3 research outputs found

    Deep Learning for Power Flow Estimation and High Impedance Fault Detection

    Get PDF
    My thesis is divided into two parts. The first part is: “Optimal Power Flow Estimation Using One-Dimensional Convolutional Neural Network [1]“. Optimal power flow (OPF) is an important research topic in power system operation and control decisions. Traditional OPF problems are solved through dynamic optimization with nonlinear programming techniques. For a large power system with large amounts of variables and constraints, the solving process would take a long time. This paper presents a new method to quickly estimate the OPF results using a one-dimensional convolutional neural network (1D-CNN). The OPF problem is treated as a high-dimensional mapping between the load inputs and the generator dispatch decisions. Therefore, through training the neural network to learn the mapping between loads and generator outputs, we can directly predict the OPF results with the load information of a system. In this paper, we built and trained a 1D-CNN to learn the mappings between system loads and generator outputs, and the 1D-CNN model was tested using IEEE 30, 57, 118, and 300 Bus systems. Extensive test and sensitivity study results have validated the effectiveness of using the 1D-CNN to estimate the OPF results. This part is from chapter 1 to chapter 6; The second part is: “Synthetic High Impedance Fault Data through Deep Convolutional Generated Adversarial Network [2]“. High impedance faults (HIFs) have always been significant challenges in the power grids. Researchers have developed some advanced protective methods to detect the HIFs. To test and validate these methods, large amounts of HIF data are required. This paper presents a synthetic HIF data generating method using the deep convolutional generated adversarial network (DCGAN). The DCGAN includes a generator module to create synthetic HIF waveform from random noises; and a discriminator module to identify the flaws of those synthetic data, which ultimately helps improve the quality of the synthetic data created by the generator. To test the fidelity of the generated synthetic HIF data, two different HIF-detection methods have been applied. Extensive simulation results have validated the effectiveness of using the DCGAN to create synthetic HIF data. This part is from chapter 7 to chapter 11

    Vulnerability Assessment and Privacy-preserving Computations in Smart Grid

    Get PDF
    Modern advances in sensor, computing, and communication technologies enable various smart grid applications which highlight the vulnerability that requires novel approaches to the field of cybersecurity. While substantial numbers of technologies have been adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the implementations, impacts, and solutions of cyber attacks specific to the smart grid.In this dissertation, we are motivated to evaluate the security requirements for the smart grid which include three main properties: confidentiality, integrity, and availability. First, we review the cyber-physical security of the synchrophasor network, which highlights all three aspects of security issues. Taking the synchrophasor network as an example, we give an overview of how to attack a smart grid network. We test three types of attacks and show the impact of each attack consisting of denial-of-service attack, sniffing attack, and false data injection attack.Next, we discuss how to protect against each attack. For protecting availability, we examine possible defense strategies for the associated vulnerabilities.For protecting data integrity, a small-scale prototype of secure synchrophasor network is presented with different cryptosystems. Besides, a deep learning based time-series anomaly detector is proposed to detect injected measurement. Our approach observes both data measurements and network traffic features to jointly learn system states and can detect attacks when state vector estimator fails.For protecting data confidentiality, we propose privacy-preserving algorithms for two important smart grid applications. 1) A distributed privacy-preserving quadratic optimization algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The SCOPF problem is decomposed into small subproblems using the Alternating Direction Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier cryptosystem to secure the computation of the power system dynamic simulation. The IEEE 3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The security and performance analysis of our implementations demonstrate that our algorithms can prevent chosen-ciphertext attacks at a reasonable cost
    corecore