. 

Problem II. Can all polygonal configurations be colored in four colors? 

III Let (Ph ql), (P2, q2), ... , (Ps,qJ) be pairs of integers. We shall say they form an n-admissible sct 

of pairs if: 

I ~p" pj+2~q" q, ~n (i= I, ... ,s) 

Pi < Pj < qi < qj is true for no ; andj 

We say the set of pairs is complete if it is impossible to add a new pair of integers in such a manner 

that the above relations still hold Any two complete n-admissible sets have the same number of 

pairs. 

Problem III. Let (PI, ql),"" (Ps, qs) and (PI', ql'), ••. , (P.', qs') be any two complete n-admissible sets 

of pairs. Is it always possible to find numbers bo, ••• , b" each equal to I, 2, 3 or 4, so that 

(i = 0, ... , n-I) 

(i = I, ... ,s) 

IV. Consider the sum a. + a2 + ... an. If we put in as many pairs of parentheses as possible, we will 

have defined a definite manner of evaluating the sum. Such a sum with parentheses we call an 

arranged sum. For instance, a + b + c may be arranged as (a + b) + c or a + (b + c); a + b + c + d 

may be arranged as «a + b) + c) + d, (a + (b + c» + d, (a + b) + (c + d). a + «b + c) + d), or a + (b 

+ (c + d). The number aJ, ... , a" are the terms of the sum. Any number formed in evaluating the 

sum is a partial sum. Thus the partial sum of(3 + 7) + (l + 4) arc 3, 7, 10 1,4,5, 15. 
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Problem IV. Ifan n-fold sum (any n) is expressed in any two ways as an arranged sum, is it always 

possible to choose the terms of the sum as integers so that no partial sum of either arranged sum is 

divisible by 4? 

In particular, no term may be divisible by 4; we may choose each term as 1,2 or 3. 

He outlined his approach which was to define the four-colour conjecture as Problem I 

and then prove that Problem I is equivalent to his Problem II, then repeat the process for 

Problems II and III and finally for Problems III and IV. 

Problem IV is concerned with arrangements. For example, for the sum al + a2 + a3 + 

a4 with brackets added is called an arranged sum and following the nonnal convention that 

they be so positioned that no more than two tenns are added at a time. For example, al + a2 

+ a3 + a4 may be written as {[(al + a2) + a3] + a4}, with an example of a partial sum being 

(al + a2). 

The remainder of the paper covers the proofs of his equivalences, following which 

Whitney gave examples of colouring maps and detailed a calculation of the probability that 

there exists a map of more than N regions that cannot be coloured in four colours. He 

concluded that for N sufficiently large, this probability is very small, echoing the work 

done earlier by Hea\vood. 

Paper 12 On the abstract properties of lin ear dependence 

In this paper [24], Whitney introduced the concept of a matroid. The paper was presented 

to the American Mathematical Society in September 1934. In the foreword to a book by 

Tutte [25], 0 R Fulkerson later wrote: 

Matroid theory began with Hassler Whitney's basic paper "On the abstract properties of linear 

dependencen 
••• and has since been developed most intensively by the present author, W T Tutte, 

who has obtained deep results in the theory. As the name suggests, a matroid is something like a 

matrix. The concept in fact generalizes that of "matrix"; in particular, a matroid may be regarded as 

a generalizing ofa graph or network. 
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From his work on graph theory Whitney concluded that there are analogies behveen 

the concepts of independence and rank for graphs and those of linear independence and 

dimension in vector spaces. In this paper he introduced the idea of a matroid to provide a 

framework to explain these analogies. He gave a number of equivalent definitions of a 

matroid; the following one, in terms of 'independent sets' and given in the Introduction, 

reads: 

Let us call a system obeying (a) and (b) a "matroid". (a) and (b) being

(a) Any subset of an independent set is independent 

(b) If Np and NP+I are independent sets of p and p + 1 columns respectively, then Np together 

with some column of NP+I fonns an independent set of p + 1 columns. 

If E is a non-empty finite set, and if I is a non-empty collection of .7 subsets of E fulfilling 

the above conditions (and called independent sets), then the matroid AI = (£, l) is said to be 

defined in terms of its independent sets. The rank r(A) of a subset A of E is the number of 

elements in the largest independent set contained in A. 

Matroids may also be defined in tenns of circuits thereby generating properties of 

cycles in graphs. If E is a non-empty finite set and C is a non-empty collection of subsets 

of E fulfilling the postulates given below (and called circuits) the matroid AI = (£, C) is 

said to be defined in terms of its circuits. Whitney wrote: 

Postulates for circuits. Let AI be a set of elements and let each subset either be or not be a "circuit". 

We assume: 

(C I ) No proper subset of a circuit is a circuit. 

(C2) If PI and P2 are circuits, el is in both PI and P2, and e2 is in PI but not in P2, then there is a 

circuit P3 in PI + P2 containing e2 but not el_ 

This paper, although not initially recognised as seminal [26], became a significant 

contribution to the study of graph theory and other areas of combinatorics and was taken 

up by others in the 1950s, including Tutte (see Chapter 9). 
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These twelve papers, all written within five years, were an enormous achievement and an 

important advance in graph theory. Of these papers, Tutte later said [27]: 

The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an 

excellent textbook in English had they been collected and published as such. 

6.3 Saunders MacLane (1909-2005) 

Around this time, another American mathematician, Sanders Mac Lane, who became a 

colleague of Birkhoff at Harvard and who knew and corresponded with Whitney, 

published three papers in graph theory. The first was entitled Some unique separation 

theorems for graphs [28] in 1935. This paper explores methods of uniquely defining the 

separation of graphs by chains (as defined by Whitney in his papers on planar graphs), and 

was presented to the American Mathematical Society on 7 September 1934. The paper 

mentions and builds on the work of R M Foster and Hassler Whitney. In the concluding 

paragraph Mac Lane states that the techniques he described can be used to study the 

separation of graphs by cycles which he did in his two later papers published in 1937. One 

\vas entitled A combinatorial condition for planar graphs [29] and the other A structural 

characterization of planar combinatorial graphs [30]. 

In his second paper [29], Mac Lane provided another condition for graphs to be planar. 

It \vas presented to the American Mathematical Society on 11 April 1936. He mentioned 

Kuratowski's condition for a topological graph to be planar, i. e., 'that it can be mapped in 

a 1-1 continuous manner on the plane, if and only if it contains no sub graph having either 

of t\\'O specific forms' [19] and Whitney's definition that a graph is planar if and only if it 

has a combinatorial dual [9]. MacLane's condition is contained in his Theorem I: 

Theorem I. A combinatorial graph is planar if and only if the graph contains a complete set of 

circuits such that no arc appears in more than two of these circuits. 

Paper [30] also dealt with planar graphs and with cycles. It was presented to the 

American Mathematical Society on 30 December 1936. The paper began by reiterating the 
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\vork of Kuratowski and Whitney and himself in the preVIOUS paper on the 'kno\\TI 

necessary and sufficient condition that a combinatorial graph be planar'. He continued by 

sayIng: 

We seek an intrinsic condition; that is, a condition expressible in tenns of configurations which are 

associated in a unique manner with a given graph. 

The condition that MacLane developed was his Theorem 5: 

Theorem 5: A set of circuits Ch ••• , Cm in a non-separable graph G is the set of complementary 

domain boundaries of a planar map of G if and only if each edge of G is contained in exactly two 

of the circuits C, while the circuits Cit ... ,Cm-I fonn a complete independent set of circuits in G, 

mod 2. 

This implies that, for a non-separable graph to be planar, it must contain a set of cycles all 

of which have all their edges lying in exactly two of the cycles. 

During the time he was an assistant professor at Harvard Mac Lane wrote his famous 

textbook A Survey of Modern Algebra [31] with Garrett BirkhofT, which provided a much 

needed undergraduate text. After World War II, and as Professor of Mathematics at 

Chicago University, Mac Lane worked on a wide range of mathematical topics including 

logic, planar graphs, cohomology, category theory, and he had a distinguished career in 

algebraic topology. 

Conclusion 

Like Veblen, BirkhofT and Franklin, Whitney had a long and successful career in 

mathematics and played a major part in the development of graph theory in America and of 

mathematics worldwide. 

On many occasions, their work was inspired by and developed that of the others. Their 

academic careers were intertwined throughout the period covered. Veblen and Birkhoff 

had both been supervised by E II Moore at Chicago, and worked together at Princeton for a 

few years prior to the First World War, before going their separate ways. Even then, their 
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paths continued to cross. Veblen was responsible for supervising Franklin's doctoral 

research, and Birkhoff provided the same for Whitney. There are many instances in their 

collective papers where mention is made of the others, in some cases developing previous 

work and in others making corrections and/or improvements or simplifications. In their 

later graph theory papers, each of them (either individually or in collaboration), provided 

substantial publications, such as the collaborative paper of D C Lewis and G D Birkhoff 

(see Chapter 8) and that ofH Whitney and W T Tutte (see Chapter 9) that summarised the 

state of graph theory at those times. 

The story of graph theory in America continues in Chapter 8. The next chapter reflects 

on external influences that scholars experienced in the 1930s and World War II, and their 

impact on the mathematicians included in this narrative. 
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Chapter 7 

The 1930s and World War II 

During the 1930s events in Europe, and particularly those involving Germany, had a 

considerable impact, not only on the world at large, but also on those employed in higher 

education in the USA. These happenings triggered an exodus of people from Gennan

speaking countries including many Jewish mathematicians, because of persecution. Many 

went to America where they were at times subject to prejudice and anti-Semitism, but were 

also soon to be caught up in a new global conflict. Most actively and proudly did what they 

could to assist their new country and its allies in defeating German, and later Japanese, 

aggression. 

7.1 Immigration 

Throughout its history, the United States of America has been a haven for the oppressed of 

other countries. Therefore, it was no surprise that, large numbers of American citizens 

moved to help those who were subject to persecution in German-speaking countries, 

following the election of Adolf Hitler as Chancellor of Germany in 1933. These included 

many academics who could be supposed to live in their ivory towers of learning who 

became active in the efforts being made to help individual scholars that were losing their 

livelihoods because they were non-Aryans or politically unacceptable to the Nazis. 

The Academic Assistance Council had already been formed in Britain, which 

influenced the efforts being made in America. More displaced scholars were eventually 

absorbed into the United Kingdom than into the USA, but that fact should not be seen as a 

criticism of the American people or government. 

T\vo organisations were formed in America to plan the immigration and absorption of 

these displaced scholars. These were the Emergency Committee for Displaced German 
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Scholars (later Displaced Foreign Scholars) and the Rockefeller Foundation [1]. At the 

conclusion of World War II, around 120 to 150 mathematicians who had been dismissed 

from their posts by the Nazis had entered the USA and many remained permanently. It \vas 

by no means an easy task that these two agencies had set themselves, as America was still 

recovering from the 1929 stock market collapse and subsequent economic depression. 

Some in the academic world believed that an influx of foreign scholars would deprive 

home-grown talented young people from obtaining suitable positions. Additionally, there 

were the feelings of nationalism and anti-Semitism, with which to contend. 

Foreign mathematicians benefited well not least because mathematicians and their 

associates were prominent in both organisations; for example, the president and head of the 

natural science programme of the Rockefeller Foundation were both mathematicians. ]n 

addition, many of the older mathematicians came from European families that had 

emigrated to the USA only one or two generations before and were of the age to remember 

and have experienced the days when American mathematicians travelled to Europe for 

postgraduate study, and by so doing established close academic and personnel relationships 

with European Universities, many of which were in Germany, then the leading centre of 

mathematics. 

To give an example of the effects of the depression, by October 1933, 2000 out of 

27000 teachers had been dismissed from the faculties of 240 American institutions of 

higher education, as reported by Edward R Murrow, the second-in-command of the 

Emergency Committee [1]. The Committee and the Foundation decided that they would 

use their funds to aid scholarships, and endeavour not to displace existing faculty 

members, nor act such that their discussions should encourage anti-Semitism or resentment 

of incoming foreigners. Both organisations wanted to place the immigrants into short-term 

funded research posts, anticipating that this would lead to permanent positions, rather than 

into teaching. Even with this philosophy, their actions were not without critics within the 
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American education system, with some native scholars resentful that foreigners were given 

the opportunity to carry out research while they, with their heavy teaching loads and lack 

of funds, were not able to do likewise. Additionally, some felt that the influx would deny 

young home-grown scholars from progressing up the education hierarchy. 

One of the foremost mathematicians actively involved in procuring the entry into the 

USA of displaced scholars from Nazi persecution was Oswald Veblen. Veblen was not a 

timid man [2], but rather someone who wanted fair play and opportunity for everyone. For 

example, in 1943 he declined to fill in the entry for 'race' on a form associated with his 

\var work at the Army's Ordnance Aberdeen Proving Grounds; after all, he had been a 

major in Ordnance working on ballistics research during World War I. He sent a letter of 

protest to the Secretary of War saying that the question was invidious and the sort that 

would have been the norm in Germany at that time. In 1946 he again refused to sign a form 

which waived the right to strike at Aberdeen, and a few years later, during the infamous 

McCarthy witch-hunt period, it was suggested, falsely, that he was a communist, and 

should be denied a passport. He was not a communist: at the time, he claimed to be an old

fashioned liberal. 

Veblen became a member of the Emergency Committee at its foundation and 

provided detailed information on each possible immigrant. Along with Hermann Weyl 

(1885-1955), he ran a placement bureau for displaced mathematicians until the end of the 

war. As described by Nathan Reingold [2]: 

In Veblen's papers in the Library of Congress are lists of names with headings such as scholarship, 

personality, adaptability and teaching ability. When information about a person was incomplete in 

the United States, Veblen wrote to European colleagues. 

In 1933, the American Mathematical Society formed a committee to cooperate with the 

Emergency Committee. Veblen was one of the three men appointed to the new committee. 

As mentioned earlier, Germany was the leading centre for mathematics in the period 

before 1933 and, in the years before the Nazi party came to power, published the most 
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respected of reviewing and abstracting vehicles, the Zentralblatt fur Alathematik. The 

journal's editor was Otto Neugebauer (1899-1990) who, whilst not being Jewish, held 

views that were politically unacceptable to the new German regime, and was forced to flee 

to Denmark in 1934. In 1938, Tullio Levi-Civita (1873-1941), an Italian mathematician, 

\vas not only dismissed from his professorship, but also removed from the board of 

Zentralbatt for political reasons. A number of resignations swiftly followed, including G. 

H. Hardy (1877-1947), Harald Bohr (1887-1951), and Oswald Veblen. The journal had 

also decided that refugee mathematicians and Russians should be barred from being 

collaborators and referees for its published papers and articles. The reaction in the USA 

and elsewhere was one of indignation that the independence of scientific internationalism 

had been violated, and that the worldwide body of mathematicians had been insulted and 

its integrity impugned. 

As a result of the actions of Zentralblatt fiir Afalhematik's governing board and the 

resignations of advisory members Veblen urged that American mathematicians found a 

new review journal, a suggestion that he had made some fifteen years before, although he 

recognised that at that time the mathematics community was not ready to take on the task. 

However, in 1938 Veblen believed that such a move was possible in the USA: possible, 

because the number of mathematicians carrying out research had considerably increased 

over the previous two decades, including the recent immigrants, and that America was now 

becoming the world centre for mathematics. In December 1938, the American 

Mathematical Society formed a committee and all the different factions of the American 

mathematics community joined the discussions. The resulting discussions covered 

political, religious and racial questions, and considered financial security and international 

cooperation. Veblen used his considerable talent of persuasion to obtain a $65,000 grant 

from the Carnegie Corporation. After much debate and the propounding of many 

conflicting opinions, not least the pro-German stance by the mathematics department of 
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Harvard (including G. D. Birkhoff), the council of the Society voted on 25 May 1939 for 

the journal. The voting was 22 for, 5 against, and 4 uncertain. Oswald Veblen was 

appointed chairman of the committee entrusted to organise and launch the new publication. 

The publication was called Mathematical Reviews. 

The two organisations helping the dispossessed and politically unacceptable 

academics to enter America had as their policy the restrictions that the immigrants must be 

eminent and that they be placed in institutions with research capabilities. Veblen, Weyl, 

and others were soon helping the non-eminent and placing the refugees in other 

universities and colleges, including junior colleges that would take them. This unofficial 

policy was controversial and did not find agreement in some quarters, particularly Harvard~ 

which endeavoured to raise other funds for aiding refugees in an attempt to ease the 

Emergency Committee aside and regain control of faculty appointments. To avoid a major 

crisis within the mathematics fraternity, Veblen sought an agreement with BirkhofT. On 24 

May 1939 Harlow Shapley, head of the Harvard College Observatory, wrote [3]: 

When Veblen and Birkhoff were in my office the other day, it was agreed that the distribution of 

these first rate and second rate men among smaller American institutions would in the long run be 

very advantageous, providing at the same time we defended not too feebly the inherent right of our 

own graduate students. 

This agreement was most probably reached because both men, and others in the American 

Mathematical Society, believed that the USA would soon be at war, at which time 

mathematicians \\'ould be in short supply so that the newcomers would be welcome. 

Many pure mathematicians believed that the application of mathematics was the 

responsibility of other disciplines, such as physics, chemistry and engineering, an attitude 

that held back the advancement of applied mathematics. They believed that the role of 

mathematics faculties throughout the USA was to devote themselves to research and 

development of mathematics for mathematics' sake. However, as in the Great War, the 
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standing of applied mathematics was to be considerably advanced as a result of the 

necessities of World War II, which was assisted by the new immigrants. 

After the war, the USA could be reasonably proud that, for all the entire pro- and anti

opinions and the many arguments and deals, the nation, once again., had become a haven 

for the oppressed when it was required. 

7.2 The Second World War 

As in the first global conflict, most patriotic citizens in the USA willingly contributed their 

skills to the winning of peace and, as before, several hundred mathematicians \vere among 

them. Oswald Veblen returned to the Ballistics Research Laboratory at the Aberdeen 

Proving Grounds, taking responsibility for recruiting suitable mathematicians. During this 

task, when confronted by reluctance from a university or college to release a suitable 

candidate, Veblen arranged for an ~alien' who was not able to work in a military 

establishment to substitute; one such 'alien" was his own assistant at the Institute for 

Advanced Study, Gerhard Karl Kalisch. As mentioned above, the influx of talented 

mathematicians went to assist only in providing the numbers required for war \\'ork and the 

continuation of the education of the nation. 

Again, as in 1917, some mathematicians became uniformed combatants, some as both 

enlisted and civilian staff, joining units such as the Army, Navy, and Air Bureaux of 

Ordnance, while others remained in their academic posts but provided much needed 

training programmes, and some went into industry to work on war-related projects. A 

number were recruited into cryptanalysis and into the Manhattan Project that had been set 

up to develop the atomic bomb. Before the war, applied mathematics did not feature highly 

in mathematical departments in universities and colleges in the USA; its development \vas 

mostly left to engineers and physicists. This state of affairs still pertained, even though it 

replicated the situation of America's entry into the Great War in 1917. Again, as before, 
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those professional mathematicians engaged in applied mathematics were looked down 

upon by some pure mathematicians, as it was thought by many that applied mathematics 

practitioners found pure mathematics too exacting. That is as may be, but the time had 

come again when all those involved in the war effort were required to tackle whatever task 

was assigned to them, and most of these were in the realm of applied mathematics. In 

1942, the Applied Mathematics Panel was formed within the National Defence Research 

Committee. The Panel's policy was developed by the Committee Advisory to the Scientific 

Office whose membership included Veblen. The Applied Mathematics Panel was the 

largest group of mathematicians under the wartime government and provided assistance 

wherever it was needed, from 1942 to the end of the war. In many cases the work 

undertaken by these scholars did not require a high level of mathematics, but because of 

their undoubted ability to apply themselves to problems in a logical and analytical manner, 

they provided fast and penetrating solutions. 

\Vithin the Ballistics Research Laboratory, the computing group were responsible for 

the construction of artillery firing tables and for level-bombing tables. Another group, 

variously known as the math unit, the math section and the theory section, developed 

computational procedures for ballistics firing and undertook troubleshooting for a wide 

range of varied projects. Additionally, they carried out emergency work on a variety of 

projects including the investigation of the causes of malfunctioning ordnance. 

A number of new fields of learning, most having connections with mathematics, were 

developed because of the requirements of the military. These included the development of 

Operations Research that after the war was one of its prominent fields, and linear 

programming was started as a natural progression from the Air Force planning activities. 

Other areas were statistics and probability, digital computers and their associated sciences, 

sequential analysis, and cryptanalysis. 
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As has been seen in the previous chapter, Veblen was not the only mathematician \"ho 

made significant contributions to ordnance during the Second World War. Hassler Whitney 

was a member of the group at the Aberdeen Proving Grounds and received awards for his 

work. As with the First World War, no record of G D BirkhofT assisting in the second 

worldwide conflict could be found, even though he was 4 years younger than Veblen. 

7.3 Anti-Semitism 

Just like other forms of prejudice, anti-Semitism has existed for millennia. It has waxed 

and waned over time and moved geographically around the globe. Anti-Semitism was to be 

found within American society between the two world wars and, of course, it was practised 

by some mathematicians of the time in the environs of the senior places of higher 

education. Prior to the general understanding of Hitler and Adolf Eichmann's 'final 

solution' and the emergence of the proof of the holocaust, anti-Semitism was seen, not as 

mortal sin, but as ugly and petty minded. 

It is difficult to differentiate sometimes between nationalistic feelings and anti

Semitism. Some expressions of national sentiment have no hidden anti-Semitic intent (in 

fact, no anti-foreigner meaning whatsoever), but unfortunately some comments in favour 

of nationalism and against aliens mask prejUdices. Although the history of the USA has 

been built on immigration, many recently arrived newcomers expressed an antipathy 

towards other foreigners, especially those also wishing to settle in America. Because many 

of the immigrants fleeing Nazi Germany were of Jewish extraction, it was easy to hide 

anti-Semitic prejudice behind concerns that the incoming scholars would deprive home

grown postgraduates from securing appropriate positions. 

In the 1920s and 1930s there were many examples of university faculties operating an 

anti-Jewish policy, and those who allowed the employment of a Jewish scholar rarely hired 
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a second. However, there were many in mathematical departments who showed no anti-

Semitism and positively worked to undermine the actions of their colleagues who did. 

As mentioned in Chapter 4, George David Birkhoff showed anti-Semitic tendencies 

and although perhaps others were even more so, it is because he was then one of the two 

leading mathematicians in the United States of America that his words and actions are 

remembered, especially as the other leading mathematician, Oswald Veblen, was very 

much the opposite. Birkhoff was initially very much against Solomon Lefschetz (1884-

1942) becoming the first Jewish president of the American Mathematical Society, and a 

letter from him to R G D Richardson, Secretary of the American Mathematical Society 

from 1921 to 1940, inel uded [4]: 

I have a feeling that Lefschetz will be likely to be less pleasant even than he had been, in that from 

now on he will try to work strongly and positively for his own race. They are exceedingly confident 

of their own power and influence in the good old USA. The real hope in our mathematical situation 

is that we will be able to be fair to our own kind ... He will get very cocky, very racial and use the 

Annals [Annals of Mathematics] as a good deal of racial perquisite. The racial interests will get 

deeper as Einstein's and all of them do. 

At the American Mathematical Society semi-centennial meeting in 1938, Birkhoff 

presented a historical survey of mathematics in the USA over the previous fifty years. In it, 

he discussed foreign-born mathematicians, particularly the immigrant scholars of the 

1930s, who (he believed) had an unfair advantage over the native born. Although the list of 

names contained in his address included those who were neither German nor Jewish, many 

of his audience considered BirkhofT's views anti-Semitic, causing much heated debate long 

after the occasion. 

Lipman Bers (1914-1993) in the section of his article The Migration of European 

Afathematicians to America, entitled Anti-Semi/ism, states that Birkhoff 'was not free from 

anti-Jewish prejudices', and wrote [5]: 

The same BirkhofTwho could toss orran anti-Semitic remark in a private letter, did not let his racial 

prejudices interfere with his evaluations of other peoples' scientific work. The late complex analyst 
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Wladimir Seidel, who graduated from Harvard and later taught there as a Benjamin Peirce 

Instructor, told me about a phone call made by BirkhofT to a departmental chairman. "' know you 

hesitate to appoint the man I recommended because he is a Jew. Who do you think you are, 

Harvard? Appoint Seidel, or you will never get a Harvard PhD on your faculty." Seidel was duly 

appointed. 

Conclusion 

That period of our history was a desperate time, but most of those who lived through it 

were determined that it should not happen again. When the USA entered World War II at 

the end of 1941, Hassler Whitney was already a potent force within the \\'orld of 

mathematics. He was thirty-four years of age, an associate professor at Harvard University, 

and had already published most of his seminal work on graph theory. In the 1940s other 

scholars in America and around the world were to take up the challenges in graph theory 

laid down by Whitney and his American predecessors. They were to continue to develop 

the subject, particularly that part concerned with the four-colour problem. Even the 

outbreak of the second global conflict did not prevent research into graph theory. A little of 

what was achieved is explored in the next chapter. 
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Chapter 8 

American graph theory in the 1940s 

Although many mathematicians in the United States of America and Europe were serving 

their countries by contributing to the war effort, they also continued their research. The 

scholars publishing results in graph theory during the 1940s included the Americans 

Birkhoff, Daniel Clark Lewis Jr., and Arthur Bernhart. 

8.1 Daniel Clark Le\vis (1904-1997) 

During the last few years of his life, Birkhoff collaborated with D. C. Lewis in an attempt 

to bring together all the previous quantitative work on map colouring, and to offer some of 

their own conjectures. 

Lewis was born in New Jersey and obtained his PhD in 1932 under the supervision of 

Birkhoff at Harvard University. He worked from 1943 to 1945 at the War Research 

Establishment at Columbia, after which he taught at Johns Hopkins University, and later in 

1958-1959, he carried out research at the Institute for Advanced Study. One of his main 

contributions to mathematics was the discovery and development of the theory of 

'autosynartetic' solutions, general ising a theory of Poincare on periodic solutions of 

ordinary differential equations. 

In the course of their working together, Birkhoff and Lewis were aware of the 

possibility that Reynolds may have developed a solution to the four-colour problem, a 

suggestion that Reynolds made to Lewis in a telegram in August 1942 [1]. Correspondence 

between Birkhoff and Lewis suggests that they were unsure whether Reynolds had 

achieved what he claimed. In addition, Reynolds' claim utilised some work of Birkhoff 

and Lewis that had been presented at a meeting of the American Academy of Arts and 
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Sciences. Because of his concerns, Lewis endeavoured to persuade BirkhofT that they 

should publish some of their joint work [1]: 

If Reynolds really has solved the problem (I remain sceptical until I have chance to see what he has 

actually done), don't you think it would be a good thing for us to publish immediately the part of 

our work on which he based his solutions? 

A few days afterwards, they received a copy of Reynolds' work and found that the 

claim was false. Lewis wrote to Reynolds gently pointing out where the proof \vas 

unconvincing, indicating that if the work \\'ere published, neither he nor Birkhoff wished to 

take credit for any work upon which his 'proof was based. On 1 September 1942, 

Reynolds wrote to BirkhofT [2] (and most likely also to Lewis): 

Dear Professor Birkhoff 

Referring to my two communications concerning the four color problem which have been sent to 

you this summer, you will please carefully place the second one in your waste basket. 

Yes, I have burned my fingers! 

During the forty eight hours following my receipt of Professor Lewis's communication 

pointing out my out my [sic] error I was finnly resolved Ileyer to touch the problem again. 

But I've already fallen from the top of the four color water wagon. I'm at it again! Seriously, 

however. 

I do sincerely apologise for sending you my last letter. 

With a very red face *. 

Clarence N Reynolds 

*Customary among those who fall from the water wagons! 

Birkhoff also wrote to Reynolds, and a letter to Birkhoff from Lewis included [3]: 

I recently had a letter from Reynolds. He's still plugging away at the problem apparently! lie said 

he got a nice letter from you saying that he wasn't the only man who had stumbled by the 

mathematical way side!' 

One can empathise with Reynolds for finding out that what he thought was a solution 

to one of the world's most famous problems was not so, and for having to swallow his pride 

before one of the most world-famous and accompHshed mathematicians. 
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The working alliance between Birkhoff and Lewis resulted in a lengthy paper entitled 

Chromatic polynomials [4], which was presented by Lewis to the American Mathematical 

Society on 23 August 1946, two years after BirkhofT's death. 

The paper, which included most of Birkhoffs work on map colouring, was 97 pages 

long, and from the correspondence between the two scholars, it appears that Lewis had 

been responsible for its writing. Indeed, in a letter dated 21 August 1942 [5] he mentions, 

'I have so far written some 90 pages. There will probably be about 20 or 30 pages more'. 

He was waiting for BirkhofT to return from South America so that the draft could be 

reviewed, and the letter indicated that he believed the final paper would be 'about 75 

printed pages'. Towards the end of the correspondence, in early 1943, Lewis was clearly in 

control of the production of the paper and was relying on Birkhoff only for reviewing the 

work and making minor suggestions and comments. Although essentially completed in 

mid-1943, it was not until November 1945 that the Society received the manuscript. For 

many years, this work would be an authoritative resource on chromatic polynomials, and 

many later authors were to refer to it in their own papers. 

The first part of the Introduction to the paper reads, 'Relation of the present work to 

previous researches on map-coloring and summary of results', which succinctly set the 

scene. It continues by defining two 'quite different types of investigation': Type 1 is the 

qualitative approach and Type 2 is the quantitative approach. 

The work of the first two chapters is essentially quantitative. Chapter I gives the basic 

principles of chromatic polynomials, including the main results, and the proof of the 

following theorems: 

Theorem I. Let Tbe an m-gon in a map Pn of n regions. Let IIn-AJl) denote the sum of the chromatic 

polynomials associated with the sub-maps obtained by erasing just k boundary lines of T. Then: 

[ml2] 
P,,(l) = ! L (,u-m) lIn k (l), 

m k=l 

where [ml2] = ml2 or (m-l )12, according as m is even or odd. 
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Theorem I I. Let the boundaries of T be denoted by I., 12, ••• , 1m in eyc I ic order. Let Un ~(.l) denote 

the sum of the chromatic polynomials associated with the sub-maps obtained by erasing the 

boundary Ii, together with just k- I other boundaries of T. Then. with the notation of the previous 

theorem and for any positive integral value of i from 1 to m, inclusive: 

[ml2] [ml2] 
Pn(.l) = (.l-m) L U'n ~(.l) + L (k-I) lin A: (1). 

k=1 k=2 

Birkhoffused the letter P when talking about cubic and referred to Q for all other maps. 

Chapter II covers the computation of chromatic polynomials. After defining the 

method used, they present a table of III chromatic polynomials, for all regular maps of 6 to 

17 countries. Each regular map is designated by a symbol (n; a, b, c ... ), where: 

n = the total number of regions in the map 

a = the number of four-sided regions in the map 

b = the number of five-sided regions in the map 

c = the number of six-sided regions in the map 

and so on. 

As an example, the chromatic polynomial for the nine-region map (9; 5, 2, 2), divided by 

1(1 - 1 )(1 - 2)(1 - 3) is given as 

The remainder of the chapter explored special results for other regular and non-regular 

maps. 

Chapters III and IV of the Birkhoff-Lewis paper include many proofs of inequalities 

that are satisfied by the coefficients of chromatic polynomials. Also, in Chapter III, there is 

BirkhofT's 1912 determinant formula for chromatic polynomials. Throughout the chapter, 

much use is made of Whitney's Theorem II from in his 1930 paper A theorem on graphs. 

This theorem deduced (subject to defined restrictions) that a closed path can be drawn 

which passes through each region of the map once only, but does not pass through any 

vertex (a dual of a Hamiltonian path). In addition, Chapter IV contains the Birkhoff-Lewis, 
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conjecture, which they describe as stronger than the four-colour conjecture, and hope that it 

will be 'easier to establish'; Birkhoffbelieved that the conjecture would be of considerable 

significance in the eventual solution to the four-colour problem. The conjecture is that the 

following theorem always holds for cubic maps: 

If P rt+3 has a proper 2-ring or a proper 3-ring or a four-sided region K surrounded by a proper 4-ring, 

then 

(l-3t «Qn (l) « (l-2t for l 2: 4, 

provided that the same relation, with n replaced by m, holds for certain maps P m+3 with m < n. 

The paper explained the use of« and » as: 

LetJ(C and g(C be two polynomials in (. Then (contrary to the notation of the preceding chapter) 

we shall write ftC «g(C or g(C » ftC if, and only if, the coefficients of ftC are non-negative 

and not greater than the corresponding coefficients of g(O. 

Here, Qn is a map of n regions and Qn(l) is its chromatic polynomial, then Qn can be 

coloured in the l given colours. They used experimental data from Chapter III to propose 

the conjecture and were able to verify that the formula holds when n < 14 (that is, for maps 

with fewer than 17 regions). 

The final two chapters covered the analysis of rings (4-, 5-, 6-, 7-, and n-rings) using 

Kempe chains. Of these chapters the authors wrote: 

This paper belongs primarily to Type 2. Its primary object is the study of the chromatic 

polynomials. Nevertheless in the later chapters (V and VI) the most characteristic method of Type 

1, namely, that of the Kempe chains, has been taken over and modified so as to yield quantitative 

results in any number of colors. Simultaneously, on the other hand, we have gained by an 

alternative method a deeper insight into the nature of the results previously obtained only by 

investigations of Type 1 by use of the Kempe chains. This is true to the extent that we are now able, 

without using Kempe chains, to prove the reducibility of the following configurations which are 

fundamental in investigations of Type I: 

1. The four-ring (BirkhofT[l, p. 120]). [6] 

2. The five-ring surrounding more that a single region (BirkhofT[l, pp. 120-122]). [6] 

3. Four pentagons abutting a single boundary (BirkhofT[l, p. 126]). [6] 
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4. A boundary of a hexagon abutting three pentagons (Franklin [I, p. 229]). [7] 

The authors go on to say that 'Undoubtedly, numerous other similar configurations can be 

proved to be reducible by the same methods'. 

However, the paper is not easy to read. W. T. Tutte (see Chapter 9), who took on the 

mantle of the world's foremost graph theorist after the Second World War, referred to this 

paper, and in particular to the Birkhoff-Lewis theory, writing [8]: 

They do give a partial theory of these equations in their paper, but I must confess I was never abJe 

to read right through it and understand it clearly. 

8.2 Arthur Bernhart (1908-1989) 

Arthur Bernhart, an American mathematician, joined the mathematics faculty of the 

University of Oklahoma in 1943, where he remained until his retirement. He published 

papers on geometry and was an early authority on curves of pursuit, but was also 

captivated by the four-colour problem. In his significant and very technical 1947 paper 

entitled Six rings in minimal jive-color maps [9], he reviewed the then-kno\\TI theorems on 

4- and 5-rings and progressed to a thorough investigation of 6-rings, thereby extending 

Birkhofrs work on reducibility and completing Birkhofrs study of rings of six countries. 

As Franklin said in his review of the paper [10]: 

It is shown that if 6-rings exist in minimal maps, the structure must be one of six types. 

These six types, which Bernhart calls solutions, include: 

Solution # 1; Corresponding to a single hexagon inside. 

Solution #2; Corresponding to two pentagons inside with a common edge. 

Solution #3; Corresponding to three pentagons inside with a common vertex inside. 

This paper, which was a thorough study of the reducibility of configurations of ring size 6, 

prompted, the following tribute [11] that refers to the eventual solution to the four-colour 

problem: 

These results, together with those of BirkhofT, form the foundation of the work of Appel and Jlaken. 
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In another paper, published in 1948, entitled Another reducible edge configuration 

[12], Bernhart used an argument involving Kempe chains to prove that, for a regular map, 

the configuration consisting of an edge common to two hexagons which borders two 

pentagons is reducible for colouring with four colours. 

Conclusion 

By the middle of the hventieth century, considerable progress had been made on 

approaches to solving the four-colour problem. However, although many following in the 

footsteps of Birkhoff had arrived at numerous reducible configurations, with notable 

contributions from Franklin, Errera and Winn, little progress had been made on 

constructing unavoidable sets of configurations. Only Wernicke in 1904 (see Chapter 3), 

Franklin in 1922 (see Chapter 5), and Henri Lebesgue in 1940 [13] had made significant 

discoveries in this area. In his paper Lebesgue used the counting formula and Euler's 

formula to create some new unavoidable sets. Graph theory as a whole had also benefitted 

from the significant contributions from citizens of the USA, both native-born and 

naturalised. 
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Chapter 9 

In conclusion 

Graph theory continued to develop after 1950, and the four-colour theorem was proved in 

the 1970s. Work continued in the USA, carried out by a new generation of graph theorists, 

many of whom were inspired by and developed the work of Veblen, Birkhoff, Franklin and 

Whitney. In fact, the later scholars, in a few instances, worked with these four major 

mathematicians. 

There have been occurrences of masters and pupils cooperating in research work that 

extends the academic life of the master and enhances the work of the pupil. One example 

of this \vas the joint work of George Birkhoff and Daniel Lewis during the Second World 

War. Another fruitful collaboration was Kempe chains and the four-colour problem [1], 

written jointly by Hassler Whitney and the English-born naturalised Canadian, William T. 

Tutte; the latter was at the time the world's foremost graph theorist, as Whitney had once 

been in the 1930s. The paper was mostly written by Tutte. 

Other scholars who made their mark in graph theory after 1950 were Frank Barary, 

\vho collaborated \vith many scholars, including Tutte; Gerhard Ringel and Ted Youngs, 

\vho proved the Beawood conjecture; Oystein Ore and Joel Stemple also collaborated and 

extended the BirkhofT number to 41; Frank Bernhart; and Kenneth Appel and Wolfgang 

Baken, \vho finally solved the four-colour problem. 

9.1 \Villiam Thomas Tutte (1917-2002) 

Bill Tutte \vas world renowned for two things: his groundbreaking work in graph theory 

and combinatorics, and his considerable contribution at Bletchley Park to the Allies' 

victory in the Second World War. He was also a very shy and modest man. 
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In 1935, Tutte entered Trinity College, Cambridge, to study Natural Sciences, 

specialising in Chemistry and graduating with a first-class honours degree. Shortly after 

starting his postgraduate study in chemistry, coinciding with the outbreak of the Second 

World War, he was asked by his tutor to offer his services to the highly secret organisation 

at Bletchley Park. Bletchley Park housed the wartime headquarters of the British 

Government Code and Cipher School, where German airborne communications and those 

of the Italians and Japanese were monitored. Tutte joined the unit in January 1941 and 

remained there for the duration of the war, producing work that was bettered only by Alan 

Turing (1912-1954) and belatedly earning glowing testaments - including that in the 

citation at his induction as an Officer of the Order of Canada, which included' As a young 

mathematician and codebreaker, he deciphered a series of German military encryption 

codes known as FISH. This has been described as one of the greatest intellectual feats of 

World War II'. 

Tutte returned to academic life in Cambridge after the war, where he was elected to a 

research fellowship in mathematics at Trinity College. Ilis thesis on An Algebraic Theory 

of Graphs earned him his PhD in 1948. It combined ideas from algebra and combinatorics 

to develop matroid theory. As has been seen in Chapter 6, matroid theory originates from 

an original paper by Whitney in 1935 and was a subject that would be considerably 

developed by Tutte. Tutte's thesis gave rise to papers that put him at the forefront of graph 

theory, with him as its main proponent. 

After receiving his doctorate he was invited by H S M Coxeter to join the University 

of Toronto in Canada, first as a lecturer and then as an Associate Professor. During his 

fourteen years there he became well known in mathematical circles around the world for 

his work in combinatorics, publishing around two dozen papers on the subject - including 

ones on planar graphs, factors of graphs, finite graphs, embedding of linear graphs in 

surfaces, chromatic polynomials, cubic graphs, and matroids. 

164 



In 1958 he was elected a Fellow of the Royal Society of Canada, and in 1962 he was 

appointed Professor of Mathematics at the recently opened University of Waterloo, 

Ontario, a position he held until his retirement in 1985 when he was made Professor 

Emeritus. The University had been founded in 1957 and was in the process of establishing 

its identity and standing within the academic world when Tutte arrived there. The 

University created around him what was to become its world-famous Department of 

Combinatorics and Optimization. In addition, Tutte and the University were influential in 

the setting-up of the Journal of Combinatorial Theory. Tutte was a prolific writer of papers 

and books, but his style of writing made parts of his publications difficult to understand. 

In planarity he produced a seminal paper in 1959 [2] in which he developed the work 

of Whitney and included a proof of: 

... a necessary and sufficient condition, in tenns of matroid structure, for a given matroid AI to be 

graphic (cographic), that is the bond-matroid (circuit-matroid) of some finite graph. 

The condition was that M be regular and not contain the cycle-matroid of a Kuratowski 

graph. A regular matroid is the matroid of a regular chain-group, and a regular chain-group 

is an integral chain-group in which every elementary chain is an integral multiple of a 

primitive chain, where a primitive chain is one whose coefficients are restricted to the 

values 1, -1 and O. A chain-group is a class of chains that is closed under the operations of 

addition and multiplication by an element of a commutative ring with a unit element and no 

divisors of zero. 

In his study of factorisation Tutte published two major papers [3], [4]: the first of these 

was reviewed by H S M Coxeter, a colleague and the person who, as mentioned earlier, ,vas 

responsible for Tutte being at the University of Toronto. The review [5] began: 

A graph N of even order n is said to be prime if it contains no set of Yln branches which together use 

up all the nodes aJ, a2, ... , an. Let S denote a subset consisting off of these n nodes. If we suppress 

the nodes S and all branches belonging to them, what is left of N will, in general, consist of several 
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disconnected pieces. Let hu denote the number of these pieces that are of odd order. The author 

proves that the graph N is prime if and only if it contains an S such that hu > f. 

The second paper, on infinite graphs, explored the question - under what conditions does 

a locally finite graph contain a regular subgraph that includes all the vertices of the graph? 

Tutte expanded the work of Whitney in investigating Hamiltonian cycles. Whereas 

Whitney had developed theorems for such cycles in maximal planar graphs, Tutte extended 

this work to general planar graphs, in three papers in 1946, 1956 and 1960 [6], [7], [8]. 

Although short, his paper entitled On llamillonian circuits [6] was significant in that he 

provided a counterexample that disproved Tait's conjecture that each cubic map contains a 

Hamiltonian circuit. Tutte's example was a regular spherical map with 25 regions, 69 edges 

and 46 vertices. 

He also studied chromatic polynomials and the golden ratio t (= ~(1 + ~5) = 

1.618034 ... ). In Chapter 6 it was shown that BirkhofT developed the chromatic polynomial 

pel), which he had hoped would lead to a solution of the four-colour problem. After 

BirkhofT's death more work was carried out on chromatic polynomials and it \vas 

established that if a map is sufficiently large, it could generally not be coloured \vith onc, 

two, or three colours, meaning P(l), P(2) and P(3) are all zero, and implying that at least 

four colours must be necessary to colour a map in the required form and P( 4) > o. 

Mathematicians then looked for other values of x for which P(x) is zero, as if they \vere 

found this would add to the understanding of chromatic polynomials. To this end, Tutte 

investigated the zeros of chromatic polynomials of planar graphs and found them ncar the 

value of the golden ratio and other related values. In 1969 he published two papers [9], [10] 

on this, the first with G Berman, and in 1970 he expanded on this topic with two further 

papers [11], [12]. 
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9.2 Kel1lpe cllains and tile four-colour problen, 

This paper, published in 1972 and written jointly by Whitney and Tutte, was prompted in 

part by a rumour that circulated in 1971 that the four-colour problem had been solved. This 

rumour arose from a claim by Y oshio Shimamoto (b. 1926) that he had compiled a proof 

based on the work of Heinrich Heesch (1906-1995), who had spent a good number of years 

studying the reducibility of maps and who had developed the method of discharging which 

was central to the unavoidability part of the eventual proof of the conjecture. The method of 

discharging is used to prove that a given set of configurations is an unavoidable set: each k

sided region in a map is assigned a 'charge' of 6 - k, and the charges are redistributed from 

each region to its neighbours in such a way that the overall charge of the map is unchanged. 

Heesch had coined the tenn D-reducibility for the reducibility of some configurations 

of countries and had developed a method for testing this property. Shimamoto's approach 

\vas to assume that the four-colour conjecture was false. He demonstrated that there had to 

be a non-colourable map AI that contained a configuration II that passed Heesch's computer 

test for D-reducibility. He then developed a contradiction by showing that the D

reducibility of II implied that AI could be coloured with only four colours. This 'proof 

relied on considerable computer time and output, which did not inspire Whitney and Tutte: 

in the Introduction to their paper, they wrote: 

This method of proof was greeted by the present authors (independently) first with some misgivings 

and then with real scepticism. It seemed to both of us that if the proof was valid it implied the 

existence of a much simpler proof (to be obtained by confining one's attention to one small part of 

Af), and that this simpler proof would be so simple that its existence was incredible. The present 

paper is essentially the result of our attempts to give a proper mathematical form to our objection. 

The pair \vent on to say that they could find no 'flaw in Shimamoto's reasoning', but 

decided that the computer work must be in error. In the end, they satisfied themselves that 

Shimamoto had not proved the four-colour conjecture, but had developed a construction for 
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D-irreducible configurations - however, the crucial configuration in Shimamoto's 

argument turned out not to be D-reducible, so the problem remained unsolved. 

In their paper, Whitney and Tutte set out to give a broad explanation for an approach to 

the four-colour problem, to define Kempe chains, and to indicate ho\v these could (or could 

not) be used. Their intention was to clarify the situation that existed in 1972, a propos of the 

four-colour conjecture, for themselves but also for others. The paper was treated \vith the 

respect that its two very distinguished authors warranted, and demonstrated that graph 

theory in the Americas was in safe hands. 

With regard to the four-color problem, Tutte, in his 1974 paper Afap-coloring problems 

and chromatic polynomials [14], ventured the judgment that only an optimist could 

conclude the possibility of an unavoidable set of reducible configurations with 'only 8000 

elements'; this was a reference to the work of Heesch. Tutte's 1975 paper [15] \vas 

unenthusiastic about a possible computer-based solution to the four-colour problem, as he 

believed that a quantitative rather than a qualitative approach to the problem was necessary. 

However his reaction when the eventual solution was announced in 1976 was generous and 

is best summed up in the book Four Colours Suffice [16]: 

But when Tutte heard the news he waxed eloquent, comparing their achievement with the slaying of 

a fabled Norwegian sea monster: 

Wolfgang Haken 
Smote the Kraken 
One! Two! Three! Four! 
Quote he: 'The monster is no more' 

And when Tutte was interviewed by the press, he told them, 'If they say they've done it, I have no 

doubt that they've done it. 

Tutte was rightly acknowledged as the post-war leader of combinatorial thinking, and 

although not a citizen of the USA he was a worthy North American successor to Veblen, 

Birkhoff, Franklin and Whitney. 
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9.3 Frank Harary (1921-2005) 

Another American collaborator was Frank Harary; although he did not confine his papers to 

mathematics he applied graph theory to many topics, especially in the social sciences. 

Among the areas of his study were the connections between graph theory and anthropology, 

biology, chemistry, computer science, geography, linguistics, music, physics, political 

science, psychology and social science. 

Harary gained his PhD from the University of California in 1948, and then moved to 

the University of Michigan in Ann Arbor, rising to Professor of Mathematics. On 

retirement from Michigan, he was appointed Professor of Computer Science at the New 

Mexico State University in Las Cruces. 

Harary wrote and co-authored over 700 papers, as well as publishing eight books, 

including his celebrated and oft-cited book Graph Theory [17] in 1969. This book defined, 

developed and directed the path of modern graph theory and was widely used in university 

undergraduate courses. He was one of the founders of the Journal of Combinatorial Theory 

in 1966 and the Journal of Graph Theory in 1977. 

Among his most significant research included work on graph enumeration, graph 

Ramsey theory and signed graphs. Graph enumeration is the counting (up to isomorphism) 

of graphs of a specified kind and Harary was an expert. His book, co-authored with Edgar 

M Palmer, entitled Graphical Enumeration [18] covered most of his work on the first of 

these subjects. Ramsey theory is named after a British mathematician and philosopher 

Frank P Ramsey (1903-1930) and i~ a branch of mathematics which investigates how many 

elements of some structure there must be to guarantee that a particular property must hold. 

Harary published a number of papers on this topic. His work in the third subject is indicated 

from the papers entitled On the notion of balance of a signed graph [19] in 1953-54, and 

On local balance and N-balance in signed graphs [20] in 1955, from which emerged a new 
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branch of graph theory, signed graphs, which grew out of a problem of theoretical social 

psychology. 

9.4 Gerhard Ringel (1919-2008) & John William Theodore Youngs 
(1910-1970) 

Gerhard Ringel, was born in Kollnbrunn in Austria, was a German citizen \"ho became a 

naturalised American citizen. lie became a professor of mathematics at the University of 

California in Santa Cruz in 1970 after a successful academic career in Germany, lecturing 

in Bonn, Frankfurt, and at the University of Berlin, where he was professor of mathematics 

and director of the Mathematics Institute. He published many papers and books on 

combinatorics and graph theory. In 1952, he published a paper [21] \\'hich addressed the 

colouring of maps on non-orientable surfaces and proved the Heawood conjecture for non-

orientable genus p > 1 - the only exception was Klein bottle. As stated by G. A. Dirac in 

his review of the paper [22]: 

This paper makes a very considerable contribution towards the solution of this problem for one-

sides surfaces. 

In 1959, Ringel published a significant book on the colouring of graphs, entitled 

Fiirbungsprobleme auf Fliichen und Graphen [23]. This book and his numerous papers 

were considered major contributions to topological graph theory. Several of these papers 

were written jointly with Youngs who was at the University of California when Ringel 

arrived there at Youngs' invitation for the academic year 1967-68. 

Ted Youngs was an American, born in Bilaspur, India, but educated in the USA, 

gaining his doctorate in 1934 from Ohio State University. He taught at Ohio State, Purdue 

and Indiana University where he remained for 18 years, served in the US Air Force during 

World War II, and was a consultant to industry and the Institute of Defence Analysis. In 

1964 he moved to the University of California at Santa Cruz, where he remained until his 

170 



death. His numerous papers on topology contained many significant results, with his best 

early v,ork concerning the abstract concept of a surface. 

Behveen 1963 and 1968 Ringel and Youngs, published many joint papers on the 

Heawood conjecture; they investigated the minimum number of colours required to colour 

any map or graph on a given surface - this is the Heawood number. As Ringel had 

completely solved the problem for non-orientable surfaces, they concentrated on orientable 

(or two-sided) surfaces. Their proof required the solving of 12 separate subcases which 

arose from the denominator 12 that appeared in work of Heffter in 1891 (see Chapter 3). 

They (and others) had dealt with several cases earlier, but the final three cases were 

resolved during Ringel's sabbatical in California in 1967-68. Their work resulted in the 

paper Solution of the Heawood map-coloring problem [24], published in 1968, which 

brought together all of their findings providing an answer for every surface except the plane 

and the subsequent book lvlap color theorem [25], written in 1974 after Youngs death. 

9.5 Oystein Ore (1899-1968) & Joel Stemple (b. 1942) 

Yet another collaborative pair were Oystein Ore and his research assistant Joel G Stemple. 

Ore was born in Norway and was later to receive the Knight Order of St Olav, as Veblen 

had done 18 years earlier. 

In a one page note published in 1960, Note on Hamiltonian circuits [26], Ore added to 

further conditions such that a graph is Hamiltonian and proved that: 

If G is a simple graph with n (~ 3) vertices, and if the sum of the valences of each pair of non

adjacent vertices is at least n, then G is Hamiltonian. 

Ore presented the American Mathematical Society Colloquium Lectures in 1941, 

\vhich resulted in his book Theory of Graphs [27]. In 1963 he published a book Graphs and 

Their Uses [28] \vhich was \vritten for high-school pupils, and in 1967, a book entitled The 

Four-Color Problem [29], \vhich was variously described as a 'first rate complete 
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presentation' [30]; a 'classic book on the subject' [31]; and as 'authoritative and influential' 

and 'the first major book devoted exclusively to map colouring' [16]. 

In 1927 he settled in the USA where, in the mid-1960s, Stemple, \vho \\ished to 

research in graph theory, joined him at Yale. Together in 1968, they \\Tote a paper entitled 

Numerical calculations on the four-color problem [32] that extended the BirkhofT number 

to 41. 

9.6 Frank Bernhart (b. 1945) 

Another American mathematician who \'lent into the family business \\'as Frank Bernhart, 

son of Arthur (see Chapter 8). Frank Bernhart was on the staff of the University of 

Waterloo at the same time as Tutte. During the 1970s, he produced some significant \\'ork 

on the concept of reducibility. lIe also gained a reputation for being an expert in uncovering 

errors in purported 'proofs' of the four-colour theorem. His 1975 paper, The four color 

theorem proved by multi-linear algebra??? [sic] [33] demonstrated the errors in two 

published 'proofs' of the four-colour theorem. 

In a paper [34], published in 1971, he proposed a combinatorial condition for a planar 

graph that he then used to develop a new proof of Kuratowski's theorem on planar graphs. 

Another paper, A three-five color theorem [35], was published in 1973, and had three 

principal results. The first was, that if a plane graph G has a given face f, then G has a 5-

colouring that gives a 3-colouring of the boundary off. The sccond and third follo\\'cd from 

the first: if G becomes planar upon the removal of one edge, then G can be 5-colourable, 

and if H is a connected induced subgraph of G, then any 2-colouring of II can bc extended 

to a 5-colouring of G. 
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9.7 Kenneth Appel (b. 1932) & Wolfgang Haken (b. 1928) 

They say that all good things come to an end, and that was certainly true for the quest for a 

solution to the four-colour theorem. In 1976., Kenneth Appel and Wolfgang Haken, two 

colleagues at the University of Illinois in Urbana-Champaign, provided a proof. 

Controversially, the proof was based on massive amounts of computer time that was needed 

to check an original list of 1936 reducible configurations (which by the time of publication 

they were able to cut to 1482). In mid-1974, John Koch was a graduate student in the 

computer science department at the University of Illinois when Appel and Harken were 

looking for someone to help in the necessary computer programming. Accepting the 

challenge, Koch created programmes for testing the reducibility of, initially, configurations 

of ring-size II and then ring-sizes 12, 13 and 14. Ring-size is clearly defined in [16] as 

'The number of countries surrounding a configuration. If there are k surrounding countries, 

the configuration has ring-size k'. 

Some mathematicians were slow to accept the proof as, at that time, most proofs were 

relatively straightfoI'\vard to follow and had an associated hint of elegance. In their 1977 

book, The Four Color Problem [31], Thomas Saaty (b. 1926) and Paul Chester Kainen (b. 

1943) summed up the feeling of a large segment of academia, saying: 

The sophisticated technique of Haken and Appel appears to have succeeded in proving that the 4CC 

is true. We say uappears to have succeeded" since their proof involves the computed-facilitated 

analysis of 1936 special cases, and will thus require several years for thorough checking. Even then, 

there will probably persist some lingering doubt among many scientists because of the elaborateness 

of the argument. 

Their proof \vas the development of the works of earlier mathematicians (particularly 

Birkhofl) and the thorough investigation of unavoidable sets of reducible configurations of 

ring size 6 by Arthur Bernhart in his 1947 paper (see Chapter 8). 
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It was probably due to Frank Bernhart's reputation as an exposer of false claims of 

'proofs' of the four-colour problem that prompted the editors of Afathematical Reviews to 

ask him to evaluate Appel and Haken's papers: Every planar map is four colorable. Part I: 

Discharging [36] and (with J Koch) Every planar map is four colorable. Part II: 

Reducibility [37]. His review mentions 'The authors of this proof [38], but does not 

categorically state that the reviewer accepts that it is a proof of the four-colour theorem. 

The situation is best summed up by Robin J Wilson in his book Four Colours Suffice [16]. 

\\'here he writes: 

The eventual solution, by Wolfgang Haken and Kenneth Appel in 1976, required over a thousand 

hours of computer time, and was greeted with enthusiasm but also with dismay. In particular, 

mathematicians continue to argue about whether a problem can be considered solved if its solution 

cannot be checked directly by hand. 

Tutte's comments on Appel and Haken's proof were included earlier in this chapter, 

and these gave credibility and assistance to the acceptance of the proof \vithin the 

mathematics community. 

Two referees were selected to review the papers, one for the discharging part and one 

to examine the reducibilities, and after a number of small discrepancies \\'cre resolvcd, the 

proof was accepted. In 1994 another group of mathematicians, Neil Robertson, Daniel 

Sanders, Paul Seymour and Robin Thomas, produced a shorter and more systematic proof, 

based on considerably fewer (but still over 600) reducible configurations and using the 

same arguments as those of Appel and Haken. Their work [39] confirmed the rightful 

acceptance of the 1976 proof. 

In conclusion 

The development of graph theory in America, from the employment of James Joseph 

Sylvester at The Johns Hopkins University in 1876, through the contributions of Charlcs 

Sanders Peirce, Oswald Veblen, George David BirkhofT, Philip Franklin and I fassler 
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Whitney, to the time of Bill Tutte and beyond was truly remarkable. Their contributions 

were of considerable significance to graph theory and to the eventual solution to the four-

colour problem. They \vere not the only mathematicians of the USA to advance the subject, 

but \vere undoubtedly the most significant. 

Although their work as graph theorists has been of primary importance here, it must 

also be remembered that many of them made outstanding contributions to other areas 

outside graph theory. This included support of their country during the course of two world 

\vars, achievements in the administration of institutions of higher education, and in some 

cases, the valuable assistance in rescuing and deploying German-speaking refugees. 

Ho\vever, above all of these achievements was the almost unanimous enthusiastic 

dedication to the development of young scholars, to the benefit of the USA, and to the 

advantage of all. 
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Appendix I 

The early years of graph theory 

Graph theory can be said to have begun with Leonhard Euler in 1736. His proof that the 

Konigsberg bridges problem has no solution is widely considered as the first step in the 

story of what was to become graph theory, although he did not use any graphs in his 

solution. Over the next 160 years the subject developed, with significant contributions by 

Gustav Robert Kirchhoff, famous for his laws on electrical circuits, who introduced 

spanning trees and fundamental cycles; Thomas Penyngton Kirkman, who worked on 

polyhedra; and William Rowan Hamilton, after whom Hamiltonian cycles are named; and 

Arthur Cayley, who enumerated trees, and his close collaborator James Joseph Sylvester. 

Also during these early years, the most celebrated problem in graph theory was born - the 

four-colour problem; the first knO\\1l written mention was by Augustus De Morgan. Alfred 

Kempe and Cayley were among those who took up the challenge to provide a solution to 

this simple to state, but a difficult to solve problem. 

Further information on graph theory can be found in [1], [2], [3] and on map colouring 

in [4], [5], [6], [7]. The book [8] gives a comprehensive history of Arthur Cayley and his 

mathematics as does [9] on the life and work of T P Kirkman. 

1.1 The eighteenth century 

The origins of graph theory can be traced back to an article written in 1736, although it 

would not be until the 1930s that the term graph theory would begin to be applied to a 

branch of mathematics. Leonhard Euler (1707-1783) was one of the leading 

mathematicians of the eighteenth century. His prodigious output included contributions to 

many areas of mathematics. 
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Euler has been called the founding father of topology. His 1736 paper [10], although 

important to graph theory as its origin, is considered, perhaps, one of his less significant 

papers to mathematics as a whole. This may be due partly to the problem that prompted his 

paper -the problem of the Konigsberg bridges. 

Konigsberg was a city in Eastern Prussia built on the River Pregel, which divides into 

two branches within the city that encircle the island of Kneiphof 2. The city is served by 

seven bridges spanning the Pregel and, as Euler stated in his paper [10]: 

Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he 

could cross each bridge once and only once. I was told that some people asserted that this was 

impossible, while others were in doubt; but nobody would actually assert that it could be done. 

Euler proved that such a route is not possible. 

Konigsberg reproduced from a map published in the 
seventeenth century. [11] 

The paper included a detailed argument providing a general proof for whether such a 

route is possible or not for any number of areas of land and by any number of bridges 

joining those areas. Euler provided a set of rules stating 'With these rules, the given 

problem can always be solved.' 

Euler applied two significant ideas to the problem. The first was that he substituted a 

topological equivalent illustration, but eliminating metrical ideas, in place of the map of 

2 Today the city of KOnigsberg is known as Kaliningrad and the river Pregel as Pregolya. 
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Konigsberg incorporating letter designations for those functions to be used in the 

evaluation of the problem; and his second was to define the problem from the illustration 

thereby making it redundant. He proved the impossibility of the question by counting the 

number of bridges emerging from each area. 

The following diagram represents the connections in the Konigsberg bridge problem. 

Euler did not draw such a graph as this type of illustration was first drawn in 1892 by W. 

W. Rouse Ball (1850-1925) [12]. 

c 

A ~------';;'------~D 

B 

This diagram is an example of what is known as a graph. A graph is constructed from a set 

of vertices (A, B, C, etc.), a set of edges (a, b, c, etc.), together with a list of which edges 

join which pairs of vertices. A closed path which traces out each edge of a graph once and 

only once returning to its starting point is now called an Eulerian path. 

Drawing graphs in this way are now called diagram-tracing puzzles. These were 

addressed by other scholars, including the Frenchman Louis Poinsot (1777-1859) in 1809 

and the German Johann Benedict Listing in 1847. 

Euler left several more legacies for future combinatorialists. Two of these were 

Euler's formula for polyhedra and his researches into partitions of integers. His polyhedron 

fonnula was included in a letter [13] from him to Christian Goldbach (1690-1764) in 

November 1750. It related the numbers of V vertices, E edges and F faces of a polyhedron 

and is often called Euler's polyhedral formula: it can be written 

V+ F=E+2. 
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The letter detailed Euler's thoughts regarding the properties of solids bounded by plane 

faces, and provided the necessary algebra for analysing the subject, and in it Euler 

confessed that he had been unable to prove the fonnula. It was not until 1794 that Adrien

Marie Legendre (1752-1830) provided a satisfactory proof, albeit a metrical, rather than a 

topological, one. 

In the early eighteenth century, two French mathematicians, Pierre Raymond de 

l\10ntmort and Abraham de Moivre, published combinatorial works specifically on the 

principle of inclusion and exclusion, also knO\\11 as the sieve principle, \vhich deals \vith 

the evaluation of finite sets. The fonnula for n = 2 is: 

IAI UA21=IAII+IA21-IA 1 nA21 

This principle has a number of uses in combinatorics including the counting of all 

derangements of a finite set. (A derangement of a set is a bijection from a set A into itself 

that has no fixed points). The inclusion-exclusion property was generalised by \Vhitney 

(see Chapter 6). 

Also in this century, Alexandre-Theophile Vandennonde (1735-1796) published a 

paper Remarques sur les problemes de situation [14]. This work was primarily devoted to 

the chessboard problem kno\\11 as the knight's tour - that is, to determine a sequence of 

knight's moves so that a knight visits each square on a chessboard once and once only, 

returning to the square from which it commenced the tour - a problem that Euler had 

worked on earlier. This indicates how diversified are the problems that are no\v 

encompassed within graph theory. 

1.2 The nineteenth century 

There was little advance in graph theory after Euler until the early years of the nineteenth 

century. However, in the 1810s, two notable contributions to the subject \verc published. 

The first, a paper entitled Demonstration immediate d'un theoreme fundamental d'E,,!er 
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sur /es po/yhedres, el exceptions donI ce theoreme est susceptible [15] by Simon-Antoine-

Jean Lhuilier (1750-1840), a Swiss mathematician, was associated with Euler's polyhedral 

formula and was published in 1811. The second was by Augustin-Louis Cauchy (1789-

1857), \vho became the leading French mathematician of the first half of the nineteenth 

century, and was accorded international acclaim for his seminal work in analysis and group 

theory. In 1813, his paper Recherches sur les polyedres-premier memoire [16] investigated 

Euler's polyhedra formula. Initially he projected the polyhedra onto a plane surface, giving 

\\'hat is now called a plane graph, and as he excluded the external region of the projection 

his version of Euler's formula became n - m + f = 1 (where n, m and f denote, 

respectively, the numbers of vertices, edges and faces). The paper included a general proof 

of his development of Euler's formula that was applicable to graph theory. In its simplest 

form it is: 

Let G be a connected planar graph, and let n, m, andjdenote, respectively, the numbers of vertices, 

edges, and faces in a plane drawing of G. Then n - m + f= 2. 

As is seen in the thesis, these ideas were re1evant to the work of many of the 

mathematicians mentioned, including Kempe, Heawood, Veblen, Franklin and Whitney. 

Gustav Robert Kirchhoff (1824-1887) 

It \\'as not until the middle of the century that further significant advances in graph theory 

\vere made. Kirchhoff is mostly remembered for his famous laws on the flow of currents 

within electrical circuits, which he formulated at the age of 21 whilst attending the 

University of Konigsberg. These laws, now kno\vn as Kirchhoff's laws, are used to develop 

equations, from \vhich electrical circuits can be analysed and the values of currents and 

potentials calculated. 

The laws \\'ere published in two papers, in 1845 [17] and 1847 [18]. The first paper 

developed the equations, \vhile the latter (a major contribution to the theory of graphs), 

provided a method for determining ho\v many equations are necessary to yield a solution. 
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From the graph theory point the wires of an electrical circuit may be considered as the 

edges of a graph and the terminals connecting the wires as vertices. His Voltage law could 

then be applied to every cycle of edges and his Current law to each vertex. This generated 

a set of linear equations, not necessarily independent of one another. In his 1847 paper 

Kirchhoff explained how a fundamental set of cycles may be developed and proved that, 

for any connected graph with m vertices and n edges, a fundamental set always contains n 

- m + 1 cycles. 

Kirchhoff's two papers included the development of what would be called a spanning 

tree (a subgraph H of a connected graph G that includes all the vertices of G and is also a 

tree, as shown in the diagram below). These ideas were later taken up by Oswald Veblen 

(see Chapter 4). 

b b .. ------------------~. 

c 

G H 

At the time KirchhofPs work was not recognised as significant to what was to become 

graph theory, but he was the first to use algebraic methods when studying electrical 

networks. Over the next century several leading mathematicians used his ideas and 

techniques in the development of both topology and graph theory. 

Johann Benedict Listing (1808-1882) 

In 1847 Listing published a significant paper in what was to become topology. Topology is 

an area of mathematics concerned with properties that are preserved under continuous 

deformation of objects; for example deformations that include stretching but not tearing or 
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gluing. The paper entitled Vorstudien zur topologie (Introductory studies in topology) [19] 

studied geometry in terms of position rather than angles and distances and included work 

on diagram-tracing problems. Although he had used the word topology in correspondence 

for some years, possibly as early as 1836, it was in this paper that the word was first 

published. 

He continued his work on topology with a paper in 1861 [20]. In it he defined 

complexes and investigated their connection with Euler's formula. He used the word 

'complexes' as they were assembled from simpler objects and examined their topological 

properties. This work was described in [2]: 

... especially the question of how such properties affect the generalizations of Euler's formula. The 

properties were given names such as 'periphraxis' and 'cyclosis', borrowed from the biological 

sciences. 

This \vork was developed by other mathematicians including Henri Poincare (1854-1912) 

\vho applied algebraic methods to the subject. This paper also included an example of a 

one-sided surface \\'hich was also discovered by August Ferdinand Mobius (1790-1868), 

independently a few months later, and is now known as a Mobius band. 

In his development of algebraic topology, Poincare defined cells as the building blocks 

of Listing's complexes and applied Kirchhoff's approach of representing equations in 

matrix form (called the incidence matrix of the graph), in place of a set of linear equations 

which described how the cells were used to construct complexes. The cells included O-cells 

(vertices) and I-cells (edges) and these were used to draw a graph. These ideas would also 

be taken up by Oswald Veblen (see Chapter 4). 

Thomas Pcnyngton Kirkman (1806-1895) 

Thomas Kirkman \vas a Church of England vicar and mathematical amateur (although he 

had a degree that included mathematics) of the kind that was regularly found in Britain at 
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the time. He published over 60 substantial mathematical papers and many more minor 

ones. 

One of his areas of study was what he called 'polyedra~, and in 1855, he published the 

first [21] of a series of papers on the subject - a topic in which he retained an interest for 

the rest of his life. In 1855, he presented a paper [22] to the Royal Society that considered 

the question: 

Given the graph of a polyedron, can one always find a circuit which passes through each vertex 

once and only once? 

The answer to this question was no. Whilst in many cases such a circuit can be found, 

there were others for which a circuit does not exist. Ho\vever, his effort \vas not \\'asted, as 

in another part of the paper he gave conditions for a class of graphs that have no complete 

cycle of the kind required. He included a general proof of the fact that a polyhedron \vith 

an odd number of vertices and each face having an even number of edges, has no circuit 

that passes through all of the vertices. 

\Villiam Ro\van Ilamilton (1805-1865) 

William Hamilton was the leading mathematician and astronomer in Ireland during the 

19th century. In 1835, he developed equations of motion for a general dynamical system, 

which incorporated the symbol H, now knO\vn as the llam ilron ian function; II is defined as 

a function of time and the velocities and positions of the constituent masses of a system. 

For some centuries complex numbers had been viewed \vith distrust and Hamilton 

spent fifteen years studying them. He believed that the expression a + ib was not the 

correct way to define a complex number, rather it should be regarded as an ordered pair of 

real numbers, (a, b), under certain rules. He tried to extend his idea to complex number 

triples in three dimensions (a, b, e), written a + ib + je, "'here i andj are t,,'o distinct and 

independent square roots of -1. He developed 'quatemions', a number quadruple of the 

form a + ib + jc + kd where ;2 = j2 = !C = ijk = -1 although the multiplication rule is not 
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commutative as the order in which two quatemions are multiplied results in different 

ans\vers. a is real number called the scalar part and ib + jc + kd, the vector part. The vector 

part is the expression of the line from the origin in three-dimensional space. Hamilton was 

obsessed with this work, which was less useful at the time than he had hoped, but his 

discovery of non-commutative systems led to a revolution in the development of algebra. 

[23] 

There are many systems of non-commutative algebra and one of these, discovered by 

Hamilton and named The Icosian Calculus [24], can be interpreted in terms of cyclic paths 

on the graph of a regular dodecahedron. This he developed into a game called The Icosian 

Game, which comprised a number of problems associated with tracing out paths and cycles 

on a dodecahedral graph. A second game was described in [25] thus: 

There was another version of Hamilton's game, involving a solid dodecahedron ... and known as 

'The Traveller's Dodecahedron' or 'A Voyage Round the World'. In this game, the vertices 

represented twenty important places: Brussels, Canton, Delhi, and so on, ending with Zanzibar. 

Each vertex was marked by a peg, and a thread could be looped around these pegs to indicate a 

path, or circuit. A complete circuit, passing through each place once only, was called a 'voyage 

round the world'. 

A circuit \vhich passes through each vertex of a graph is now known as a Hamiltonian 

cycle and the corresponding graph is said to be Hamiltonian. Hamilton added to this work 

in his paper of 1856 [26]. 

It should be recorded that Kirkman, who independently developed more general and 

earlier \\'ork on paths and cycles and was the first to publish his ideas, did not receive the 

historical credit he deserves. As has happened many times, someone else, this time 

Hamilton, has had his name associated with terms that are used as standard today. It is 

kno\\n from letters behveen them that Hamilton visited Kirkman at his rectory during 

August 1861 and they enjoyed a mutual respect, albeit brief, as Hamilton died in 1865 

[25]. 

187 



Arthur Cayley (1805-1865) 

Arthur Cayley was an English mathematician and barrister who made major contributions 

to many areas of mathematics. It was during his legal training that he met James Joseph 

Sylvester, who features prominently in Chapter 2 of this thesis, and they became lifelong 

friends and collaborators on mathematical matters, including invariant theory and 'what was 

to become graph theory. 

For his part, Cayley produced a number of graph theory papers between 1857 and 

1889. In 1857, he published the first paper [26] to use the word tree, as is now used in 

graph theory, a tree is defined as a connected graph that contains no cycles, although both 

Kirchhoff (spanning tree) and Karl Georg Christian von Staudt (1798-1867) had used the 

idea around ten years earlier; as a consequence, the number of edges is one fewer than the 

number of vertices, and a connected graph with this property must be a tree. The study of 

trees stemmed from the study of operators in the differential calculus. 

• I !y t 
The trees with up to five vertices. 

His paper, inspired by Sylvester's work on what he called 'differential transfonnation and 

the reversion of serieses', dealt with rooted trees only. The first part of the paper was given 

over to explaining the correspondence with differential operators then progressed to the 

problem of calculating the number An of rooted trees with n edges. 

As described in [2] 'he solved this problem by using two elementary techniques and 

one clever idea'. The first technique was to replace a sequence of numbers, Ao, AI, A2 . ... by 

a generating function, A (x) = Ao + A IX + A2~ + ... then developing the argument with the 
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function in place of the sequence. The second technique was to remove the root and the 

edges meeting it from the rooted tree, resulting in a collection of new rooted trees whose 

roots are the vertices adjacent to the original root. He then developed a generating function 

for the number of rooted trees: 

1 + Xr+l + ~(r+l) + ... = (1 -rlrl 

where r is the number of edges of one particular rooted tree. Multiplying together all the 

generating functions for rooted trees gives: 

(I-xr1 (1-~rAI (I-x3
) -A2 ••• 

His 'clever idea' was that he could see that the coefficients of the powers of x in the 

product are developed exactly as those of the generating function for the numbers of rooted 

trees. This means that the above product is equal to: 

1 + A IX + A2~ + AJX3 + ... 

The paper concluded with mention of a method of calculating Br, the number of trees with 

r free branches. In 1881 he published a short paper [27] which developed a method for 

counting unrooted trees. 

Both Cayley and Sylvester also studied chemical molecules. In 1874, Cayley 

presented a paper On the mathematical theory of isomers [28]. This short paper allowed 

Cayley to apply his work on trees to another field of study. Isomers are compounds that 

have the same chemical formula, but different atomic configurations. This was one of a 

number of papers where he applied trees to his work on chemical compositions. Two 

further papers, in 1875 [29] and 1877 [30], also dealt with the connection between trees 

and chemical composition. These included a tree-counting method for finding the number 

of compounds CnH2n+1 (alkanes or paraffins) with a prescribed number of carbon atoms. 

This area of his scholarship was described in [2] as: 

This fusion of mathematical and chemical ideas inspired some of the terminology which is now 

standard in graph theory, including the word 'graph' itself. 
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Over a period of thirty years Cayley occasionally returned to his study of trees, and in 

1889 he published a paper [31] outlining what is now known as Cayley's theorem. The 

problem posed in the paper \vas: given n labelled vertices, how many ways In are there of 

joining the vertices to form a tree? The theorem included the formula In = nn-2 \vhich \vas 

used to calculate In. - for example, 14 = 16. The 'proof he provided was deficient, as he 

considered the case n = 6 only and the argument he offered could not easily be applied to 

larger values of n. However, since then there have been a number of proofs; perhaps the 

best was by the German mathematician Heinz Priifer(1896-1934) in 1918. 

James Joseph Sylvester (1814-1897) 

Sylvester was another English mathematician who became a barrister. He was also an 

actuary for eleven years. As mentioned earlier, Sylvester met Cayley during their legal 

training, discovered their mutual passion for combinatorial mathematics in particular. 

Despite their very different personalities they became lifelong friends, and during the 

1850s worked together on the algebraic theory of invariants. Sylvester worked with Kempe 

on linkages, making significant discoveries. Later he worked on number theory, invariant 

theory and published a proof of 'Newton's rule' for the roots of equations. Sylvester's 

contribution to graph theory in America is explored in Chapter 2. 

1.3 The four-colour problem 

The four-colour problem asks - can every map drawn on the plane be coloured with at 

most four colours so that no two neighbouring countries are coloured the same? 

Augustus De l\:lorgan (1806-1871) 

Augustus De Morgan was a graduate of Trinity College, Cambridge, \vho became 

professor of mathematics at University College, London. lie was an eccentric dogmatic 
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man \vhose place in the story of graph theory is that the first written mention of the four-

colour conjecture \vas in a letter from him to Hamilton, dated 23 October 1852; they 

corresponded for thirty years. The letter was written the same day that one of De Morgan's 

students, Frederick Guthrie (1833-1886), had asked him about a map colouring problem 

that his brother Francis Guthrie (1831-1899) claimed to have proved. Francis Guthrie's 

'proof' did not stand up to interrogation as in [32] his brother Frederick wrote: 

Some thirty years ago, when I was attending Professor De Morgan's classes, my brother Francis 

Guthrie, ... showed me the fact that the greatest necessary number of colours to be used in colouring 

a map so as to avoid identity of colour in lineally contiguous districts is four. I should not be 

justified, after this lapse of time, in trying to give his proof, ... 

The quest for a solution to the four-colour problem had begun and a proof was published, a 

century and a quarter later. 

Hamilton did not appear to be very interested in the topic as his reply asserted 'I am 

not likely to attempt your quaternion of colours very soon' [33]. Perhaps because Hamilton 

seemed reluctant to pursue the colouring problem, De Morgan approached other 

mathematical friends hoping they would take up the challenge. One of these was William 

Whe\vell, Master of Trinity College, Cambridge. In 1860, De Morgan reviewed a book by 

Whewell, The Philosophy of Discovery, Chapters Historical and Critical, in the literary 

journal The Athenaeum and his review included a description of the four-colour problem 

[34]. The review, rediscovered in 1976, was then believed to be the first publication of the 

problem. 

It is now possible to revise the date of the earliest known publication. This is due to a 

paper [35] by Brendan 0 McKay, in which he cites a letter that appeared in the 

Aliscellanea section of The Athenaeum on 10 June 1854. The letter read: 

Tinting A/aps. - In tinting maps, it is desirable for the sake of distinctness to use as few colours as 

possible, and at the same time no two conterminous divisions ought to be tinted the same. Now, I 

have found by experience that/our colours are necessary and sufficient for this purpose, - but I 

cannot prove that this is the case, unless the whole number of divisions does not exceed five. I 
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should like to see (or know where I can find) a general proof of this apparently simple proposition, 

which I am surprised never to have met with in any mathematical work. F.G. 

Professor McKay comments that: 

The magazine does not identify "F.G.", but the short period of time between this letter and the 

known interaction between Francis and Frederick Guthrie makes it highly likely that one of them 

was responsible. It doesn't seem possible to identify which of the brothers it was, but I favour 

Francis for the following, inconclusive, reason. In 1880, Frederick carefully attributed the discovery 

to Francis and did not mention having studied the problem himself[5]. 

The reference [5] above is reference [32] in this Appendix. 

In his earlier letter to Hamilton, De Morgan asserted that if a map has four countries, 

each neighbouring the other three, then one of the countries must be completely 

surrounded by the remaining three. In his letter to Whewell De Morgan stated that this 'vas 

an axiom that had lain 'wholly dormant' until it was connected to map colouring problems. 

After De Morgan's death, Cayley also worked on the four-colour problem. On 13 June 

1878, at a meeting of the London Mathematical Society, he raised a query that 'vas 

recorded in the Society'S Proceedings [36] as: 

Questions were asked by Prof. Cayley F.R.S. - Has a solution been given of the statement that in 

colouring a map of a country, divided into counties, only four colours are required, so that no two 

adjacent counties should be painted in the same colour. 

This was repeated in a report of the meeting in Nature on 11 July 1878 [37]. [These reports 

\\'ere, for many years, believed to be the earliest printed references to the four-colour 

problem]. 

In 1879 Cayley published a short note [38] in the Proceedings of the Royal 

Geographical Society setting out to describe succinctly the difficulties inherent in tackling 

the four-colour problem. He suggested that it might be feasible to develop maps that 

required disproportionately large numbers of colours to ensure that no two regions sharing 

a common boundary be the same colour. The paper included a positive suggestion that 

when developing a proof for the four-colour conjecture, restrictions could be imposed on 
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maps, a portent of things to come. One restriction was that they could be cubic maps 

(those \vith exactly three countries at each meeting point), as this is no less general than 

the full problem. He also pointed out that if the four-colour problem were true, then a 

colouring could be found so that only three colours are adjacent to the exterior boundary. 

Alfred Bray Kempe (1849-1922) 

Kempe, a fonner student of Cayley, ,,"hose early mathematical work was associated with 

the application of geometry to mechanical linkages, particularly with mechanisms that 

trace out a straight line, such as the movement of a piston in a steam engine. His interest in 

the subject had been triggered by a lecture given by Sylvester at the Royal Institution in 

1874 [39]. Kempe's work culminated in his presentation of a series of lectures at the Royal 

Institution in London in 1877, entitled How to draw a straight line: A lecture on linkages 

[40]. The publisher Macmillan collated the lectures and published a 51-page book, which 

became a standard for the topic. It was principally for his work on linkages that he was 

made a Fellow of the Royal Society. 

He is, however, remembered most for his celebrated (but fallacious) proof of the four

colour conjecture. His interest in the topic had been aroused by Cayley's query to the 

London Mathematical Society [36], which Kempe attended, and Cayley's memoir [38] in 

the Proceedings of the Royal Geographical Society in April 1879. Shortly afterwards, on 

17 July 1879, Kempe published a preview of his 'solution' in Nature [41]. Shortly after 

Kempe published 'simplified' versions, one an untitled abstract [42] in the Proceedings of 

the London Afathematical Society, and the second in Nature, under the title How to colour 

a map withfour colours [43]. 

Kempe's original full paper, On the geographical problem of the four colours [44], was 

published in the second volume of the American Journal of Alathematics in 1879, having 

been requested by Sylvester, and it is in this work that he claims to have proved the four-
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colour conjecture. The paper and its impact on graph theory in America are revie\ved in 

Chapter 2. Unfortunately, it contained a fatal error, which was uncovered eleven years later, 

during which time his proof had been generally accepted. It was Percy John Hea\\'ood (see 

Chapter 3), who had heard of the four-colour problem from Henry Smith, Savilian 

Professor of Geometry at Oxford University, who found the error in 1890. Indeed, Kempe 

and other mathematicians, including Peter Guthrie Tait (see Chapter 3) and \Villiam 

Edward Story (see Chapter 2), published further papers containing so-called 'improved' 

versions; however all these works included the fundamental error contained in the original 

paper. 

On 9 April 1891, at a meeting of the London Mathematical Society, Kempe admitted 

his error and recognised the work Heawood had done to uncover it. However he stressed 

that Heawood's 'criticism applied to my proof only and not to the theorem itsclr. As other 

scholars published supposed versions of Kempe's 'proor during the decade after the paper 

\vas published, all of them containing the false argument, it can be assumed that at the time 

his paper was widely accepted as including a valid proof. 

To remember Kempe solely because of this error is to do him an injustice, as his paper 

provided the foundations upon \vhich future mathematicians would base their \vork; in fact, 

some hundred years later, the computer-aided proof published in 1976 made use of two of 

his ideas. 

The first was the concept of unavoidability - that is, that it is impossible to construct a 

map \vithout at least one of four specified (unavoidable) configurations: a region with two 

neighbours, one with three neighbours, one with four neighbours, and one \vith five 

neighbours. The second was the concept of reducibility. These t\\'O concepts formed the 

basis on which Kenneth Appel and Wolfgang Baken developed their eventual proof in 1976 

(see Chapter 9). Kempe's short list of four unavoidable sets needed to be extended to 1936 

distinct cases in the proof, which then showed that all these cases were reducible. Kempe 
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also remarked that colouring problems of maps may be expressed in terms of vertices and 

edges of plane graphs only. In this he made use of the concept of duality although he did 

not develop the matter further. 

Conclusion 

Other combinatorial papers published during the early years of graph theory included 

\\'ork on diagram-tracing puzzles, the number of ways of completing a game of dominoes 

using all t\\"enty-eight pieces, and the mathematics involved with escaping from mazes or 

labyrinths. These are not included in this thesis as they did not figure in the work done by 

American mathematicians. 

The chronology of what was to become graph theory has now come from Euler in 1736 

to\vards the end of the nineteenth century. The work on graph theory done in Europe would 

influence mathematicians in the USA. Indeed, in the last quarter of that century, a number 

of notable scholars made significant, but different, contributions to the development of 

mathematics in America, and in particular to the development of graph theory. 
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Appendix ]] 

Biographies 

Biographies of the following are included in this Appendix: 

George David Birkhoff 

Arthur Cayley 

Augustus De Morgan 

Philip Franklin 

William Rowan Hamilton 

Percy John Heawood 

Lothar Wilhelm Julius Heffter 

Alfred Bray Kempe 

Gustav Robert Kirchhoff 

Thomas Penyngton Kirkman 

Daniel Clark Lewis, Jr. 

Sanders Mac Lane 

Eliakim Hastings Moore 

Simon Newcomb 

Benjamin Peirce 

Charles Sanders Peirce 

Julius Peter Christian Petersen 

William Edward Story 

James Joseph Sylvester 

Peter Guthrie Tait 

Heinrich Franz Friedrich Tietze 

WiHiam Thomas Tutte 

Oswald Veblen 

Hassler Whitney 
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equations, but his main work was on dynamics and ergodic theory. He was awarded the Quirini 

Stamplia Prize by the Royal Venice Institute of Science, Letters and Arts in 1918 and was the first 

recipient of the American Mathematical Society's Bocher Afemorial Prize in 1923. In 1933, he was 

awarded an honorary doctorate from Harvard. The citation called him; 

... first in our land among masters of mathematics, that great tool of science, greater still in the 

realm of pure imagination. 

In total he received thirteen honorary degrees; the citation for his ScD from Brown University in 

1923 included the phrase; 

... youngest professor of mathematics at our oldest university, already recognized throughout 

America and Europe as a leading discoverer and interpreter in the most fundamental of sciences. 

Others included ScDs from the University of Wisconsin in 1927 and the University of 

Pennsylvania in 1938. In 1933, on the occasion of the sooth anniversary of the founding of the 

university, the University of Poitiers awarded him a doctorate, as did the University of Paris in 

1936 with a glowing tribute which recalled the role Birkhoff played in the creation of the Institute 

Henri Poincare. He also received a doctorate from the University of Athens in 1937 and an LLD 

from the University of St. Andrews in 1938. The number of awards and honours bestowed on him 

by universities and learned societies around the world were an indication of Birkhoff's stature as a 

scholar. 

He had a long association with the American Mathematical Society, being Vice-President in 

1919, a Colloquium Lecturer in 1920, editor of the Transactions of the Society from 1921 to 1924, 

and President from 1925 to 1926. He also edited the Annals of Afathematics from 1911 to 1913 and 

the American Journal of Afathematics from 1943 to 1944. He was elected a member of numerous 

learned societies and invited to address them and international meetings. The lunar crater Birkhoff 

was named after him. 

Birkhoff was, perhaps, not the most modern or diplomatic of people - in fact, in terms of 

viewing the younger generation of the time he was a throwback to older times when the senior 

male in a family came first and all other members of the household were required to support him 

Of, if children, to do as they were commanded. A clue to this attitude was a comment that BirkhofT 

made to Vera Ames Widder shortly after her wedding in 1939, when he said, 'One career in a home 
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is enough' [1] - this to a woman who had received a PhD in mathematics from Bryn Mawr 

College; taught at Tufts University, Cambridge Junior College, the University of Massachusetts 

(Boston) and UCLA. Additionally, she had married David V Widder, who had been a postgraduate 

student of BirkhoWs at Harvard, and who after six years at Bryn Mawr College returned to 

Harvard and became a full professor. 

BirkhofT has been described as 'by nature intensely social', but this was mainly demonstrated 

by his relationships with academic like-minded people of similar background. He was afforded 

many opportunities to develop his social skills and personality through the great many congresses 

and meetings he attended; his numerous visits to Europe; his extensive contacts with scholars 

around the world; and his numerous trips around the globe. He received many invitations to write 

and speak on a wide range of subjects and, in later years, was able to make significant contributions 

to the administrative side of scholarship. 

For the last few years of his life he was aware that his heart was less than strong, but continued 

to work as hard as ever. lie died in his sleep at the age of sixty years. 

Rudolf and Gerda Fritsch wrote [2]: 

Because of his creativity and versatility, Birkhoff had, as a teacher and as a researcher, a great 

impact on his numerous students. He was one of the most important American mathematicians at 

the beginning of the 20th century. 
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I 64) h c ntinu B I' w rk on th caJculu of pr po ition . 
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Franklin, Philip 

Born 5 October 1898: New York City USA 

Died 27 January 1965: Belmont Mas achusetts, 
USA 

Philip Franklin enro11ed in the College of the City 

of New York in ]914. He received a BS in ]918, 

before going on to Princeton niversity for 

postgraduate study, receiving an MA in 1920 and a 

PhD in 1921 for his thesi The Four Color 

Problem. He remained at Princeton for a year as 

an instructor of mathematics and tben spent two years at Harvard niver ity a the Benjamin 

Peirce Instructor. At this time Birkhoff, well ensconced at Harvard which had an anti- emitic 

culture and given that Franklin was Jewish as well as his connection to Wiener hi brother-in-law 

it is not urprising that Franklin did not remain at Harvard [3]. 

In 1924, he moved to the Massachusetts Institute of Technology as an in tructor ill 

mathematics, becoming an assistant professor in 1925, an associate professor in 1930 and a full 

profe or in 1937 - a position he held until his retirement in June 1964. 

He was awarded a Guggenheim Fellowship for the year 1927- 1928 and introduced topology 

and colouring problems to the Institute; the 1933- 1934 issue of the MIT Journal includ d hi 

di cussion of the six-colour problem for the Klein bottle. This paper was al 0 published in the 

Journal of Mathematic and Phy, ics in 1934. He was secretary of the mathematics faculty n r th 

five years before his retirement. He also served as chairman of the Institute s ommittee on 

Academic Performance and hi colleagues on the committee de cribed him a an 'anonym u 

friend of tudents over many years. 

Pre ident tratton of MlT also paid tribute to him, aying that Franklin was a teacher 

... who has devoted himself with special distinction to the welfare of students and to the process f 

teaching. 
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Franklin published five graph theory papers, four on map-colouring and one which gave a 

shorter and alternative proof to that of Kirchhoff for the calculation of currents in electric circuits. 

In addition to his contributions to graph theory, he produced significant work on geometry, algebra, 

and analysis, including the calculus, differential equations, complex variables, and Fourier series. 

He was the author of some 60 research papers in the fields of geometry, topology, and analysis and 

wrote several exceptional books, three of which were used as texts for MIT courses. These books 

included Differential Equations for Electrical Engineers (1933), Treatise on Advanced Calculus 

(1940), Alethods of Advanced Calculus (1944), Fourier Alethods (1949), Differential and Integral 

Calculus (1953), Functions of a Complex Variable (1958) and Compact Calculus (1963) and the 

booklet The Four Color Problem in 1941. 

In 1943, the College of the City of New York awarded Franklin the Townsend Harris Medal 

for 

... the alumnus who achieved notable postgraduate distinction. 

He was managing editor of the Journal of Alathematics and Physics from 1929 to 1945 and editor 

from then until his death; and served on the Editorial Committee on Caruf1 Monographs and the 

Cham'enet Prize Committee of the Mathematical Association of America. 

Philip Franklin died at the Massachusetts General Hospital in 1965. He has been described as 

an even-tempered and mild man with a friendly sense of humour. He was a kind, respected man 

who enjoyed considerable and variable levels of affection. At his memorial service, Dean Harrison 

of MIT described him as 

... of almost Mr Chips proportions. 
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Hamilton, William Rowan 

B rn midni ht 3/4 Augu t 1805: Dublin Ir land 
th n part fthe nited Kingd m of r at 

Britain and Ireland) 

Died 2 ptember 1865: Dunsink Ireland 

William Rowan Hamilton mother died when h 

wa 12 and hi father died tw year later but 

the e events may have affected Hamilton le than 

mo t y ung b y experiencing the arne tragedie 

a he had been ent to I ive with an uncle at the age 

of 3. He howed signs of being exceptionally gifted at a very early age, and his uncle, the Reverend 

lame Hamilt n, a noted and accomplished linguist and polymath could provide a more fitting 

environment n r the young child ' s talents to develop. Thi proved successful as Hamilton wa truly 

a child prodigy, howing startling ability for mathematics during hi early years and studying many 

languages modern, clas ical and oriental. He came to the attention of the academic world at the 

age of ] 7 when he discovered a ignificant error in Laplace's Mecanique ele fe. In 1823 he 

enr lied at Trinity College Dublin becoming an out tanding student in both the classics and 

ci nce . H was appointed Astronomer Royal f Ireland, Director of the Dun ink Ob ervatory 

and Profe sor of A tronomy at Trinity ollege before he had even graduated. 

Hamilton mad contribution to many areas of sch larship, including mathematical phy ics 

dynamics and <i>ptic . He studied complex number, di covered quaternions and invented the 

lco ian calculus which wa related to his work on quatemions. Tn graph theory he will be mo t 

remembered fI r having th Hamiltonian cycle named after him. He received international 

r cognition when an ptical prediction he had made was proved experimentally. He wa knighted 

at ag 30 and wa c n idered lreland ' greate t man of cience. He became Pre ident of the Royal 

Iri h Academy in 1837 and whilst on his deathbed wa informed that he had been elected the fir t 

fI reign member of the National Academy of ciences of the U A. His death was the result of an 

acute attack of gout. 
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Heawood, P rc John 

Born 8 eptember 1861: ewport hrop hire 
ngland 

Died 24 January 1955: Durham, ngland 

Percy Heawood tudied at E eter ollege Oxford 

gaining degrees in both mathematic and cIa ics a 

BA in 1883 and an MA in 1887. He then became a 

lecturer at the Durham College (later Durham 

University) becoming a professor in 1911 and 

retiring in 1939 at the age of 78. He was Vice-Chancellor for the period 1926 to 1928. 

Heawood published many papers on map colouring, his first, in 1890, uncovered the error in 

Kempe s supposed proof and his last was some 70 years later, in 1949. He was a scholar f ancient 

language including Latin Greek and Hebrew. He sat on many committees, and held a number 0 

official lay positions within the Church of England. 

In addition to his mathematics his other claim to fame was the enormous effort he mad 

ecure funding to preserve Durham Castle. The castle was in danger of sliding down the hill up n 

which it was built. Heawood as secretary of the Durham Castle Preservation Committee, battled to 

raise the funds necessary to save this historic building. His work was rewarded by the University in 

1931 who conferred a Doctorate of Civil Laws, by Durham County ouncil, and by the 

government in 1939 by the award of Officer of the Order of the British mpire (OB ). 

Heawood was described as an eccentric with a large moustache that earned him the nickname 

Pu y. His obituary by the London Mathematical Society described him: 

In his appearance, manners and habits of thought Heawood was an extravagantly unusual man .. . 

He usualJy wore an Inverness cape of strange pattern and manifest antiquity, and carried an ancient 

handbag. His walk was delicate and hasty, and he was often accompanied by a dog, which was 

admitted to his lectures. 

Eccentric he may have been but he was held in affection, particli larly in Durham wher he I iv d 

for nearly eventy years and where he died at the age of93. 
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Heffter, Lothar \Vilhelm Julius 3 

Born 11 June 1862: Koslin, Gennany 

Died 1 January 1962: Freiburg im Breisgau, Gennany 

Lothar Heffter studied mathematics and physics at both Heidelberg and Berlin Universities. After 

graduating, he taught at Giessen, Bonn, Aachen and Kiel Universities, before taking up a position 

at Freiburg University in 1911. He remained in Freiburg until his death just six months short of his 

centenary. Although appointed emeritus professor in the mid-1930s, he continued to lecture part 

time, returning to full time teaching during World War II, due to the caB-up of other teaching stafT. 

His teaching career came to an end with the destruction ofFreiburg by allied bombing in 1944. 

He published a paper in 1891 dealing with the colouring of maps on closed orientable 

surfaces, and two further graph theory papers, Uber nachbarconfiguralionen, Iripe/sysleme und 

metacyklische gruppen in 1896 and Uber melacyklische gruppen und nachbarconfigurationen in 

1898. In old age, he published two autobiographies - Afein Lehensweg und meine Afalhemalische 

Arheit in 1937, and Beg/tickle Ruchschau auf 9 Jahrzehnle in 1952. He also published work on 

analytical geometry and linear difTerential equations. 

3 It has not been possible to obtain a photograph of Ileffier. 
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Kirchhoff, Gu tav Robert 

Born 12 March 1824: Konigsberg ermany 

Died 17 October 1887: Berlin Germany 

Gu tav Robert Kirchhoff was born in Konig berg 

where he was educated at the Albertu niver ity. 

While h wa th re he formulat d and published 

hi fam u law of electrical circuit. He graduated 

in 1847 and moved t Berlin. After graduating he 

p nt three year at the niver ity of B rlin here 

he earned hi d ctorate ith a di ertati n ba ed on hi law of electrical circui . In 1850 h 

became profe or of phy ics at Breslau at the age of 26' in the arne year he Iv d a pr blem 

onceming the deformation of ela tic plate . 

The mathematics that Kirchhoff mployed in hi law f electrical curren wa t b come 

applicable to what wa to become graph theory as it wa the fir t algebraic approach to the ubject. 

In 1854 he ttled in Heidelberg where he developed hi fundam ntal law of I ctr magn ti 

radiation. He worked on the nature of electrical currents proving that the vel ity of a current i 

indep ndent of the character of the wire and approximated the p d of light. He al tudi d black 

b dy radiation and the p ctrum of the un and di covered two chemical element ca ium and 

rubidium. 

In ] 876, he became profe or of theoretical physic at the niver ity of Berlin. Thi uit d 

Kirchh ff a for many year du to a di ability h wa forced to u e crutch or a wh I hair and 

hi incr a ingly failing health inhibited hi p rimental work. The mov allowed him t 

c ncentrate on teaching and theoretical re earcb. Among t oth r honour he wa I cted a fell w 

f the Royal ciety f dinburgh in 1868 and of th R yal ciety in 1875. In addition he wa 

a arded the Royal ci ty' Rumfold Medal in 1862 Ii r hi w rk n pectr py including hi 

three law of pectr copy and the lunar crater Kirchhoff was named aft r him. 
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h m irkman att od d a ammar h 01 in 

In r k and Latin" and h w d 

u h p ntial that hi rna te b Ii ed h uld 

n fit edu ati n. Hi fath r 

decid that h ch 1 at the age f 14 

and j 'n v here h w rked 

tim h continued t tudy language, adding rench and German. 

ntrary t hi h ntered rinity College, Dublin, to tudy mathematic , 

phil ph , th cienc . Returning to ngland with his BA he entered the Church of 

ngl n in 1 35. H ha tw bri f curacie bef4 re being appointed as the rector of the parish of 

uth orth in anc hire in 1845, where he remained until 1892. 

H j fi t math matic pap r pubJi hed in 1847 in which he showed the existence of s -

caB d Leiner . y lem m 7 year b fore teioer posed the que ti n of whether uch sy tern 

fthe riginator not rec j ing due recognition of di covery. However, 

hi nam ha as iated with th fifteen cho 19irls problem which he po ed in 1850: 

ifteen young ladi fa cho 1 walk out three abreast for even days in succession: it is required to 

arrang them daily that n two shall walk abreast more than once. 

luti n t thi con tructing a 0- alled re olvable design. 

uring hi Ii etim , h publi hed a c n id rable number f both theological pamphlets and 

math matical pap r. Hi mathematical output includ d work on combinatorial puzzles, 

g n rali ations quat mion ge m try and pint of congruence of Pascal line thi latter w rk 

b iog includ d in tandard t d:. In graph the ry he tudied enumeration f polyhedra and cyc] 

on p I hedra. t th ag f 78, he publi h d hi first paper on knot and went on to collaborate 

jth ail, pr du jog anum r of paper and tabl n the cla ification of knot with eight, nine 

and t n ro in . H wa el ct d a Fellow fthe R ya] ci ty in 1857. 
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Lelvis, Jr. Daniel Clark 4 

Born 14 August 1904: Millview, New Jersey, USA 

Died 19 June 1997: Baltimore, Maryland, USA 

Lewis was awarded AB and AM degrees from Haverford College, Pennsylvania, in 1926 and 1928, 

and in 1932 he received a PhD from Harvard for his dissertation titled Infinite Systems of Ordinary 

Differential Equations with Applications to Certain Second Order Non-Linear Partial Differential 

Equations of H>perbolic T>pe under the supervision of G. D. Birkhoff. He was a National ~ouncil 

Research Fellow from 1933 to 1935, before going on to become an instructor in mathematics at 

Cornell University, and assistant professor, then associate professor at the University of New 

Hampshire, before moving to the University of Maryland in Baltimore, in 1946. He worked from 

1943 to 1945 at the War Research Establishment at Columbia University. In 1948, he became 

Professor of Applied Mathematics at The Johns Hopkins University, becoming Emeritus Professor 

in 1971, and from 1958 to 1959 he carried out research at Princeton's Institute for Advanced Study. 

He was a consultant to industry and government, contributed many articles to (and undertook 

reviews for) mathematical journals, and was editor of the American Journal of Afathematics from 

1949 to 1952. His research topics included ordinary differential equations in the real domain (the 

set of real numbers), dynamical systems, and partial differential equations, as well as the four-

colour map problem. He discovered and developed the theory of 'autosynartetic' solutions, 

general ising a theory of Poincare on periodic solutions of ordinary differential equations. 

Around the time of World War II Lewis collaborated with G. D. Birkhoff, and in 1946 their 

lengthy and impressive paper Chromatic polynomials was published. This paper was an attempt to 

bring together all previous work on map colouring and to offer some of their own conjectures. 

4 It has not been possible to obtain a photograph of Lewis 
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acLane, aunders 

Born 4 ugust 1909: aftville. Connecticut, 

Died 14 pril 2005: an Francisco California, 
A 

Ith ugh chri ten d Le lie aunder MacLane. his 

parent arne to di like the name Le lie 0 it was 

dropp d. He nroll d at Yale University in 1926 

btaining a bachelor d gree in phy ics in 1930, an 

M \\hil t a fellow at the Univer ity of Chicago in 1931, and a PhD in mathematics from the 

niv r ity f ottingen in 1934 for his thesis Abbreviated Proofs in the Logical Calculus. At 

hicago MacLane was strongly influenced by Eliakim Hastings Moore, and accepted Moore's 

invitation t undertake graduate re earch at G5ttingen. He was the Peirce instructor of mathematics 

at Harvard niversity from 1934 to ) 936, then instructor at Cornell and Chicago Universities, each 

for a ear, b fi re joining the mathematics faculty at Harvard as assistant professor in 1938, 

b c ming a full profe r in 1947. 

In 1941, he collaborated with Garrett Birkhoff producing a significant book, A Survey of 

Modern Algebra. hi wa in trumental in modernising the teaching of algebra in co]]eges and 

univer itie . MacLane also worked on logic, valuations, and their extensions to poJynomiaJ rings, 

and category theory. He carried out valuable war work as part of the Applied Mathematics Group 

at olumbia Uni er ity during World War II, and corresponded with Whitney. Between 1935 and 

1937. h publi h d three pap rs on graph theory which included extensions to Whitney's work. 

He wa th r cipi nt of many honorary degrees, including doctorates from Purdue, Yale and 

la go Univer itie. In 1989 he wa awarded America s highest award for scientific 

achie ernen, the Nati nal Medal of cience, as well as being awarded the Chauvenet Prize and the 

Di tingui hed ervice ward of the Mathematical Association of America, and the Steele Career 

Prize of the m rican Math matical ociety. He was President of the American Mathematical 

ci ty fr m 1973 to 1974. 

215 



Moore liakim Ha ting 

Born 26 January 1862: Marietta, Ohio U A 

Died 30 D c mb r 1932: hicago A 

Moor attended Wo dward High ch I from 

1876 to 1879 and hi love of mathematics and 

a tronomy as trigger d hil t working for the 

director of the incinnati Ob rvat ry during one 

ummer vacation. H enr lied at Yale at the age 

of 17 earning hi A.B degree in ] 883 and his 

d ctorate two year later. 

He wa encouraged by hi upervi r to travel to Germany to continue hi tudi wh r 

during the academic year 1885- 86 he attended the Univer itie f Gottingen and B rlin. n 

retuning to the in 1886 Mo re became a high cho I instructor r a year and then a tut rat 

Yale for two years before taking up a permanent po ition at orthwe tern niver ity in ] 889. In 

1892 he wa appointed profes or of mathematic and acting head of the D partm nt f 

Mathematic at the new niver ity of hicago a great honour for such a young cholar b coming 

head in 1896. He erved a Vice-Presid nt of the American Mathematical ciety from 1898 t 

1900 w elected Pre ident in 1901 and olloquium Lecturer in 1906. He r ceived h n rary 

d gr e fr m ottingen Yale lark T ronto Kan as and orthwe tern niver iti 

M or main ar as of work were in algebra, group and the foundati n of g metry. In lat r 

ar he worked on the ~ undation of anaJy i . Although he did not publi h any graph-theoretical 

work he wa th doctoral upervi or to b th Veblen and Birkh ff. In later year h 

foundati n ofanaly i . Raymond lare Archibald umm d up M re a fI Ilow [4]: 

Mo re wa an e traordinary geniu vivid imaginative ympath tic foremo t leader in fr eing 

American mathematics from dependence on foreign universitie and in building up a vigorou 

American chool drawing unto i lfworkers from all parts of the world. 
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ewcomb, imOD 

Born ] 2 March 1835: WaJlace 0 a cotia 
anada 

Died ] 1 Jul 1909: Wa hington D , U A 

1m n \ comb w H ler Whitne ' maternal 

grandfath r and hi m t dj tingui hed for bear. 

With little formal educati n e cept that taught by 

hi itinerant ch It ach r father, he was apprenticed to an herbalist at age 16. His employer turned 

ut t b a charlatan" 0 ewcomb walked out on his job and, with no money in his pocket, walked 

120 mile fr m ali bury to the port of Calais in Maine, and worked his pas age on-board ship to 

al m,M chu tt, here he joined his father who had earlier moved to the United States. 

wc mb taught in high cho I and worked as a private tutor, whilst continuing his studies in 

hi pare tim . He joined the American Nautical Almanac Office, studying part-time at the 

awr n e cientific chI, up rvi ed by Benjamin Pierce, and graduated with a BS in 1858. In 

186], he b am profe r of mathematic and astronomer at the Naval Observatory in 

Wa hingt n. r hi tr n mical work on the po itions of Uranus and Neptune, the Royal 

iety awarded him its old Medal in 1874 presented by Arthur Cayley. In 1877, 

e c mb b came director of the American Nautical Almanac Office and, along with his 

incr a ingly nj r position within academia· he was promoted to the rank of Rear Admiral. In 

1884 a app inted profe or of mathematics and astronomy at 10hns Hopkins University, a 

P t hich h h Id until 1893. Much honoured, he served as President of the American 

Mathematical 0 i ty from 1897 to 1898. The following geographical features are named after 

him~ ape ewc mb on the Hoyt Island, Greenland; the Lunar crater Newcomb; the Martian 

rater ewc mb· and the min r planet #855 Newcombia. Additionally, a U Navy surveying hip 

w named the U imon N wcomb. In the autumn of 1908 he became ill, diagnosed with cancer 

ladder. He was buried with military honour in Arlington National emetery a c remony 

att nd d by Pr ident William aft and r pre entatives from e era1 foreign governments. 
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Peirce Benjamin 

Born 4 Apri I 1809: alem Massachu etts A 

Died 6 October 1880: ambridge 
Mas achusetts U A 

Benjamin Peirce s father was a state leglslat r in 

Mas achusett as well as being a I ibrariao at 

Harvard. he young Benjamin was educated at 

alem Pri ate Grammar chool and entered 

Harvard in 1825 aged 16. He graduated in 1829, 

b coming a teacher for two year before b iog appointed a tutor at Harvard where in 1833 h 

became profe or of mathematics and natural philo ophy. Aloin 1833 he received a Mast r 

Degree at Harvard, and although he did not earn a doctorate the fronti pie of the fir t i u 0 th 

Journal of Mathematic record that he was an LL.D (probably an honorary degre . In 1842 h 

b came Perkin Profes or hip of Mathematics and Astronomy, a position h h Id until hi death. 

During the early part of his career, Peirce wrote and publi hed a number 0 te tb k. 

Although the e book were well written and contained elegant mathematic they were c n id r d 

too demanding n r tudent of that time. He al 0 received some criticism of hi tyle f I cturing 

which many tudents found difficult to follow: only his more able pupil were equipp d to 

appreciate hi nthu iasm for mathematic and to benefit from it. He contribut d to the 

determination of the orbit of eptune, and calculated the perturbation of eptune on the orbit f 

ranu and other pLanets· this led to his app intmeot as Director of Longitude Det rminati n 

the oastal urvey in 1852 and then Director of the urvey fr m 1867 to 1874. 

Peirce e plor d a wide range of re earch topics and wa instrumental in providing the 

educational tructure that would encourage mathematicians of America in re earch and have a 

con iderable influence on many of tho e who would develop the ubject in the . During hi 

tim at Harvard Peirce wa influential in elevating the status of the colleg t that of a leading 

national in titution. He wa the leading mathematician and astronomer in the and i r gard d as 

having made the ftf t imp rtant American math matical re earch c ntributi n. 
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Peir barJe ,and 

B rn 10 ambridge. 
Ma 

Died 19 ril191 ilford Penn yl ania, U A 

a oung b Peif e thri ed on the 

int 11 tual atmo pher p ailing at the family 

h m. \\!h r hi fath r 8 njamin Peirce~ 

nt rtain d a ad mic . p litician • p et cienti t 

and math mati ian. Itb ugh this pro ided a 

eh la tic v'ronm nt th r a a di ad antage to 

th \i a h rai d' hi father a oided discipline, fearing that it might inhibit independence of 

th ught. hi indulg ot attitud provid d a platform where he could show off his undoubted geniu , 

but it I ft him n t kn \\ ing h w to behave and interact with people. This lack of parental guidance 

mad it difficult ~ r him to fit in to oci ty, and led to a problematic future life [5]. 

II nr II d at Harvard ollege at age 15 but he did not shine in his work, his preference being 

n hi own ith b ks of his own choosing. He graduated with an AD in 1859, and then 

ent r d th awr nee cientific chool bing under the influence of his father and meeting with 

th n in hi und rgraduate years, H received a Master's degree from Harvard in 

1862 and a cB fr m the Lawrence cientific chool 1863. He remained at Harvard doing graduate 

r arch, nd in th pring f 1865 he pre ented the Harvard Lectures on The Logic of Science. 

Peirce int re t and area of re arch were extremely wide ranging including probability and 

tati tic which he utili ed in hi philo phical views and cientific methods. His research included 

mathematical rk, p ychophy ic (or experimental p ychology) and species classification. He a1 0 

p nt c n id rabl time n th four-colour problem on one occa ion claiming that he had found a 

lution [6]. 

rom 1859 in paral1 1 ith his academic career, Peirce held a po ition as a part-time a sistant 

at the urv for nearly thirty year; orne f hi tim with the urvey was under hi father as 

dir ct r. In 1876, Peirc pr duced one of hi rno t notable inventions, the Quincuncial Map 
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Projection, published in the second volume of the American Journal of Afathematics in 1879; this 

earned him the reputation as one of the greatest map-makers up to that time. Although his invention 

was not taken up at that time, it was being used in the middle of the twentieth century to display air 

routes. 

In 1879, he obtained the position of part-time lecturer in logic at Johns Hopkins University 

under Sylvester, but due to marital difficulties this appointment lasted only a few years. Thereafter 

his only steady work, and therefore income, was from his part-time work with the Coast Survey. He 

became increasingly quarrelsome and distanced from his superiors, working in isolation at a time 

when the Survey was experiencing a lack of funding, and in 1890 his long-awaited major report was 

submitted to the Survey - but they declined to publish it without considerable revision. This Peirce 

failed to do, and at the end of 1891 the Survey ran out of patience and requested his resignation. 

This left him with no regular income. Much of his work after 1890 was either rejected for 

publication or incomplete. 

Although he was not accorded the undoubted recognition he deserved during his lifetime, 

there is now a growing interest in his work, especially in logic. Some believe that he was the 

greatest original inteJlect to have been born on the American continents [7]. To gauge how his 

contemporaries saw Peirce, it is pertinent to quote Thomas Scott Fiske who, in recalling the early 

days of the American Mathematical Society, described Peirce in the early 1890s [8]: 

His dramatic manner, his reckless disregard of accuracy in what he termed "unimportant details", 

his clever newspaper articles describing the meetings of our young Society interested and amused 

us all. ... He was always hard up, living partly on what he could borrow from friends, and partly on 

what he got from odd jobs ... He was equally brilliant, whether under the influence of liquor or 

otherwise, and his company was prized by the various organisations to which he belonged; and he 

was never dropped from any of them even though he was unable to pay his dues. 

Indeed, for much of his adult life he lived like a social outcast, sometimes even stealing to eat, and 

occasionally being without a permanent address. He believed that there was an international plot 

conspiring to undermine and destroy him. His continuing dream was to generate vast wealth from 

amazing inventions, but this never happened. Peirce died of cancer in his seventy-fifth year, in 

isolation on his farm. 
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et r n, Juli Pet r hri ti n 

B m 16 June 1839: or, D nmark 

Oi d 5 ugu t 1910: penhagen, 0 nmark 

Juiill 

th 

r er, attended 

hi int r t in math rti ularl in pr blem 

01 ing. H pent n id rabl tim trying t 

th cia i pr bl m f tri ting an angle with rule and compa e. Although wanting to provide 

th If dllcation du to lack of finance, his parents w r forced to take him from the 

cad m . H w nt a an appr ntic to hi uncle, a groc r in Kolding, Jutland, who died a year later 

un P ter n ith ufficient mon for him to return to ore and continue his studie . 

nt red th ollege of Technology in openhag n in ] 856 where he published hi first 

pap r n logarithm . In 1860 he pa ed his civil engineering examinations but having used up hi 

inheritan he a unabl to upp rt himself through university. 0 he took a position at a private 

ch 5 t 1871 t geth r with other teaching jobs to increase hi income. He entered th 

niver ity f P nhagen in ] 862 graduating with a Master of Mathematics in 1868, and was 

award d hi doct rate in 1871. He returned to the ollege of Technology as a dozent where he 

taught until f teaching at a p Iytechnic and a military academy. In 1877, he 

b cam pr fe r f math matics at the University of openhagen, a position that he held until hi 

retir m nt. 

n mo t n table work a in g metry and his graph-theoretical papers w uld be 

taken up b a numb r of mathematician in the A. Hi name is remembered for the Petersen 

graph and he al 0 publi h d an imp rtant paper on graph factori ation. He published a number of 

highly r garded ch I and coil ge texts. Some of his re earch topic were from alg bra and 

om try. numb r theory, analy i ,differential equati n and mechanic. Additionally he publi h d 

w rk n math matical phy ic math matical ec n mic , and crypt graphy. 

H wa a fi under memb r fth Dani h Mathematical ociety in 1873. 
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tory, William Edward 

B rn 29 April 1850: Bo ton Massachu tt 
U A 

Died 10 April 1930: Worce ter Ma sachu ett 
A 

William t ry s ance tor the nglishman Ii ha 

tory emigrated to America around 1700 and 

settled in Bo ton Massachu etts. Other forebears 

included Dr Ii ha t ry one of the citiz n of 

Bunker Hill who took part in the Bo ton ea Party. 

t ry entered Harvard n iver ity in 1867 graduating with honour in 1871 as on of the fir t 

student to be awarded the newly created honour degree in mathematic. He tray II d to rman 

studying at both Berlin and eipzig Universities obtaining a PhD from the latter in 1875 r hi 

the is On the Algebraic Relation Exi ting between the Pol~ of the Binary Quantic. n r turning 

home he became a tutor at Harvard, and mu t have impres ed Benjamin Peirc uch that h n 

ylve ter approached Peirce for sugge tions of uitable mathematician worthy of c n id rati n t 

j in the newly founded Johns Hopkins niver ity Peirce recommended tory. Whil t th r 

became embr i1ed in the con trover y surrounding Kempe s infamous paper n the fj ur- I r 

problem and in pre enting it and a follow-up paper of hi own he incurred ylve ter wrath. tory 

wa to continue to tudy the four-colour problem for most 0 hi academic lit! . 

In 1887 tory became head of mathematic at the newly founded lark m r ity 10 

Worce ter Mas achusett where he devel p d a first-cIa PhD programm . Thi wa a cr dit t 

him with twenty-five doctorate awarded between 1892 and 1921 , nineteen und r hi dir ct 

upervision. In pite of all hi good work bad luck struck tory in ] 921 when uppo d financial 

problem tI rced the univer ity to clo e it graduate programm and he wa r quired t r ign. 

During hi later years t ry became intere ted in the hi t ry f mathematic and mpil d a 

c n iderable bibliography of mathematic and mathematician' the m rican Mathern tical 

ciety n w I ks after thi archive. 
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r J m Jo pb 

B rn 3 eptember 1814: London, ngland 

i d 15 March 1897: L nd n, ngland 

Jam J ph ~ fath r. a m rchant wa nam d 

braham Jo ph. In his 1e n Jame Jo eph added 

th umam ha ing three name wa 

a n ary r quir ment il r emigrati n to the U A 

a p being tak n by hi br th r at the time). 

In 182 . at the age of 14, he entered the non- ectarian Univer ity ollege, London, where he 

wa taught by 0 M rgan. fier five months, hi family decided to withdrew him. How ver they 

er k n for him t b nefit from a uni er ity education 0 they ent him to tudy at the Royal 

In titute in Li rp I. In 1831 , h ent to t. John ollege at Cambridge Univer ity, although he 

uffi r d fr m a lengthy i lin that cau ed him to miss most of the academic year 1833- 35. 

Ith ugh a brilliant cholar, c ming econd in the highly valued Mathematical Tripos in 1837, he 

a not p rmitt d to re i hi degree. because he wa Jewi h and unwilling t sign up to the 

hirty- ine rticle of the hurch of England. However, he did obtain BA and M.A degree from 

Trinity 011 ge III ublin in 184]. At either ambridge or Oxford, or indeed at any ectarian 

in tituti n, h imilarly unable to obtain a univer ity position that his und ubted ability 

de erv d. hi was due t the conflict between hi religious ance try and the requirement of the 

tatutory tAct, hich was in force in Britain at that tim and which wa not re cinded until 

1871. rom 1837 to 1841, he wa Proil r of Natural Philo ophy at one of the few non- ectarian 

ni er ity 011 ge L ndon. 

In 1841 he became profe or of mathematic at the University of Virginia, in the nited tate 

f m flca hi application bing trongly supported by amongst other, De Morgan. Hi tenure 

lasted nly a ~ w month. wh n h re igned due t a cia h jth a tudent and ylve ter' perc pti n 

fth lack of upport from the niver ity in the matt f. 
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Unable to obtain a suitable post in America, he reluctantly returned to England where he 

gained employment for eleven years as an actuary at the Equity and Law Life Assurance Company 

in London; he also gave private lessons in mathematics. In 1846, he decided to study law and during 

his training as a barrister he met Cayley. Sylvester was an active researcher and published many 

papers during his career. He gave lectures at the Royal Institution, and on one occasion a member of 

his audience was Kempe, who worked with him on mechanical linkages, making significant 

discoveries. In 1855, Sylvester became professor of mathematics at the Royal Military Academy at 

Woolwich, where he rema~ned until 1870. He was reluctantly obliged to leave this employ, as new 

War Office regulations made it compulsory for teaching staff at military academies to retire at the 

age of fifty-five. 

He was head-hunted by The Johns Hopkins University's President, Daniel Coit Gilman. So 

Sylvester returned to America in 1876, becoming the first professor of mathematics at Johns 

Hopkins, where he enjoyed considerable success [9]. Finally, in 1883, at sixty-eight years of age, 

he was recognised in his native land. He applied for, and was offered, the Savilian Chair of 

Mathematics at Oxford University, a position he held until his death. In his late 70s, suffering from 

lapses of memory and partial blindness, he returned to London with a deputy appointed to cover his 

duties in Oxford. 

Like Cayley, he studied trees and their connection to chemical composition. While at Johns 

Hopkins he published a paper in which the word graph (in the sense of graph theory) was used for 

the first time, in a chemical context. He was familiar with the early days of the quest for a solution 

of the four-colour problem, having commissioned and published Kempe's paper that contained a 

false proof. 

Sylvester was awarded a number of honours and prizes, including election as a Fellow to the 

Royal Society in 1839 at the age of25, and was the recipient of the Royal Society'S Royal Medal in 

186 I and CopJey Gold Medal in 1880. The lunar feature Crater Sylvester was named in his honour. 

An unpredictable, erratic and flamboyant scholar, he could be brilliant, quick tempered, and 

restless, filled with immense enthusiasms and an insatiable appetite for knowledge. Throughout his 

life, he fought for the underdog in society. lie supported education for the working classes, for 

women, and for people who were discriminated against. 
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m 28 pri1 1 31: DaJk ith cotland 

ied 4 Jul I 0 I: din urgh, c tland 

Pet r uthri ait as 1. hen hi fath r 

r tary t alter Franci c tt (fifth duke of 

. h famil m d t dinburgh 

to Ii e with an unci. al a influenc d b hi 

nthu ia m nroll d 

in th dinburgh cadem at th ag f only 10. He topped hi cia s every year at the Academy, 

1I ing n la ic r th r than i nc , but became intere ted in mathematics during his fourth 

y r and h \J d much pTomi . In 1846 h won the mathematic dinburgh Academical Club 

Priz ating Jam I rk M w II 1831 - 1879) into third place; however the next year Maxwell 

triumph with ait coming ond. Maxw II and Tait entered the Univer ity of dinburgh in 

I 47 when ait wa 16, but aft r a ear ait moved to Peterh u e in Cambridge University, 

gr duatin a ni r \: rangier in th Mathematic ripos and first mith s prizeman. He remained 

th r a a 011 ge Belfast as pr fes or of mathematics in 1854. 

In 1859 he t k th hair f atural Philo ophy at th niversity of Edinburgh. 

it tu i d the four-colour problem' indeed he publi hed two paper that attempted to 

impl r pI nation to parts of Kemp fal e proof. He suggested an alternative approach 

t th pr bl m which ha b me known a Tail colouring or edge %uring. 

me 60 pap r and 22 book on many diver e t pic and together with William 

Ith ugh a u fut ci nti t and cholar, he was al 0 argumentative, having a numb r of publi 

h at d di put with fi How cienti t . He wa a trong upporter of the Royal ociety of Edinburgh 

and a ounder m mb r th dinburgh Mathematical ociety in 1883. Although never elected to 

h R al j ty, h a awarded their Royal Medal in l886. Tait was eccentric dr sed poorly, 

nd a id d dining ut or putting n a dre suit. He died h rtly after h retired. 
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Ti tze H inricb ranz ri dricb 

Born 13 ugu t 1880: chleinz, Au tria 

ied 17 ebruary 1964: Munich ermany 

Heinrich i tze wa 

Dir ctor of the 

n f mil Tietze the 

In titute at th 

niver ity of Vi nna H studied at th Techni che 

Hoch hule in Vi nna fr m 1898 to 1902 and then 

in Munich II r a year returning t Vi nna wh r h 

r cei ed hi d ctorate in 1904. 

e b cam Pri atdoz nt in V ienna in 1908, and b tween 191 0 and 1 rat th 

niver ity of Brunn now Bmo . He held profi r hip at th niv r i ofrlang n fr m 1 

25 and at the ni er ity f Munich fr m 1925 becoming emeritu r in 1 5 . 

ar I interrupted hi academic career wh n h rved in the Au trian rm fr m 191 t 1. 

Hi time at Munich c incided with the azi year In 

alth ugh hi p ition wa rea onably afe. 

ietze contribut d t the b ginning 

ubdivi ion of cell comple . Mo t of hi b 

ermany which mad lill difficult fi r him 

and fi rmulat d th ri n th 

and orne two hundr d pap r itt n 

during hi tim at Munich . Him tly remem ered fi r hi Tietze fran iformation , whi h 

... change one pre entation of a finitely pr ented group to another pre ntation without changin 

the group which i defined by the presentation. 

rked on kn t theory J rdan curve and c ntinu u mappin far 

a w II combinat rial gr up th ry. In addition his re arch mbrac d rul and mpa 

c n tructi partiti n the di tributi n f prim numb rand diffi r nti 

g om try. In graph th ry h wr te on th c louring . map on n n- ri ntab] urfa al 

rot a w II-kno n b Famou Prohl m of Mathematic. 

fi r hi contributi math matic including hi I cti n a a M m r arian 

f ci nc and 110 of the u trian cad my f ci nc 
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utte illiam hom 

B m 14 a 1917 in ev market uffolk, 
ngland 

OJ d e t Montr e Ontario, 

ill ho\ d earl academic promi e and 

d t in astronomy_ t age 11 he 

ambridge and unty High chool 

fi r ' . H n man acad mic prizes, which he 

trea ur d: th y er till t b found in his office 

at the n f hi lifi. In 1935 he enter d Trinity 

ambridg ,to tud atural ciences pecialising in Chemistry and graduating with a 

first-cla honour d gr e. He join d the Trinity Mathematical ociety and became firm life-long 

fri nd ith thr e mathematic tud nts - Leonard Bro k edric mith and Arthur Stone. They 

publi hed a pap r in 1940 (although by that time Tutte was undertaking war work) on squaring the 

'quare - th di iding f a quare into unequal smaller squares: although a recreational problem, it 

had link ith I ctrical n ork, and led to other mathematical applications. 

h rtl after tarting his po tgraduate study in chemistry, and after the outbreak of the econd 

W rid War, he wa appr ached by hi tutor and a ked to offer his services to the highly secret 

rg ni ati n at BI tchley Park the wartime headquarters of the British Government ode and 

iph r I. H re ermany and her allie' airborne communication were monitored. 

rypt grapher had m t with con iderable success with reading the German naval and air force 

n u ed by the arm FI H, proved to be more difficult to anaJy e. Tutte wa a ked 

to try to unravel the arm machine-cipher and with bril1iant ingenuity over a period of four months 

deduced the entire machine with ut v r ha ing en one. This wa a major contribution to the 

ucc fth alii in World War II, an achie ement of which utte could b rightly proud, being 

part f th ork that hort ned the war and a ed allied Ii es. After the war Tutte retunled to 

academic lift in ambridg. H was elected to a Re earch Fell w hip at Trinity olJege gaining a 

d ctorate in I 48 f; r a the i on graph theory An Algebraic Theory of Graph . 
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Following an invitation from H. S. M. Coxeter he emigrated to Canada, joining the University 

of Toronto in 1949 as a lecturer, and later as an associate professor. In 1962, he became Professor 

of Mathematics at the new University of Waterloo where he remained until his retirement, 

becoming Professor Emeritus. At Waterloo Tutte founded the world-famous Dcpartment of 

Combinatorics and Optimization and was involved in the foundation of the Journal of 

Combinatorial Theory. In 1958, he was elected a Fellow of the Royal Society of Canada, awarded 

the Society's Tory Medal in 1975, and elected Fellow of the Royal Society in 1987. In Octobcr 

200 I, he was inducted as an Officer of the Order of Canada. 

He published many papers and books including a seminal paper in 1959 in which he developed 

the work of Whitney on matroids and graphs and also the jointly published paper in 1973, with 

Whitney, which was an attempt to give a broad explanation for an approach to the four-colour 

problem; their intention to clarify the situation that existed in 1972. 

Having signed the Official Secrets Act in 1941 he felt obliged to remain silent regarding his 

work at Bletchley Park. However, in the mid-1990s the significance of Bletchley Park entered the 

public domain relieving him of the burden of remaining silent - but even then, he was not keen to 

discuss openly that period of his life. To sum him up, nothing could be better than a quotation from 

one of his neighbours, Jeremy Humphries, from West Montrose, a fitting tribute to a good and great 

man [10]: 

Bill was an old neighbour of mine; he was kind enough to play chess with me when I was a 

teenager (and he was in his late 50's). Years later, when I discovered in Singh's book that he was 

one of the mastenninds from Bletchley Park (something that none of his neighbours, nor his 

University of Waterloo colleagues knew in the early 1970's), I felt less badly about being regularly 

whupped by my kind neighbour. On discovering a whole new side to Bill (back in the 1970's, I 

thought of him as one of the world's leading experts on the Four Colour Map Problem), I tracked 

him down ... Even today, I continue to be amazed that he built an entire "new" career around graph 

theory, never able to claim credit for his remarkable intellectual accomplishment as a 24-year-old in 

World War II. Back in the early 1970's many believed that Bill would be the first to prove the Four 

Colour Map Conjecture .... BiJI was "robbed" of a (small) piece of his graph theory glory by a 

descendant of the Colossus machine that was built to implement his pencil-and-paper attack on the 

Lorenz cipher. 
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Veblen 0 aid 

m 24 Jun 1880: D orah.lo a U A 

Di d 10 Augu t 1960: Bf klin Maine A 

0\ aid bl 0" paternal grandpar nt emigrated 

fr m i on in in 1847. One of their 

childr n, nderson Veblen (1848- 1932), 

fath r. b came profe r of math matic 

and phy ic at the oiver ity of Iowa. Oswald 

nt red that un i er ity in 1894 graduating with an 

B in 1898. H th n went to Harvard or one year earning a econd AB in 1900, and then spent 

thr ear at th ni ersity of hicago gaining a PhD in ] 903 for his thesis A System of Axiom 

for Geometry. In 1905 h j in d the mathematical faculty at Princeton Univer ity. 

During World War J V bl n became a Major in the Ordnance in charge of firing and ballistic 

rk at the b rd n Proving Ground Maryland - a po ition that he retained throughout World 

ar II. Back at Princ ton after th ar, Veblen quickly became regarded as a leading geometer 

and b au of hi work many graduate student applied to study or to be employed there. He 

a i ted th Dan, H nry Burchard Fine, to develop the department and recruit other 

di tingui h d mathemati ian . In addition, hi re arch and influence ranged over many ar as f 

mathematics, including the D undation of geometry and topology, relativity theory and ymbolic 

logic. hr ugh th work of Veblen and his stud nts, Princeton becam one ofth leading centres f 

top 10 . a a re ult h earned the rare designati n ' statesman of mathematics' around the world, a 

de cription found in many article on Veblen [11]. Lat r he became interested in differential 

g metry, and fr m ] 922 rno t of hi publication were on thi ubject and its connection with 

r tati ity. Alth ugh few in number his pap r on graph theory, and particularly his 1916 

II quium lecture were very influential and were considered for many years the b t 

intr ducti n t th ubject' [12]. 
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Veblen was awarded many honorary degrees by American and overseas universities, and as he 

was a descendant of Norwegian grandparents, Norway conferred on him the award of Knight of the 

Royal Order of St Olaf, an honour that had also been conferred on his father. 

After the rise of Adolf Hitler in Germany, Veblen was much involved in the recruitment into 

the American academic world of many notable foreign mathematicians. This earned him 

considerable respect and not a little gratitude. He was an active member of the American 

Mathematical Society, being Vice-President in 1915, Colloquium Lecturer for the society in 1916, 

and President in 1923-24. The Henry Burchard Fine Professorship, the first mathematics research 

chair in the USA, was endowed at Princeton in 1926 and Veblen became its first incumbent. In the 

academic year] 928-] 929 he taught at Oxford University as part of an exchange with G II Hardy. 

In 1932, he resigned this position at Princeton University to become the first professor and chairman 

of the faculty of mathematics at the recently established Institute for Advanced Study at Princeton, 

becoming Emeritus Professor in 1950. 

During his last years he was partially blind, although he retained some peripheral vision. He 

worked to develop aids, for himself and others, to assist reading and one of his ideas was taken up 

and produced by the American Foundation for the Blind. Towards the end of his life, he was 

diagnosed with a heart problem, and although he continued to pursue his interests, he died in 1960 

at his summer home. 

There are many testimonies to Veblen, including the authoritative tribute to him by the faculty 

and trustees of the Institute for Advanced Study, who wrote [12]: 

We are acutely conscious of the loss to the Institute and to the world of learning of a major figure. 

Oswald Veblen was of great influence in developing the Institute as a centre for postdoctoral 

research ... He loved simplicity and disliked sham. He placed the standing of the Institute ahead of 

his personal convenience. He possessed the art of friendship, and his assistance was decisive for the 

careers of dozens of men. 

Veblen, one of the most influential mathematicians of the early twentieth century, will be 

remembered for his undoubted scholarly contributions to the subject and for his work in the 

development of mathematics, Princeton, and American scholarship in general. 
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Whitney,Ha ler 

B m 23 March 1907: ew York ity U A 

Died 10 May 1989: Princeton.ew Jersey 

Includ d in a p tted biography of William Dwight 

Whitney. philo)ogi t and one of the foremo t 

an krlt cholar of the econd half of the 

nin teenth c ntury, and Ha Jer's paternal 

grandfather, \i a the n 1I0wing entence: 

hrough both parent he wa descended from New ng]and stock remarkable alike for physical and 

menta) vjgour~ and he inherited all the oda) and intellectual advantages that were afforded by a 

community noted. in the history of w England, for the large number of distinguished men it 

pr duced. 

r m such communiti like the educated and relatively comfortably off New Englanders, came 

mentally and physically trong men who made considerable contributions, not on Iy to their own 

geographi al area. but al • in many ca es, to the wider world. This can also be said to be true of 

the m n from Id ngland and, as will be seen true of the ancestry of Hassler Whitney. 

Whitn s paternal ancestry can be traced back to Sir Baldwin Whitney of Whitney in 

Hereford hire. ngland who was born in the first half of the fourteenth century. From the sixteenth 

century, th her ditary knighthood was inherited by a branch of the family that did not lead to 

Ha sler Whitney and in 1635 ance tors of his, John and linor Whitney emigrated to America. 

nce there the family thrived and produced some notable citizens including a number of scholars, 

over the ne:>...i three hundred year or so. 

Both hi grandfather were learned men' hi maternal grandfather was imon Newcomb, the 

highly acclaimed mathematician and astronomer, Rear Admiral in the United State Navy, and one 

of America' foremo t international figures during the second half of the nineteenth century. 

Whitney father was ajudge. 
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By his own admission, Hassler's schooling was rather infonnal, which he appreciated. He 

claimed to have had little mathematics at school and none in college. His education included a 

period from 1921 to 1923 at a school in Switzerland, where he learned French and Gennan. He 

enrol1ed at Yale University for undergraduate studies in 1925, and earned a PhB in physics in 1928 

and a music degree in 1929. With Birkhoff as his supervisor at Harvard, he was awarded his PhD 

for his thesis in graph theory, The Co/Dring DIGraphs, which was based on Birkhoffs 1912 paper. 

Whitney produced seminal work in graph theory which was published in the years 1931-1937. 

Fo])owing this his interest moved to algebraic topology, where he made fundamental contributions. 

He made significant contributions to numerous mathematical topics - manifolds, cohomology, 

characteristic classes, classifying spaces, stratifications, and fibre bundles 

Like many other mathematicians, Whitney contributed to the war effort in World War II. He 

was part of the Applied Mathematics Group and was primarily responsible for studying the use of 

rockets in air warfare. He also carried out liaison work with numerous Anny and Navy units, and 

the British Air Commission. His co])eague, Saunders MacLane, recalled that this liaison work with 

its numerous visits had 'very effective results'. In an article by MacLane he wrote of Whitney's 

immediate contribution and reward [13]: 

George Piranian recalls it for me as follows: ... in the fall of 1943, the entire scientific staff of 

AMG-C gathered to witness your induction and introduction of Hassler Whitney. You described the 

difficulties with the mark 18 gunsight, and Hassler's quick perception and active engagement were 

spectacular .... immediately after the assembly's dispersal, Hassler withdrew to his office and began 

writing a scientific report. A few days later, there was a question whether Hassler should be 

pennitted to see his own report. The paper was classified, and Hassler's security clearance was held 

up". The clearance was eventually cleared. When AMG-C in November 1945 received a Naval 

Ordnance Development Award, Whitney received the first individual citation. 

During a long and successful career, Whitney amassed a large number of honours and awards, 

including membership of many learned societies and committees and honorary doctorates. He 

presented the American Mathematical Society's Colloquium lectures in 1945, was Vice-President 

of the Society in 1948-1949, and received a number of awards; including the National Medal of 

Science in 1976 conferred by President Carter. 
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In connection with his work on the teaching of mathematics to school pupils, the 

mathematician and educator Anneli Lax (1922-1999) wrote [14]: 

Hassler's second career occupied him during the last two decades of his life. Many of his 

mathematical, first-career colleagues and admirers wondered why such an incisive, original 

researcher would abandon his seminal work to tackle the complex intractable problems of 

education. And many of his second-career collaborators wondered why he gave up his prestigious 

academic position for activities that seemed lacking in scientific stimulation and challenge, full of 

potentially frustrating bureaucratic and political impediments to meaningful changes. ... These 

questions are still being asked, even after his death. 

On another occasion, he described his attitude to research as 'a search for inner reasons' of a 

natural problem to which he applied his intuition to all possible alternative views, made daring 

guesses, and above all repeatedly tried new avenues. 

Whitney's interests included music and mountaineering. He played the violin, viola and piano 

and was, for many years, concertmaster of the Princeton Community Orchestra. His love and 

prowess as an alpinist and mountaineer are legendary and surely his expertise and enthusiasm in 

mountaineering must have come from his maternal grandfather, Simon Newcomb, who was also a 

noted mountaineer and walker. The Whitney-Gilman Ridge, on Cannon Mountain in New 

Hampshire is named after him and his cousin. Whitney made many visits to the Swiss Alps and he 

is buried at Mont Dents Blanches in Switzerland. 
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Appendix III 

Glossary 

analysis situs: the study of position or situation. 

binary quantic: a homogeneous expression in t\\'O variables, such as ax3 + 3bx2y + 3Cxy2 
+ d):J. 

Birkhoff number: at any time, the Birkhoff number is b at time t if at time t it has been 
sho\'~n that a map that cannot be properly coloured with four colours must contain at least b 
countries. 

Cayley's theorem: given n labelled vertices, how many \vays In are there of joining the 
vertices to form a tree - the number of labelled trees on n vertices is In = nn-2, e.g. t./ = 16. 

chromatic number: the smallest integer k for which a map or graph can be k-coloured. 

chromatic polynomial for a graph: a fonnula for the number of ways of colouring a 
graph ,vith a given number of colours so that adjacent vertices are differently coloured. 

chromatic polynomial for a map: a fonnula for the number of ways of colouring a map 
\vith a given number of colours so that adjacent regions are differently coloured. 

closed path: a sequence of edges of a graph or map that return to the starting point -
badbcdb is a closed path. 

d c:. 

combinatorics: a branch of mathematics which deals with the manipulation of 
mathematical elements \vithin sets that usually have a finite number of elements. 

component: the separate parts of a graph; e.g. the graph illustrated has two components 

connected graph: a graph that is in one piece i.e. there is at least one path between each 
pair of vertices - both of the above graphs are connected graphs. 
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counting formula: if Ck is the number of k-sided countries in a cubic map then 
4C2 + 3C3 + 2C4 + Cs - C7 - 2Cs - 3C9 - 4CIO - ••• = 12. 

cubic map: a map where exactly three edges meet at each vertex. The following is an 
example of a cubic map. 

cycle: a sequence of lines on a diagram that pass only once through any point and return to 
the starting point [1] - abed is a closed cycle. 

d c 

derangement: a bijection from a set into itself that has no fixed points - this is a 
permutation in which none of the objects appear in their natural ordered place e.g. the only 
derangements of {1, 2, 3} are {2, 3, 1} and {3, 1, 2} 

D-reducible configuration: an arrangement of regions of a map where every colouring of 
the surrounding ring is a proper colouring, or may be converted into one by applying the 
method of Kempe chains. 

dual graph: a dual graph is constructed by placing a vertex inside each region of a graph 
and joining these vertices with an edge for each common border of the original graph. 

Graph with vertex placed 
in each region 

dual graph 
(omitting the outside) 

edge: a line joining two vertices or between two regions. 

empire problem: the problem of colouring a map with several empires, each consisting of 
a 'mother country', and a number of 'colonies' that must be coloured the same as the 
mother country [1]. 
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Eulerian path: a path that contains each edge of a graph or map once and only once and 
returns to its starting point; a closed path - abedea is an Eulerian path. 

Q,. 1> 

Euler's formula: short for Euler's polyhedron formula [1]. 

Euler's formula for the II-holed torus: for any map drawn on an h-holed torus, 
(number of countries) - (number of boundary lines) + (number of meeting points) = 2 - 2h 
[1 ]. 

Euler's formula for maps on the plane or sphere: for any map drawn on the plane or 
sphere, 
(number of countries) - (number of boundary lines) + (number of meeting points) = 2 [1]. 

Euler's formula for the torus: for any map drawn on the torus, 
(number of countries) - (number of boundary lines) + (number of meeting points) = 0 [1]. 

Euler's polyhedral formula: for any polyhedron, 
(number of faces) - (number of edges) + (number of vertices) = 2 [1]. 

face: a region of a planar graph bounded by edges. 

four-colour problem: can the countries of every map drawn on a plane be coloured with 
at most four colours such that neighbouring countries are coloured differently? 

four-colour problem for a sphere: can the countries of every map drawn on the surface 
of a sphere be coloured with at most four colours such that neighbouring countries are 
coloured differently? 

fundamental set: a maximal set of independent cycles. 
II-

b 

e 

The graph shown ... contains three circuits, which we may denote by their sets of edges C1 

= abe, C2 = ede, and C3 = abed. It is clear that the circuit C3 is, in some sense, the 'sum' of 
CI and C2. To make this precise, we shall say that the sum of the two circuits consists of 
all those edges which belong to one, but not to both, of them; this can be extended in an 
obvious way to the sum of any infinite number of circuits. A set of circuits is said to be 
independent if no one of them can be expresses as a sum of others, so that in our example, 
the sets {CI. C2} and {CI. C3} are independent, whereas the set {CI, C2, C3} is not. A 
maximal set of independent circuits is called a fundamental sct. [2] 
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genus of an orientable surface: orientable surfaces (2-sided surfaces) can be classified by 
their genus. An orientable surface is of genus g if it is topologically homeomorphic to a 
sphere with g handles. Examples of orientable surfaces are the sphere (g = 0) and the torus 
(g = 1). 

genus of a non-orientable surface: non-orientable surfaces (I-sided surfaces) can be 
classified by their genus. Examples of non-orientable surfaces are the projective plane (q = 
1) and the Klein bottle (q = 2). 

graph: a finite set of vertices, a finite set of edges, and instructions on \vhich edges join 
\vhich pairs of vertices. 

c 

A ~------:'----=::::'!J 

B 

This diagram is an example of what is known as a graph. A graph is constructed from a set 
of vertices (A, B, C, etc.), a set of edges (a, b, c, etc.), together with a list of \vhich edges 
join which pairs of vertices. 

graph theory: the study of connections between objects, a branch of combinatorics. 

Hamiltonian cycle: a sequence of lines on a diagram that pass exactly once through every 
point and return to the starting point [1]. The closed cycle abcdis a Hamiltonian cycle. 

0-. b 

d c. 

Ilamiitonian graph: a graph corresponding to a Hamiltonian cycle. The above graph is a 
Hamiltonian graph. 

Heawood conjecture: For each positive number g, there is a map on the surface of an g
holed torus that requires the integer part of R(g) = [ Y2 (7+~(1 + 48g»] colours. 

Kirchhofrs current law: the algebraic sum of the currents at any vertex of an electrical 
net\vork is equal to zero. That is that the currents entering the node equal the currents 
leaving the node so that II + h + 13 + It + Is = 0 

Noee 

238 



' ir hh 

in 

f th p t ntial difference aero all the 
tri al n tw rk i zer . That i the urn f 

th t I B + BA + V co + 0 = 0 

A B 

urf [2}. 

I ur. th n th r mu t b among 
aid t irr ducibl [2]. 

f· gra h lh t an di r m th rtf th graph r mo ing a 

t n ti n th t cn rali th id find nd n In ct r pa and 

eth d dur fi r t nnining h th r t f nfigurati n in a 

m th 
I ur ar In 

c 1 ur 

idabl t. 

f c ] 
that r gi n 

r planar graph in which tw 
uld n t b c lour d pr p rl b 

minim I c unt r- • amp. : a map \i ith a certain numb r f untri that cannot b 
1 ur d ith ~ ur r ny th r gi n num r f) c I ur. hi le an map jth ~ er can 

b lurd[l]. 

.. au 
thr ugh 1 

nd: j c tru t d fr m 
o and th 11 gl uing th 1\ 

trip f pap r by t i ting n end 



non-separable: a graph is non-separable if it is connected and cannot be disconnected by 
removing a single vertex (a cut vertex) [2]. The graph below is a non-separable graph. 

0- b 

d Co 
nUllity: the nullity N of a graph is defined by N = E - R = E - V + P, where E is the 
number of edges, R is the rank, V is the number of vertices and P the number of 
components. 

partition: a partition of an integer is a representation as a sum of positive integers - for 
example 5 + 4 + 4 + 2 is a partition of 15. 

Petersen graph: The Petersen graph is a cubic graph with 10 vertices and 15 edges; it is 
non-planar and contains no Hamiltonian cycle. 

The Petersen graph 

Petersen's theorem: a regular graph of the third degree with fewer than three leaves is 3-
colourable. 

planar graph: a graph that can be redrawn in the plane or on the sphere in such a way that 
no two edges meet except at a vertex to which they are both incident. The graphs below are 
planar graphs. 

principle of inclusion and exclusion (or sieve principle): for two subsets B and C 
I B U CI = I B I + I CI-I Bn CI· 
The principle may be applied to more than two sets. 

rank: the rank R of a graph is defined by R = V - P, where V is the number of vertices and 
P is the number of components. 
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reducible configuration: a configuration that cannot occur in a minimal counter-example. 
If a map contains a reducible configuration, then any colouring of the rest of the map with 
four colours can be extended (possibly after some recolouring) to a colouring of the entire 
map [1]. 

reducibility: if there are plane maps which need five colours, then there must be among 
them a map with the smallest number of regions; such a map is said to be irreducible. The 
basic idea is to obtain more and more restrictive conditions which an irreducible map must 
satisfy, in the hope that eventually we shall have enough conditions either to construct the 
map explicitly, or, alternatively, to prove that it cannot exist [2]. 

region: a general term for a country, county or state in a map [1]. 

regular graph: a graph in which each vertex has the same degree - the Petersen graph is 
a regular graph of degree 3. 

root: the root of a tree is a designated vertex from which all other vertices branch. 

rooted tree: a tree in which one particular vertex is denoted as the root. 

simple embedding: a graph that does not contain edges that cross - see planar graph. 

spanning tree: a tree in a connected graph which includes every vertex of the graph. In the 
graph below II is a spanning tree of G. 

0. 

f 

c 

G H 

topology: a branch of mathematics that deals with geometric properties which are 
unaltered by elastic deformation (e.g. stretching or twisting). 

tree: a connected graph that contains no cycle. Trees with up to five vertices are: 

• I !y t 
triangulation: a plane graph or map in which each region is bounded by three edges. 

unavoidable set: a collection of configurations of countries or vertices at least one of 
which must appear in every map or plane graph. 
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utilities question: in the plane are three houses and three wells: how can every house 
be joined to every well by nine paths in all so that no two of these paths cross each 
other? There is no solution as the following graph indicates: 

vertex (of polyhedron): a point in a graph, map or polyhedron where edges meet. 

Whitney dual: for any planar graph G, there is a Whitney dual graph G* constructed as 
follows: place a vertex of G* in each region enclosed by edges of G (including the exterior 
region if G is a finite graph). If two regions enclosed by G have an edge e as a common 
edge, the vertices of G* in these regions are joined by an edge e* in G* which crosses e. 
Thus each edge in G is crossed by exactly one edge in G* . According to this definition, the 
Whitney dual of a dual graph G* is the original graph G. 
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