1,241 research outputs found

    Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Get PDF
    The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.Particle Swarm Optimization, Genetic Algorithms, Evolutionary Algorithms, Formative E-assessment, E-education

    A new approach to particle swarm optimization algorithm

    Get PDF
    Particularly interesting group consists of algorithms that implement co-evolution or co-operation in natural environments, giving much more powerful implementations. The main aim is to obtain the algorithm which operation is not influenced by the environment. An unusual look at optimization algorithms made it possible to develop a new algorithm and its metaphors define for two groups of algorithms. These studies concern the particle swarm optimization algorithm as a model of predator and prey. New properties of the algorithm resulting from the co-operation mechanism that determines the operation of algorithm and significantly reduces environmental influence have been shown. Definitions of functions of behavior scenarios give new feature of the algorithm. This feature allows self controlling the optimization process. This approach can be successfully used in computer games. Properties of the new algorithm make it worth of interest, practical application and further research on its development. This study can be also an inspiration to search other solutions that implementing co-operation or co-evolution.Angeline, P. (1998). Using selection to improve particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Anchorage (pp. 84–89).Arquilla, J., & Ronfeldt, D. (2000). Swarming and the future of conflict, RAND National Defense Research Institute, Santa Monica, CA, US.Bessaou, M., & Siarry, P. (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions. Structural and Multidiscipline Optimization, 23, 63–74.Bird, S., & Li, X. (2006). Adaptively choosing niching parameters in a PSO. In Proceedings of the 2006 genetic and evolutionary computation conference (pp. 3–10).Bird, S., & Li, X. (2007). Using regression to improve local convergence. In Proceedings of the 2007 IEEE congress on evolutionary computation (pp. 592–599).Blackwell, T., & Bentley, P. (2002). Dont push me! Collision-avoiding swarms. In Proceedings of the IEEE congress on evolutionary computation, Honolulu (pp. 1691–1696).Brits, R., Engelbrecht, F., & van den Bergh, A. P. (2002). Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the 2002 IEEE conference on systems, man, and cybernetics (pp. 102–107).Brits, R., Engelbrecht, A., & van den Bergh, F. (2002). A niching particle swarm optimizer. In Proceedings of the fourth asia-pacific conference on simulated evolution and learning (pp. 692–696).Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6(2), 191–213.Chelouah, R., & Siarry, P. (2000). Tabu search applied to global optimization. European Journal of Operational Research, 123, 256–270.Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima function. European Journal of Operational Research, 148(2), 335–348.Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous taboo search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research, 161, 636–654.Chen, T., & Chi, T. (2010). On the improvements of the particle swarm optimization algorithm. Advances in Engineering Software, 41(2), 229–239.Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.Fan, H., & Shi, Y. (2001). Study on Vmax of particle swarm optimization. In Proceedings of the workshop particle swarm optimization, Indianapolis.Gao, H., & Xu, W. (2011). Particle swarm algorithm with hybrid mutation strategy. Applied Soft Computing, 11(8), 5129–5142.Gosciniak, I. (2008). Immune algorithm in non-stationary optimization task. In Proceedings of the 2008 international conference on computational intelligence for modelling control & automation, CIMCA ’08 (pp. 750–755). Washington, DC, USA: IEEE Computer Society.He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.Higashitani, M., Ishigame, A., & Yasuda, K., (2006). Particle swarm optimization considering the concept of predator–prey behavior. In 2006 IEEE congress on evolutionary computation (pp. 434–437).Higashitani, M., Ishigame, A., & Yasuda, K. (2008). Pursuit-escape particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 136–142.Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the evolutionary computation on 2002. CEC ’02. Proceedings of the 2002 congress (Vol. 02, pp. 1677–1681). Washington, DC, USA: IEEE Computer Society.Hu, X., Eberhart, R., & Shi, Y. (2003). Engineering optimization with particle swarm. In IEEE swarm intelligence symposium, SIS 2003 (pp. 53–57). Indianapolis: IEEE Neural Networks Society.Jang, W., Kang, H., Lee, B., Kim, K., Shin, D., & Kim, S. (2007). Optimized fuzzy clustering by predator prey particle swarm optimization. In IEEE congress on evolutionary computation, CEC2007 (pp. 3232–3238).Kennedy, J. (2000). Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 congress on evolutionary computation (pp. 1507–1512).Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In IEEE congress on evolutionary computation (pp. 1671–1676).Kuo, H., Chang, J., & Shyu, K. (2004). A hybrid algorithm of evolution and simplex methods applied to global optimization. Journal of Marine Science and Technology, 12(4), 280–289.Leontitsis, A., Kontogiorgos, D., & Pange, J. (2006). Repel the swarm to the optimum. Applied Mathematics and Computation, 173(1), 265–272.Li, X. (2004). Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In Proceedings of the 2004 genetic and evolutionary computation conference (pp. 105–116).Li, C., & Yang, S. (2009). A clustering particle swarm optimizer for dynamic optimization. In Proceedings of the 2009 congress on evolutionary computation (pp. 439–446).Liang, J., Suganthan, P., & Deb, K. (2005). Novel composition test functions for numerical global optimization. In Proceedings of the swarm intelligence symposium [Online]. Available: .Liang, J., Qin, A., Suganthan, P., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.Lovbjerg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized criticality. In Proceedings of the congress on evolutionary computation, Honolulu (pp. 1588–1593).Lung, R., & Dumitrescu, D. (2007). A collaborative model for tracking optima in dynamic environments. In Proceedings of the 2007 congress on evolutionary computation (pp. 564–567).Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transaction on Evolutionary Computation, 8(3), 204–210.Miranda, V., & Fonseca, N. (2002). New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control. In Proceedings of the 14th power systems computation conference, Seville, Spain [Online] Available: .Parrott, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In Proceedings of the 2004 congress on evolutionary computation (pp. 98–103).Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. In IEEE transaction on evolutionary computation (Vol. 10, pp. 440–458).Parsopoulos, K., & Vrahatis, M. (2004). UPSOA unified particle swarm optimization scheme. Lecture Series on Computational Sciences, 868–873.Passaroand, A., & Starita, A. (2008). Particle swarm optimization for multimodal functions: A clustering approach. Journal of Artificial Evolution and Applications, 2008, 15 (Article ID 482032).Peram, T., Veeramachaneni, K., & Mohan, C. (2003). Fitness-distance-ratio based particle swarm optimization. In Swarm intelligence symp. (pp. 174–181).Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5), 1793–8201.Shi, Y., & Eberhart, R. (2001). Particle swarm optimization with fuzzy adaptive inertia weight. In Proceedings of the workshop particle swarm optimization, Indianapolis (pp. 101–106).Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 69–73). Washington, DC, USA: IEEE Computer Society.Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (pp. 1382–1389).Trojanowski, K., & Wierzchoń, S. (2009). Immune-based algorithms for dynamic optimization. Information Sciences, 179(10), 1495–1515.Tsoulos, I., & Stavrakoudis, A. (2010). Enhancing PSO methods for global optimization. Applied Mathematics and Computation, 216(10), 2988–3001.van den Bergh, F., & Engelbrecht, A. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 225–239.Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1), 67–82.Xie, X., Zhang, W., & Yang, Z. (2002). Dissipative particle swarm optimization. In Proceedings of the congress on evolutionary computation (pp. 1456–1461).Yang, S., & Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. In IEEE Trans. on evolutionary computation (Vol. 14, pp. 959–974).Kuo, H., Chang, J., & Liu, C. (2006). Particle swarm optimization for global optimization problems. Journal of Marine Science and Technology, 14(3), 170–181

    Optimizing semiconductor devices by self-organizing particle swarm

    Full text link
    A self-organizing particle swarm is presented. It works in dissipative state by employing the small inertia weight, according to experimental analysis on a simplified model, which with fast convergence. Then by recognizing and replacing inactive particles according to the process deviation information of device parameters, the fluctuation is introduced so as to driving the irreversible evolution process with better fitness. The testing on benchmark functions and an application example for device optimization with designed fitness function indicates it improves the performance effectively.Comment: Congress on Evolutionary Computation, 2004. CEC2004. Volume: 2, On page(s): 2017- 2022 Vol.

    Analysis of some global optimization algorithms for space trajectory design

    Get PDF
    In this paper, we analyze the performance of some global search algorithms on a number of space trajectory design problems. A rigorous testing procedure is introduced to measure the ability of an algorithm to identify the set of ²-optimal solutions. From the analysis of the test results, a novel algorithm is derived. The development of the novel algorithm starts from the redefinition of some evolutionary heuristics in the form of a discrete dynamical system. The convergence properties of this discrete dynamical system are used to derive a hybrid evolutionary algorithm that displays very good performance on the particular class of problems presented in this paper

    Coverage and Field Estimation on Bounded Domains by Diffusive Swarms

    Full text link
    In this paper, we consider stochastic coverage of bounded domains by a diffusing swarm of robots that take local measurements of an underlying scalar field. We introduce three control methodologies with diffusion, advection, and reaction as independent control inputs. We analyze the diffusion-based control strategy using standard operator semigroup-theoretic arguments. We show that the diffusion coefficient can be chosen to be dependent only on the robots' local measurements to ensure that the swarm density converges to a function proportional to the scalar field. The boundedness of the domain precludes the need to impose assumptions on decaying properties of the scalar field at infinity. Moreover, exponential convergence of the swarm density to the equilibrium follows from properties of the spectrum of the semigroup generator. In addition, we use the proposed coverage method to construct a time-inhomogenous diffusion process and apply the observability of the heat equation to reconstruct the scalar field over the entire domain from observations of the robots' random motion over a small subset of the domain. We verify our results through simulations of the coverage scenario on a 2D domain and the field estimation scenario on a 1D domain.Comment: To appear in the proceedings of the 55th IEEE Conference on Decision and Control (CDC 2016
    corecore