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Recombining dependent data: An Order Statistics

Approach

Adolfo Álvarez P. and Daniel Peña S.

Abstract.

This article discusses the problem of forming groups from previously split data.

Algorithms for  Cluster  Analysis  like SAR proposed  by  Peña, Rodriguez and  Tiao

(2004), divide the sample into small very homogeneous groups and then recombine

them  to  form  the  definitive  data  configuration.  This  kind  of  splitting  leads  to

dependent  data  in  the  sense  that  the  groups  are  disjoint,  so  no  traditional

homogeneity of means or variances tests can be used.

We propose an alternative by using Order Statistics. Studying the distribution

and  some  moments  of  linear  combination  of  Order  Statistics  it  is  possible  to

recombine  disjoint  data  groups  when  they  merge  into  a  sample  from the  same

population.

Keywords: SAR, Cluster Analysis, Order Statistics, L-statistics, Bootstrapping.

Introduction: Model Heterogeneity

In statistical analysis,  we speak of �model heterogeneity� when not all the data

points in the sample can be explained by the same model. For example, one of the

applications of model heterogeneity is the problem of outliers, where most of the data

points come from the same distribution but a few of them have been generated by

one or several distributions which differ from the previous one.

The existence of model heterogeneity can bring significant complications when
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performing inference, because biased estimates of the parameters can be obtained,

with the consequent loss of efficiency in estimation and a bad prediction.

In multivariate analysis, model heterogeneity has been studied mainly under

the name of �cluster analysis�.  In particular,  Peña (2002) define it  as the analysis

which has as a main objective to arrange the observations into homogeneous groups

by means of defining similarities between them. Commonly Cluster Analysis is used

to join data points but also is possible to apply it to arrange variables.

These  methods  are  also  known  as  Automatic  Unsupervised  Classification

Methods or Unsupervised Pattern Recognition Methods. The name of �unsupervised�

is used to distinguish them from discriminant analysis, where the researcher possess

labels or classifyers to identify the groups where the observation belongs.

According to Peña (2002) Cluster analysis deals with three kind of problems:

� Partition  of  the  data.  In  which  available  data  are  suspected  to  be

heterogeneous and want to divide them into a fixed number of  clusters

(MacQueen,  1967; Anderberg,  1973;  Hartigan and Wong,  1979; Dubes,

1987) so that (1) Each element belongs to one and only one of the groups;

(2) Each item is classified and (3) Each group is internally homogeneous.

� Construction of hierarchies. In which the aim is to structure hierarchically

the  elements  of  a  data  set  by  their  similarity.  Strictly  speaking,  these

methods  don't  define  groups,  but  they  show  the   structure  of  chain

association that may exist between the elements, however, the hierarchy

obtained, also allows a partition of the data into groups (King, 1967; Ward,

1963; Murtagh, 1984) .

� Classification of variables. In presence of many variables, it is interesting to

make an initial exploratory study to divide the variables into groups. Such

studies may be useful as a guide prior to the application of formal models

to reduce dimensionality (Gnanadesikan et  al,  1995; Raftery and Dean,

2006).
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As can be seen, Cluster Analysis, as a particular case of the use of model

heterogeneity, covers a wide variety of problems, which in turn can be approached

from  several  viewpoints.  Good references  for  this  can  also  be  founded  in  Peña

(2002),  Hartigan (1975),  Kaufmann and Rosseeuw (1990),  Jain,  Murty and Flynn

(1999), and Gan et al (2007).

The SAR Process

Peña,  Rodriguez  and Tiao  (2004)  propose  a  new exploratory  approach  to

address the problem of identifying clusters in particular, and model heterogeneity in

general. The method, named by authors as SAR (split and recombine), divide the

sample into smaller subgroups and then recombine them to form the final clusters.

However, as mentioned above, this methodology is general enough to encompass

also problems of identification of outliers, both in multivariate cluster analysis (Peña,

Rodriguez and Tiao, 2004) and in regression (Peña, Rodriguez and Tiao, 2003)

The  SAR  procedure  is  based  on  the  concept  of  Model  Heterogeneity  as

follows:

Let M be the model adjusted to a set of n observations  Y=� y
1,

y
2,

... , y
n
� ,

where  y
i is  a  vector  of  dimension  m.  The  procedure  is  based  on  defining  a

measure  H � y , Y � of heterogeneity between an observation  y and the data set

Y , and iteratively use this measure to cover the following steps: To identify outliers

and  eventually  delete  them  from  the  sample;  to  split  the  sample  into  more

homogeneous  groups  and  finally  recombine  the  observations  to  form  the  final

clusters.

To this  end,  the authors argue that  the natural  way to test  whether  a new

observation is homogeneous with respect to the rest of data set is to see whether this

element  is  close  to  its  prediction  based  on  Y ,  and  the  model   M ,  with  p-

dimensional  vector  of  parameters  � .   Then  assuming  that  for  certain  � ,

observations  Y  and  y are independent, the distribution of the prediction for a

new data point y given Y is equal to:
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p � y /Y �=� p � y /�� p ��/Y �d � ,

where  p �y /Y � is  the  distribution  of  the  data  point y ,  while  p ��/Y � is  the

posterior distribution  for parameter � .  Thus, if the density of the observed value is

small, there is reason to believe that this value is heterogeneous with respect to the

sample Y .

However, it is not always easy to obtain these distributions, so the authors propose

an alternative by normalizing the predictive density over the modal value �y , which

yields the following measure of heterogeneity:

H � y , Y �=C
0
� y �=�2 ln

p� y/Y �

p� �y/Y �
.

Assuming a set of independent observations coming from an univariate normal

distribution N �� ,� 2� , where distribution parameters �� ,��  has non-informative

a  priori  distribution  p �� ,��	��1
, ,  then �y=E � y /Y � and  the  measure  of

heterogeneity is defined as:

C0� y �=N ln{1

t

2

� }
where �=N�1, t

2=� N

N
1 � � y��y �
2

s
2 , �y is the sample mean of the N observations

on Y, and  s
2=��1

j

�y j��y �
2

, is the corresponding sample variance. Finally  t
2

has a F distribution with 1 and N-1 degrees of freedom.

Splitting Process

They define y l  as the discriminator of yi if the latter observation appears

as most discrepant (using the heterogeneity measures) with respect to the rest of the

data  set  when  the  discriminator  is  deleted  from  the  sample.  In  this  way:  If  two

observations are identical, they must have the same discriminator, thus, if they are

sufficiently close to each other, they should still have the same discriminator. Finally,

the splitting process consist into:

� Identify and eliminate outliers, based on the heterogeneity measure
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� Points  sharing  a  common  discriminator  are  put  in  the  same  group.

(Discriminators are considered as isolated observations)

� Then, each group is now considered as a new sample and the procedure

is continued until splitting further the sample will lead to groups that all of

them are of size smaller than some minimum size n
0 .

� When a group can not be split again, is called a "basic set". The minimum

size is proposed as n
0
= p
h , where h�2 and p  is the number of

coefficients of the fitted model. 

Recombination process

Since the partitioning stage will tend to define many groups, it is important to

have a procedure for recombining the observations after the split. The more we split

the sample, the smaller the internal variability of the resulting groups, so it requires a

process that increases the internal variability of homogeneous groups, incorporating

new observations, but at the same time avoiding the inclusion of observations that

are clearly heterogeneous with respect to the group. So, recombination is established

as follows:

� Calculate C 0� y i� for each point outside the core set.

� Find  the  nearest  point  yl to  the  basic  set,  i.e.  one  that  satisfy

C0� y l�=miny i
C 0� y i�

� If  C0� y l� is below a certain cutoff value,  c N , which depends on the

size of the basic set, N, the point is incorporated into the basic set to form

a new group of size  N
1 ,  and the process repeats until the closest

point  to  the  group  exceeds  the  cut-off  value.  Then  the  basic  set  is

considered as an homogeneous group.

After  applying  the  recombination  process  to  all  basic  sets,  there  are  two

possible situations:

a) All  basic sets are increased to include the entire sample, or constitute a single
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partition of the sample in a set of disjoint groups and some outliers.

b) After eliminating redundancies, some enlarged basic groups overlap with others. In

this  case  we  again  apply  the  three  steps  of  eliminating  outliers,  splitting  and

recombination  to  the supplementary  part  of  a  group, treating this  data as  a new

sample. The process continues for each basic group, creating a branch structure until

the entire sample is split into several disjoint subsets. Each different form of splitting

is then regarded as a Possible Data Configuration data (PCD). When more than one

PCD is  found, the  problem of  choosing the  best  can  be  solved  by  some model

selection procedure.

Dependent Data Recombination

The implementation of the SAR algorithm proposed by Peña, Rodriguez and

Tiao (2004) may be high time consuming when you have a large sample size n, high

dimensionality  and  /  or  when  you  have  too  many  basic  groups.  Moreover,  the

recombination process does not take into account the information obtained by the

splitting process, because the observations that belong to the same basic group are

regarded as isolated points when the algorithm is trying to enlarge another one.

A possible  improvement  for  these  drawbacks  is  to  make  the  process  of

recombination not by observations, but considering each of the basic groups as a

unit to recombine. Thus, the process becomes more efficient in time and, moreover,

has the advantage of considering the information obtained in the partition, because

the data points which were already united in this first stage will remain together in the

second, and an unique solution can be founded.

In this manner, the usual way to check if  two groups come from the same

population is by performing an hypothesis test like equality of means, or equality of

variances test, or both at the same time (Mardia et al, 1979). However, in this case,

the basic groups doesn't hold with the condition of independence, because they are

not independent samples from a population, but disjoint partitions of samples.
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By construction, the partition of a sample by some criteria involves defining

certain order. And in particular, if we are interested in check if two disjoint groups

forms a partition (or sub partition) of the same sample we can study the distribution of

the order statistics or a linear combination of them, to perform a test.

Linear Combination of Order Statistics / Bootstrap Approach 

Let  X 1 : n�X 2 :n�...�X n: n be an ordered sample, if we split the sample into

two groups of sizes n1  and n2  such that n1
n2=n :

X 1 :n X 2: n X 3 :n ... X n1 :n�
n1

X n1
1: n X n1
2 :n ... X n:n�
n2

then, the difference between the means of these two groups will be given by:

D= �X 2 � �X 1=
X n1
1
X n1
2
...
X n

n2

�
X 1
X 2
...
X n1

n1

This is a linear combination of order statistics, also called �L-statistic� in this

form:

T n=
i=1

n

c i X i :n

then is possible to write the difference D as follows:

D=��1

n1
�X 1
��1

n1
�X 2
...
��1

n1
�X n1
� 1

n2
�X n1
1
� 1

n2
�X n1
2
...
� 1

n2
�X n

and in this case vector of constants will be c=[� 1

n1

;�
1

n1

...�
1

n1

;
1

n2

;
1

n2

; ...
1

n2
]

So, if two groups come from the same population, it is possible to study the
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distribution and moments of the difference between the means of the groups in order

to make a Test to merge them.

However, how to estimate moments of this statistics? This kind of expressions

are unsolved for main distributions, and only approximations have been made(Stigler,

1969;  Balakrishnan  et  al,  2003;  Rychlik,  2004;  Kaluszka  and  Okolewski,  2005).

Lately, another approaches has been attempted, like Bootstrap (Hutson and Ernst,

2000), Jackknife ( Parr and Shucany, 1982), or B-splines (Agarwal and Pant, 2008).

In this paper we propose the use of moments of these difference of means,

based on  bootstrap methodology.  In particular,  Hutson and  Ernst  (2000) propose

exact  bootstrap mean and variance of L-estimators based on exact bootstrap mean,

variances and covariances of the whole set of order statistics from a sample, with this

formulae:

E
*� X r :n�=

j=1

n

w j�r � X j : n

Var
*� X r :n�=

j=1

n

w j� r �� X j :n���r :n�
2

Cov
* �X r :n , X s :n�=

j=2

n


i=1

j�1

wij �rs�� X i :n���r :n�� X j :n� ��s :n�

j=1

n

v j�rs�� X j :n���r :n�� X j :n� ��s :n�

where:

w j �r�=r �nr �[B� j

n
; r , n�r
1��B � j�1

n
; r , n�r
1�]

w ij�rs�=nCrs 
k=0

s�r�1

� s�r�1

k � ��1�s�r�1� k

s�k�1 [� i

n �
s�k�1

�� i�1

n �
s�k �1

]
× [B� j

n
; k
1,n�s
1��B� j�1

n
;k
1, n�s
1�]

v j �rs�=nCrs 
k=0

s�r�1

� s�r�1

k � ��1�s� r�1�k

s�k�1

{B� j

n
; s , n�s
1��B � j�1

n
; s ,n�s
1��� j�1

n �
s�k�1

[B � j

n
;k
1, n�s
1��B� j�1

n
;k
1, n�s
1�]}
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B �x , a , b�=�
0

x

t
a�1�1�t �b�1

dt (is the incomplete beta function) and finally,

nCrs=
n!

�r�1� ! �s�r�1� !�n�s�!

Proceeding by this way, the error due to bootstraping resampling is eliminated,

and the expectation and variance of any linear combination of order statistics can be

obtained. Let c=�c1, c2,... , cn� ' the vector of constants corresponding to a specific L-

estimator, and let:

��=� ��1 :n , ��2 : n , ... , ��n :n� '  

be the exact bootstrap mean vector of the order statistics. Therefore, let

��=�
��1 :n

2 �� 12: n � ��1n :n

�� 21: n ��2 :n

2 � �� 2n :n

� � � �
�� n1: n

�� n2: n � ��n :n

2 �
be  the  bootstrap  variance-covariance  matrix  whose  elements  are  obtained  as
showed before.

Thus, the bootstrap mean of the L-statistics T n is given by:

��Tn
=c ' ��=

i=1

n

ci ��i :n

and the bootstrap variance will be:

��T n

2 =c ' �� c=
i=1

n

c i

2 ��i : n

2 
2
i� j

c i c j �� ij: n

But, how can bootstrap help us to test if two dependent sample come from the

same population?

Example:

Let X be a sample of size n=20 coming from a normal distribution:
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X

G1 G2

-1,2926 0,1028
-1,2649 0,1924
-0,9082 0,2769
-0,8987 0,4447
-0,6361 0,8625
-0,3797 1,0288
-0,2996 1,2372
-0,1624 1,2447
-0,0346 1,4309
-0,0119 2,3496

Figure 1: sample of size 20, from a N(0,1) split into two groups

Now consider n bootstrap samples taken from the second group:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 �

0,1028 0,1028 0,1924 0,1924 0,1028 0,1028 0,1028 0,1924 0,2769 0,1028 �

0,8625 0,1924 0,1924 0,1924 0,1028 0,2769 0,1924 0,4447 0,4447 0,1028 �

0,8625 0,2769 0,1924 0,8625 0,1924 0,2769 0,2769 0,4447 0,8625 0,1924 �

0,8625 0,2769 0,2769 0,8625 0,1924 0,4447 0,4447 0,4447 0,8625 0,2769 �

0,8625 0,8625 0,2769 0,8625 0,1924 0,8625 0,8625 0,4447 0,8625 0,2769 �

1,0288 0,8625 1,2372 1,4309 0,4447 1,4309 1,2372 0,8625 1,0288 1,2372 �

1,0288 1,2372 1,2447 1,4309 0,8625 1,4309 1,2372 1,0288 1,2372 1,2372 �

1,2447 1,2372 1,2447 1,4309 1,0288 2,3496 1,2447 1,0288 1,2372 1,2447 �

1,2447 1,2447 1,2447 2,3496 1,2447 2,3496 1,2447 1,0288 1,4309 2,3496 �

2,3496 2,3496 2,3496 2,3496 1,4309 2,3496 1,2447 1,2447 2,3496 2,3496 �

Table 1: Bootstrap samples obtained from the second group of an ordered N(0,1)

sample
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The bootstrap distribution of the first element from the second group will be:

Figure 2: Bootstrap distribution of the first element of second group

Now, we consider n bootstrap samples taken from the entire sample:

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 �

1 -1,2926 -1,2926 -1,2926 -1,2649 -0,9082 -1,2926 -1,2926 -1,2926 -1,2926 -1,2926 �
2 -1,2649 -0,9082 -0,8987 -0,9082 -0,8987 -1,2649 -1,2926 -1,2649 -1,2926 -0,9082 �
3 -1,2649 -0,8987 -0,3797 -0,9082 -0,8987 -1,2649 -0,6361 -1,2649 -1,2926 -0,8987 �
4 -0,3797 -0,8987 -0,2996 -0,8987 -0,6361 -0,8987 -0,6361 -0,6361 -1,2649 -0,8987 �
5 -0,2996 -0,6361 -0,2996 -0,3797 -0,6361 -0,3797 -0,6361 -0,6361 -0,6361 -0,6361 �
6 -0,1624 -0,6361 -0,1624 -0,3797 -0,3797 -0,3797 -0,3797 -0,3797 -0,3797 -0,6361 �
7 -0,1624 -0,3797 -0,1624 -0,3797 -0,2996 -0,3797 -0,2996 -0,2996 -0,2996 -0,6361 �
8 -0,1624 -0,2996 -0,0346 -0,2996 -0,2996 -0,2996 -0,1624 -0,0346 -0,1624 -0,3797 �
9 -0,1624 -0,1624 0,1028 -0,2996 -0,2996 -0,2996 -0,0346 -0,0119 -0,0346 -0,3797 �
10 -0,0119 -0,1624 0,1028 -0,0346 -0,0346 -0,2996 -0,0346 0,2769 -0,0119 -0,3797 �
11 -0,0119 -0,1624 0,2769 0,1924 -0,0119 -0,0346 -0,0346 0,2769 0,1028 -0,2996 �

� � � � � � � � � � � �

Table 2: Bootstrap samples obtained from the entire sample from a N(0,1)

And the bootstrap distribution of the 11th element from the entire sample is:
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Figure 3: Bootstrap distribution of 11th element of the sample

So, if the groups are close enough, i.e. if both together make a sample from

the  same  distribution,  then  most  of  the  times  of  the  bootstrap  process,  the  11th

element bootstraped from the entire sample and the 1st element bootstraped from the

second group should be close enough. Then , E � X �11: 20�
total �~E � X �1 :10�

2nd � and finally, the

difference between them will be:

Figure 4: Distribution of the difference between the bootstrap first element of group 2

and 11th of the total sample.
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We can see that  the difference is centred on zero, but the procedure is not

robust enough, because is based in the bootstrap of one element. But following the

same structure also it is possible to consider the difference between the means of the

second group (bootstraping only from it) and the second part obtained bootstraping

from the entire sample.

Example: 

We generate 1000 (sorted) samples from a standard Normal distribution(n=40), and

then split it into 4 groups of 10 observations each from lowest to highest values in

this way:

Figure 5: Partition methodology of a Normal Distribution in four groups

For  each  sample  we  bootstrap  10.000  times  from  the  second  group  and

10.000 times from the entire sample. Then for each bootstrap resample we calculate

the difference between the mean of the second group and the mean of the last n2

observations from the entire sample. 

�X �1: n2 �
� �X �n1
1: n� ; n1
n2=n
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Finally, the bootstrap distribution of the difference between the groups 1 and 2 is:

Figure 6: Distribution of the difference between bootstrap means 1 and 2.

Because of the construction of the bootstrap methodology applied here, it is

impossible for this difference to be centred at zero (one group is always greater than

other),  but  if  both  groups  are  close  enough,  forming  part  of  the  same split,  the

expectation of the difference of the bootstrap means will be small (In this case, the

mean is 0.0191.) 

In the case of groups 1 and 4 (the two tales of the distribution), the bootstrap

distribution of the differences between the two means will be:
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Figure 7: Distribution of the difference between bootstrap means 1 and 4.

and this mean is much bigger than the previous one.

Extending this results, we simulated 1.000 samples from a Standard Normal

distribution of size n=100, and then split them into 2, 3, 4, and 5 groups each time,

and then we calculate the bootstrap expectations for the mean of group 2 and the

mean of second part of entire sample, with the methodology of Hutson and Ernst

(2000) presented above, in order to not generate bootstrap samples and avoid the

resampling error. The following table show the means and standard deviation of the

1000 samples for each splitting process:
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number of groups

groups 2 3 4 5

1 � 2
0.0062 0.0069 0.0079 0.0091

(0.0018) (0.0023) (0.0028) (0.0032)

1 � 3
0.0488 0.0453 0.0445

(0.0064) (0.0068) (0.0078)

2 � 3
0.0070 0.0063 0.0064

(0.0023) (0.0022) (0.0024)

1 � 4
0.0838 0.0762

(0.0088) (0.0091)

2 � 4
0.0448 0.0381

(0.0068) (0.0066)

3 � 4
0.0079 0.0063

(0.0026) (0.0023)

1 � 5
0.1140

(0.0114)

2 � 5
0.0759

(0.0094)

3 � 5
0.0441

(0.0079)

4 � 5
0.0090

(0.0033)

Table 3: Means of the difference between bootstrap expectations of split samples.

Standard deviation in parenthesis

Then, when the groups are close each other and constitute a partition we get

results less than  0.01 in all  cases,  and  this  doesn't  depend  on what  part  of  the

distribution we are, either over the tales (like in groups 1-2, 4-5, for the 5 groups

example) or in the middle (like in 2-3 for the 4 groups example). From this results it is

possible to construct cutoffs which allow us to recombine previously split data set,

where  we  don't  know  from  what  part  of  the  distribution  the  split  group  come.

Therefore,  by  using  bootstrap  methodology,  large  sizes  of  data  samples  are  not

needed,  and  also  the  exact  moments  proposed  by  Hutson  and  Ernst  (2000)

implemented here, allow us to avoid the resampling error.

However,  more  research  is  needed  in  order  to  extend  this  results  to

multivariate data sets, and although bootstrap methods are easily implemented in

p>2  dimensions,  is  necessary  to  attempt  different  approaches  like  reduction  of

dimensionality through the use of projections (Peña and Prieto,  2001), or defining

some Multivariate  Linear  Combination  of  Order  Statistics  (Fraiman and  Meloche,

1999) .
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Bayesian Clustering Hypothesis Test

A recent alternative to merge disjoint groups for multivariate data is given by

Fuentes and Casella (2009). They propose a new methodology to test the hypothesis

H 0:�=1 vs.  H 1:�=2 ,  where  k  denotes  the  number of  clusters existing in  a

sample.  The procedure is based on a methodology of  Bayesian  model selection,

using the "Bayes factor" to obtain an explicit hypothesis testing for the existence of

groups, obtaining the posterior probabilities for the null hypothesis, and a frequentist

p-value. One advantage of this formulation is that it is not based on distance, which

avoids the use of metrics to identify groups within the sample.

In  order  to  evaluate  this  test,  the  authors  focus  their  methodology  in  a

bayesian approach, using the following Bayes Factor associated with the hypothesis:

BF10=
m�Y��=k �

m �Y��=1�

where  m�Y��=k �  denotes the distribution of the data,  Y , given that there are

exactly k  clusters.

Considering the total number of all the possible partitions �  of n elements

in k clusters, given by Sn ,k , the Bayes factor can be written as:

BF10= 
��S

n , k

m �Y ���

m �Y��1�

����

���1�

where  ����  denotes prior probability for the partition  � . Since the sum over

the  set  of  all  possible  partitions  is  typically  large  even  with  small  numbers  of

observations  and  clusters,  they  estimate  the  value  of  Bayes  factor  through  an

importance sampling sum (See Fuentes and Casella, 2009 for details).

Finally, the posterior probability of H 0  is given by:

P �H 0�Y �=
1

1
BF10

and will provide evidence against H 0  when is small.
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The recombination process is proposed as follows:

� Order basic  groups  by  size.  Start  with  the  one  with  largest  number  of

observations, and calculate the Mahalanobis distance between  �y1 and

the  average  of  all  other  groups.  A group  whichever  has  the  shortest

distance,  is  then  selected  as  candidate  to  recombine,  i.e.  the  group  i

compliant with:

i=arg min
G� j�1

� �y1� �y j�S 1

�1
� �y1� �y j� '

� Check for groups 1 and i can be combined. This is done by hypothesis test

proposed by Fuentes and Casella (2009). It is necessary to establish a

minimum number of iterations for convergence of the Metropolis-Hastings

algorithm which is based on the method. Although the authors recommend

a minimum of 500,000 iterations, similar results are achieved with 25,000.

On  the  other  hand,  are  made  at  least  4  repetitions  of  the  algorithm,

obtaining the posterior probability of H0 and the corresponding p-value.

� After performing the test, 2 options are possible:

a) If the test concludes that the two groups should not be merged, then

group 1 stays the same, defined as a homogeneous group. Then it goes

on  to  group  2,  which  is  the  second  largest  group,  and  calculate  the

distances between the remaining groups and group 2, and so on until the

test suggests that groups should be merged.

b) If the test concludes that the basic sets should be combined, then form

a new group and the Mahalanobis distance from the other groups to this

new  group  is  calculated.  The  candidate  group  will  be  the  closest  to

recombine.

c) The process is repeated for all groups, until they can be increased by

combining with others, then the algorithm stops.

Example

Using the known data set "Old Faithful Geyser" (Azzalini and Bowman, 1990), the
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process of partitioning of the SAR algorithm detects 18  basic groups. Starting with

the biggest one, and labeling it by �1�, the distance between this groups and the rest

is calculated, labeling the closest group as �2�, the next one as �3� and so on. 

Figure 8: Basic groups obtained by SAR process from �geyser� data set

Hypothesis Test

Using the methodology of Fuentes and Casella (2009) it is possible to test

whether these two groups can be recombined by the hypothesis:

H 0:�=1 vs. H 1:�=2

Where k represents the number of groups.

In the case of groups 1 and 2, by applying the test we obtain the following results:

Cluster test conducted on data object data1, with 25000 iterations.

Num. observations       : 31

Min cluster size        : 6

p                       : 2

H0                      : k = 2
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**************************************** 

Final Empirical Posterior Probability: 

**************************************** 

      Post.Probs

data1     0.1863

   emp.prob pvalue

data1 0.1863407 0.0709

The posterior probability of  H 0  (There are no groups within the data), is

0.1863, with a p-value of 0.0709. Despite being a small p-value is above �=0.05

so do not reject the null hypothesis and the two groups can be recombined.

Nevertheless,  the  authors  recommend  to  apply  this  algorithm  performing

replications, so we repeat the procedure, and this time with four replications each, for

the rest of the basic groups, the results obtained are as follows:

P(H0) P-value

1

2 0,1077 0,0610
3 0,1270 0,1866
4 0,1190 0,1877
5 0,4830 0,2860
6 0,7128 0,1240
7 0,6887 0,0950
8 0,5696 0,0600
9 0,7299 0,0830
10 0,9188 0,2230
11 0,9199 0,2030
12 0,0000 0,0010

13 0,0000 0,0010
14 0,0011 0,0010
15 0,0094 0,0090
16 0,0261 0,0210
17 0,3330 0,2050
18 0,4412 0,2830

added 
group

Table 4: Testing results adding one by one the basic groups obtained by SAR from

�geyser� data.

In this way, we started by testing groups 1 and 2, not rejecting H 0 :�=1 but

with small posterior probability and p-value, then we add group 3 to groups 1 and 2,

and so on. The conclusion of the tests seem to be not too robust at the beginning on
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the procedure in joining groups from 1 to 11, which actually conform the superior

group of the geyser data (Figure 7). But when we add group number 12, the posterior

probability of  H 0  and the corresponding p-value jumps to values close to zero,

which strongly suggest the existence of two groups, so basic group number 12 and

the previous ones should not be merged, and cluster number one (basic groups from

1 to 11) is detected. 

When more basic groups are incorporated, the posterior probabilities and p-

values tend to increase again, for example when we add group number 17 to the

rest.  This is because the algorithm only considers the existence of  one versus 2

clusters inside the data, and incorporating more variability to it, maybe could suggest

the existence of more than 2 groups. So, in the context of SAR basic groups, the

algorithm should only be used to test  H 1 :�=2  groups, and stop when it strongly

reject H 0  (In this case, in incorporating group number 12).

Conclusions and further research.

Some approaches on recombining dependent data were presented here. The

motivation  to  work  with  this  type  of  data  arises  from  the  SAR algorithm  (Peña,

Rodriguez  and  Tiao,  2004),  in  which  a  set  of  observations  is  divided  into  small

disjoint groups each, based on a measure of heterogeneity with the ultimate objective

of detecting outliers and finally, clusters. This type of partitions obtained from the first

part of the algorithm (Splitting) can not be combined by the usual equality of means

and variances hypothesis tests since they are not independent.

An alternative to solve this problem is studied using linear combinations of

order statistics, but given the difficulty of finding simple expressions for the moments

of these statistics, we chose to implement computationally  the proposal of Hutson

and Ernst (2000), who present exact bootstrap moments for L-statistics, allowing to

incorporate the  advantages  of  the  bootstrap  methodology,  and  at  the same time

avoiding the resampling error. Finally, for the multivariate case, using the alternative

proposed by Fuentes and Casella (2009) who, using MCMC methods and the use of

Bayes Factor, achieve to test the null hypothesis of non-existence of groups within a
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sample.

Using exact bootstrap moments for linear combinations of order statistics, the

results allow to find cut-off values to discriminate whether two data sets come from

the same partition, regardless of the location of the partition into the original sample.

Moreover, for the multivariate case, it is possible to combine two 'basic groups' or

sub-partitions, by testing hypothesis of the existence of two groups versus only one.

However, is still necessary to delve into this and other issues related to the

recombination  of  data  from  a  partition.  In  particular,  in  the  case  of  the  use  of

bootstrap methodology,  although so far  the results do not  depend on the original

distribution  of  data,  it  is  possible  to  find  more  accurate  cut-off  values  assuming

normality and a certain confidence level,  and other wider which hold under more

general conditions. With respect to the use of Fuentes and Casella (2009) hypothesis

test,  will  be  necessary  to  further  refine  the  procedure  so  as  to  find  appropriate

simulation parameters for the case  �=1  vs.  �=2  according to the size of the

groups, that give more robustness to the results.
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