54 research outputs found

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis

    Progression Modeling of Cognitive Disease Using Temporal Data Mining: Research Landscape, Gaps and Solution Design

    Get PDF
    Dementia is a cognitive disorder whose diagnosis and progression monitoring is very difficult due to a very slow onset and progression. It is difficult to detect whether cognitive decline is due to ageing process or due to some form of dementia as MRI scans of the brain cannot reliably differentiate between ageing related volume loss and pathological changes. Laboratory tests on blood or CSF samples have also not proved very useful. Alzheimer�s disease (AD) is recognized as the most common cause of dementia. Development of sensitive and reliable tool for evaluation in terms of early diagnosis and progression monitoring of AD is required. Since there is an absence of specific markers for predicting AD progression, there is a need to learn more about specific attributes and their temporal relationships that lead to this disease and determine progression from mild cognitive impairment to full blown AD. Various stages of disease and transitions from one stage to the have be modelled based on longitudinal patient data. This paper provides a critical review of the methods to understand disease progression modelling and determine factors leading to progression of AD from initial to final stages. Then the design of a machine learning based solution is proposed to handle the gaps in current research

    Automated detection of Alzheimer disease using MRI images and deep neural networks- A review

    Full text link
    Early detection of Alzheimer disease is crucial for deploying interventions and slowing the disease progression. A lot of machine learning and deep learning algorithms have been explored in the past decade with the aim of building an automated detection for Alzheimer. Advancements in data augmentation techniques and advanced deep learning architectures have opened up new frontiers in this field, and research is moving at a rapid speed. Hence, the purpose of this survey is to provide an overview of recent research on deep learning models for Alzheimer disease diagnosis. In addition to categorizing the numerous data sources, neural network architectures, and commonly used assessment measures, we also classify implementation and reproducibility. Our objective is to assist interested researchers in keeping up with the newest developments and in reproducing earlier investigations as benchmarks. In addition, we also indicate future research directions for this topic.Comment: 22 Pages, 5 Figures, 7 Table

    Explainable tensor multi-task ensemble learning based on brain structure variation for Alzheimer's disease dynamic prediction

    Get PDF
    Objective: Machine learning approaches for predicting Alzheimer’s disease (AD) progression can substantially assist researchers and clinicians in developing effective AD preventive and treatment strategies. Methods: This study proposes a novel machine learning algorithm to predict the AD progression utilising a multi-task ensemble learning approach. Specifically, we present a novel tensor multi-task learning (MTL) algorithm based on similarity measurement of spatio-temporal variability of brain biomarkers to model AD progression. In this model, the prediction of each patient sample in the tensor is set as one task, where all tasks share a set of latent factors obtained through tensor decomposition. Furthermore, as subjects have continuous records of brain biomarker testing, the model is extended to ensemble the subjects’ temporally continuous prediction results utilising a gradient boosting kernel to find more accurate predictions. Results: We have conducted extensive experiments utilising data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to evaluate the performance of the proposed algorithm and model. Results demonstrate that the proposed model have superior accuracy and stability in predicting AD progression compared to benchmarks and state-of-the-art multi-task regression methods in terms of the Mini Mental State Examination (MMSE) questionnaire and The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) cognitive scores. Conclusion: Brain biomarker correlation information can be utilised to identify variations in individual brain structures and the model can be utilised to effectively predict the progression of AD with magnetic resonance imaging (MRI) data and cognitive scores of AD patients at different stages

    The effect of EEG and fNIRS in the digital assessment and digital therapy of Alzheimer’s disease: a systematic review

    Get PDF
    In the context of population aging, the growing problem of Alzheimer’s disease (AD) poses a great challenge to mankind. Although there has been considerable progress in exploring the etiology of AD, i.e., the important role of amyloid plaques and neurofibrillary tangles in the progression of AD has been widely accepted by the scientific community, traditional treatment and monitoring modalities have significant limitations. Therefore novel evaluation and treatment modalities for Alzheimer’s disease are called for emergence. In this research, we sought to review the effectiveness of digital treatment based on monitoring using functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG). This work searched four electronic databases using a keyword approach and focused on journals focusing on AD and geriatric cognition. Finally, 21 articles were included. The progress of digital therapy and outcome monitoring in AD was reviewed, including digital therapy approaches on different platforms and different neuromonitoring techniques. Because biomarkers such as theta coherence, alpha and beta rhythms, and oxyhemoglobin are effective in monitoring the cognitive level of AD patients, and thus the efficacy of digital therapies, this review particularly focuses on the biomarker validation results of digital therapies. The results show that digital treatment based on biomarker monitoring has good effectiveness. And the effectiveness is reflected in the numerical changes of biomarker indicators monitored by EEG and fNIRS before and after digital treatment. Increases or decreases in the values of these indicators collectively point to improvements in cognitive function (mostly moderate to large effect sizes). The study is the first to examine the state of digital therapy in AD from the perspective of multimodal monitoring, which broadens the research perspective on the effectiveness of AD and gives clinical therapists a “reference list” of treatment options. They can select a specific protocol from this “reference list” in order to tailor digital therapy to the needs of individual patients

    Investigation of Multi-dimensional Tensor Multi-task Learning for Modeling Alzheimer's Disease Progression

    Get PDF
    Machine learning (ML) techniques for predicting Alzheimer's disease (AD) progression can significantly assist clinicians and researchers in constructing effective AD prevention and treatment strategies. The main constraints on the performance of current ML approaches are prediction accuracy and stability problems in medical small dataset scenarios, monotonic data formats (loss of multi-dimensional knowledge of the data and loss of correlation knowledge between biomarkers) and biomarker interpretability limitations. This thesis investigates how multi-dimensional information and knowledge from biomarker data integrated with multi-task learning approaches to predict AD progression. Firstly, a novel similarity-based quantification approach is proposed with two components: multi-dimensional knowledge vector construction and amalgamated magnitude-direction quantification of brain structural variation, which considers both the magnitude and directional correlations of structural variation between brain biomarkers and encodes the quantified data as a third-order tensor to address the problem of monotonic data form. Secondly, multi-task learning regression algorithms with the ability to integrate multi-dimensional tensor data and mine MRI data for spatio-temporal structural variation information and knowledge were designed and constructed to improve the accuracy, stability and interpretability of AD progression prediction in medical small dataset scenarios. The algorithm consists of three components: supervised symmetric tensor decomposition for extracting biomarker latent factors, tensor multi-task learning regression and algorithmic regularisation terms. The proposed algorithm aims to extract a set of first-order latent factors from the raw data, each represented by its first biomarker, second biomarker and patient sample dimensions, to elucidate potential factors affecting the variability of the data in an interpretable manner and can be utilised as predictor variables for training the prediction model that regards the prediction of each patient as a task, with each task sharing a set of biomarker latent factors obtained from tensor decomposition. Knowledge sharing between tasks improves the generalisation ability of the model and addresses the problem of sparse medical data. The experimental results demonstrate that the proposed approach achieves superior accuracy and stability in predicting various cognitive scores of AD progression compared to single-task learning, benchmarks and state-of-the-art multi-task regression methods. The proposed approach identifies brain structural variations in patients and the important brain biomarker correlations revealed by the experiments can be utilised as potential indicators for AD early identification

    Personalised treatment for cognitive impairment in dementia : development and validation of an artificial intelligence model

    Get PDF
    Background Donepezil, galantamine, rivastigmine and memantine are potentially effective interventions for cognitive impairment in dementia, but the use of these drugs has not been personalised to individual patients yet. We examined whether artificial intelligence-based recommendations can identify the best treatment using routinely collected patient-level information. Methods Six thousand eight hundred four patients aged 59–102 years with a diagnosis of dementia from two National Health Service (NHS) Foundation Trusts in the UK were used for model training/internal validation and external validation, respectively. A personalised prescription model based on the Recurrent Neural Network machine learning architecture was developed to predict the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores post-drug initiation. The drug that resulted in the smallest decline in cognitive scores between prescription and the next visit was selected as the treatment of choice. Change of cognitive scores up to 2 years after treatment initiation was compared for model evaluation. Results Overall, 1343 patients with MMSE scores were identified for internal validation and 285 [21.22%] took the drug recommended. After 2 years, the reduction of mean [standard deviation] MMSE score in this group was significantly smaller than the remaining 1058 [78.78%] patients (0.60 [0.26] vs 2.80 [0.28]; P = 0.02). In the external validation cohort (N = 1772), 222 [12.53%] patients took the drug recommended and reported a smaller MMSE reduction compared to the 1550 [87.47%] patients who did not (1.01 [0.49] vs 4.23 [0.60]; P = 0.01). A similar performance gap was seen when testing the model on patients prescribed with AChEIs only. Conclusions It was possible to identify the most effective drug for the real-world treatment of cognitive impairment in dementia at an individual patient level. Routine care patients whose prescribed medications were the best fit according to the model had better cognitive performance after 2 years
    • …
    corecore