661 research outputs found

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Cooperative retransmission protocols in fading channels : issues, solutions and applications

    Get PDF
    Future wireless systems are expected to extensively rely on cooperation between terminals, mimicking MIMO scenarios when terminal dimensions limit implementation of multiple antenna technology. On this line, cooperative retransmission protocols are considered as particularly promising technology due to their opportunistic and flexible exploitation of both spatial and time diversity. In this dissertation, some of the major issues that hinder the practical implementation of this technology are identified and pertaining solutions are proposed and analyzed. Potentials of cooperative and cooperative retransmission protocols for a practical implementation of dynamic spectrum access paradigm are also recognized and investigated. Detailed contributions follow. While conventionally regarded as energy efficient communications paradigms, both cooperative and retransmission concepts increase circuitry energy and may lead to energy overconsumption as in, e.g., sensor networks. In this context, advantages of cooperative retransmission protocols are reexamined in this dissertation and their limitation for short transmission ranges observed. An optimization effort is provided for extending an energy- efficient applicability of these protocols. Underlying assumption of altruistic relaying has always been a major stumbling block for implementation of cooperative technologies. In this dissertation, provision is made to alleviate this assumption and opportunistic mechanisms are designed that incentivize relaying via a spectrum leasing approach. Mechanisms are provided for both cooperative and cooperative retransmission protocols, obtaining a meaningful upsurge of spectral efficiency for all involved nodes (source-destination link and the relays). It is further recognized in this dissertation that the proposed relaying-incentivizing schemes have an additional and certainly not less important application, that is in dynamic spectrum access for property-rights cognitive-radio implementation. Provided solutions avoid commons-model cognitive-radio strict sensing requirements and regulatory and taxonomy issues of a property-rights model

    Interference Mitigation in Wireless Communications

    Get PDF
    The primary objective of this thesis is to design advanced interference resilient schemes for asynchronous slow frequency hopping wireless personal area networks (FH-WPAN) and time division multiple access (TDMA) cellular systems in interference dominant environments. We also propose an interference-resilient power allocation method for multiple-input-multiple-output (MIMO) systems. For asynchronous FH-WPANs in the presence of frequent packet collisions, we propose a single antenna interference canceling dual decision feedback (IC-DDF) receiver based on joint maximum likelihood (ML) detection and recursive least squares (RLS) channel estimation. For the system level performance evaluation, we propose a novel geometric method that combines bit error rate (BER) and the spatial distribution of the traffic load of CCI for the computation of packet error rate (PER). We also derived the probabilities of packet collision in multiple asynchronous FH-WPANs with uniform and nonuniform traffic patterns. For the design of TDMA receivers resilient to CCI in frequency selective channels, we propose a soft output joint detection interference rejection combining delayed decision feedback sequence estimation (JD IRC-DDFSE) scheme. In the proposed scheme, IRC suppresses the CCI, while DDFSE equalizes ISI with reduced complexity. Also, the soft outputs are generated from IRC-DDFSE decision metric to improve the performance of iterative or non-iterative type soft-input outer code decoders. For the design of interference resilient power allocation scheme in MIMO systems, we investigate an adaptive power allocation method using subset antenna transmission (SAT) techniques. Motivated by the observation of capacity imbalance among the multiple parallel sub-channels, the SAT method achieves high spectral efficiency by allocating power on a selected transmit antenna subset. For 4 x 4 V-BLAST MIMO systems, the proposed scheme with SAT showed analogous results. Adaptive modulation schemes combined with the proposed method increase the capacity gains. From a feasibility viewpoint, the proposed method is a practical solution to CCI-limited MIMO systems since it does not require the channel state information (CSI) of CCI.Ph.D.Committee Chair: Professor Gordon L. StBe

    Robust Beamforming for Cognitive and Cooperative Wireless Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    WAVEFORM DESIGN AND NETWORK SELECTION IN WIDEBAND SMALL CELL NETWORKS

    Get PDF
    The explosion in demand for wireless data traffic in recent years has triggered rapid development and pervasive deployment of wireless communication networks. To meet the exponentially increasing demand, a promising solution is the concept of wideband small cells, which is based on the idea of using broader frequency bandwidth and employing more efficient radio frequency resource reuse by dense deployment of wideband, short-range, low cost and low power base-stations. Broader bandwidth provides substantial degrees of freedom as well as challenges for system design due to the abundant multipaths and thus interference in high speed systems under large delay spread channels. Reducing the transmission range and increasing the number of cells permit better spatial reuse of spectrum. With the proliferation of wideband small cells, the strategy of selection among multiple networks has significant impacts to the performance of users and to the load balance of the system. In this dissertation, we address these problems with a focus on waveform design and network selection. In time-reversal communication systems, the time-reversal transmit waveform can boost the signal-to-noise ratio at the receiver with simple single-tap detection by utilizing channel reciprocity with very low transmitter complexity. However, the large delay spread gives rise to severe inter-symbol interference when the data rate is high, and the achievable transmission rate is further degraded in the multiuser downlink due to the inter-user interference. We study the weighted sum rate optimization problem by means of waveform design in the time-reversal multiuser downlink. We propose a new power allocation algorithm, which is able to achieve comparable sum rate performance to that of globally optimal power allocation. Further, we study the joint waveform design and interference pre-cancellation by exploiting the symbol information to further improve the performance by utilizing the information of previous symbols. In the proposed joint design, the causal interference is subtracted using interference pre-cancellation and the anti-causal interference can be further suppressed by waveform design with more degrees of freedom. The second part of this dissertation is concerned with the wireless access network selection problem considering the negative network externality, i.e, the influence of subsequent users' decisions on an individual's throughput due to the limited available resources. We formulate the wireless network selection problem as a stochastic game with negative network externality and show that finding the optimal decision rule can be modelled as a multi-dimensional Markov decision process. A modified value iteration algorithm is proposed to efficiently obtain the optimal decision rule with a simple threshold structure, which enables us to reduce the storage space of the strategy profile. We further investigate the mechanism design problem with incentive compatibility constraints, which enforce the networks to reveal the truthful state information. We analyze a data set of wireless LAN traces collected from campus networks, from which we observe that the number of user arrivals is approximately Poisson distributed; the session time and the waiting time to switch network can be approximated by exponential distributions. Based on the analysis, we formulate a wireless access network association game with both arriving strategy and switching strategy and validate the effectiveness of the proposed best response strategy
    corecore