6,557 research outputs found

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Simultaneous Optimization of Application Utility and Consumed Energy in Mobile Grid

    Get PDF
    Mobile grid computing is aimed at making grid services available and accessible anytime anywhere from mobile device; at the same time, grid users can exploit the limited resources of mobile devices. This paper proposes simultaneous optimization of application utility and consumed energy in mobile grid. The paper provides a comprehensive utility function, which optimizes both the application level satisfaction such as execution success ratio and the system level requirements such as high resource utilization. The utility function models various aspects of job, application and system. The goal of maximizing the utility is achieved by decomposing the problem into a sequence of sub-problems that are then solved using the NUM optimization framework. The proposed price-based iterative algorithms enable the sub-problems to be processed in parallel. The simulations and analysis are given to study the performance of the algorithm

    Consensus-based approach to peer-to-peer electricity markets with product differentiation

    Full text link
    With the sustained deployment of distributed generation capacities and the more proactive role of consumers, power systems and their operation are drifting away from a conventional top-down hierarchical structure. Electricity market structures, however, have not yet embraced that evolution. Respecting the high-dimensional, distributed and dynamic nature of modern power systems would translate to designing peer-to-peer markets or, at least, to using such an underlying decentralized structure to enable a bottom-up approach to future electricity markets. A peer-to-peer market structure based on a Multi-Bilateral Economic Dispatch (MBED) formulation is introduced, allowing for multi-bilateral trading with product differentiation, for instance based on consumer preferences. A Relaxed Consensus+Innovation (RCI) approach is described to solve the MBED in fully decentralized manner. A set of realistic case studies and their analysis allow us showing that such peer-to-peer market structures can effectively yield market outcomes that are different from centralized market structures and optimal in terms of respecting consumers preferences while maximizing social welfare. Additionally, the RCI solving approach allows for a fully decentralized market clearing which converges with a negligible optimality gap, with a limited amount of information being shared.Comment: Accepted for publication in IEEE Transactions on Power System

    An Agent-based Grouping Strategy for Federated Grid Computing

    Get PDF
    Characterizing users based on their requirements and forming groups among providers accordingly to deliver them the stronger quality of service is a challenge for federated grid community Federated grid computing allows providers to behave cooperatively to ensure required utility by users Grouping grid providers under such an environment thus enhance the possibility of more jobs executed whereas a single provider or organization might not be able to do the same In this paper we propose an agent-based iterative Contract Net Protocol which supports in building federated grid via negotiating distributed providers The main focus of this paper is to minimize the number of iterations using a grouping mechanism Minimizing the number of iterations would produce less communication overhead which results in the minimum queue waiting time for users to publish their jobs Simulation results further ensure the feasibility of our approach in terms of profit and resource utilization compared to that of the traditional non-grouped marke

    A Distributed Iterative Algorithm for Optimal Scheduling in Grid Computing

    Get PDF
    The paper studies a distributed iterative algorithm for optimal scheduling in grid computing. Grid user's requirements are formulated as dimensions in a quality of service problem expressed as a market game played by grid resource agents and grid task agents. User benefits resulting from taking decisions regarding each Quality of Service dimension are described by separate utility functions. The total system quality of service utility is defined as a linear combination of the discrete form utility functions. The paper presents distributed algorithms to iteratively optimize task agents and resource agents functioning as sub-problems of the grid resource QoS scheduling optimization. Such constructed resource scheduling algorithm finds a multiple quality of service solution optimal for grid users, which fulfils some specified user preferences. The proposed pricing based distributed iterative algorithm has been evaluated by studying the effect of QoS factors on benefits of grid user utility, revenue of grid resource provider and execution success ratio

    Online Resource Inference in Network Utility Maximization Problems

    Full text link
    The amount of transmitted data in computer networks is expected to grow considerably in the future, putting more and more pressure on the network infrastructures. In order to guarantee a good service, it then becomes fundamental to use the network resources efficiently. Network Utility Maximization (NUM) provides a framework to optimize the rate allocation when network resources are limited. Unfortunately, in the scenario where the amount of available resources is not known a priori, classical NUM solving methods do not offer a viable solution. To overcome this limitation we design an overlay rate allocation scheme that attempts to infer the actual amount of available network resources while coordinating the users rate allocation. Due to the general and complex model assumed for the congestion measurements, a passive learning of the available resources would not lead to satisfying performance. The coordination scheme must then perform active learning in order to speed up the resources estimation and quickly increase the system performance. By adopting an optimal learning formulation we are able to balance the tradeoff between an accurate estimation, and an effective resources exploitation in order to maximize the long term quality of the service delivered to the users
    • …
    corecore