18,886 research outputs found

    Recombining dependent data: an Order Statistics

    Get PDF
    This article discusses the problem of forming groups from previously split data. Algorithms for Cluster Analysis like SAR proposed by Peña, Rodriguez and Tiao (2004), divide the sample into small very homogeneous groups and then recombine them to form the definitive data configuration. This kind of splitting leads to dependent data in the sense that the groups are disjoint, so no traditional homogeneity of means or variances tests can be used. We propose an alternative by using Order Statistics. Studying the distribution and some moments of linear combination of Order Statistics it is possible to recombine disjoint data groups when they merge into a sample from the same population.SAR, Cluster Analysis, Order Statistics, L-statistics, Bootstrapping

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Rushes video summarization using a collaborative approach

    Get PDF
    This paper describes the video summarization system developed by the partners of the K-Space European Network of Excellence for the TRECVID 2008 BBC rushes summarization evaluation. We propose an original method based on individual content segmentation and selection tools in a collaborative system. Our system is organized in several steps. First, we segment the video, secondly we identify relevant and redundant segments, and finally, we select a subset of segments to concatenate and build the final summary with video acceleration incorporated. We analyze the performance of our system through the TRECVID evaluation
    corecore