470 research outputs found

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control

    Modeling and Performance Evaluation of Multistage Serial Manufacturing Systems with Rework Loops and Product Polymorphism

    Get PDF
    This paper studies multistage serial manufacturing systems with the integrated consideration of machine failures, process defects, multiple rework loops, etc. In particular, multiple rework loops and product polymorphism lead to a more complex conversion of internal material flows, and therefore it's difficult to model and analyse such manufacturing systems. A modular modeling method based on Generalized Stochastic Petri Nets (GSPN) is presented to characterize the material flows, it is capable of representing the processing differences resulting from product polymorphism comparing with traditional Markov model or Queuing network model. By analysing the model, the processing ratio of each workstation is inferred. Using 2M1B (two-machine and one-buffer) Markov cell model as the building blocks, which is obtained based on the GSPN models for their isomorphism, an overlapping decomposition method is then developed for evaluating the performance of the multistage serial systems with rework loops. Numerical experiments and a case study of a powertrain assembly line illustrate the efficiency of the proposed method

    Comparison Of Parallel Kanban-Base Stock System To Control Multi-Product Multi-Stage Production With Rework Through Simulation

    Get PDF
    A recent globalization challenge compels manufacturing industries to offer a large variety of products with varied demands to suit their customers’ needs. However, these complex scenarios have led to high work-in-process (WIP) and defects, thus inspires many researches to investigate the optimum ways to manage this complex manufacturing system within the scope of production control system (PCS). Most research in PCS has previously focused on the ideal production system and rework is seldom being considered.This study aims to develop and to evaluate the performance of a new hybrid PCS known as Parallel Kanban-Base stock (PKB) system to regulate a multi-product multi-stage production with the entrance of rework. In contrast to the original hybrid kanban-base stock system, PKB system takes into account of three variants. First variant are two classes of the product families known as high-runner (HR) and low-runner (LR) based on the demand of the product mix. The second variant is the variations of dispatch rules to regulate product families categorized as high runner-low runner (HL) and low runner-high runner (LH). Third variant considered was two rework entrance policies classified as merge (MR) and original (OR). The studied systemshave been modeled using discrete-event simulation. The simulation results are analyzed based on statistical methods including analysis of variance, regression and response surface methodology. The selection of related parameters, variables and performance measures is relatively based on literature study and current practice of a case study company. This study has been divided into three cases. For Case 1, among rework entrance policies, predominantly MR rework entrance policy yields more desirable results as observed within the performance measures, compared to OR rework entrance policy. For Case 2, the results revealed that PKB system with different customer demands shows HL dispatch rule is superior to LH dispatch rule. For Case 3, PKB-HL-MR gives the optimum results compared to other models. Overall findings show that PKB system possesses the advantage of a Base stock System (for LR) by causing an approximately 1.3% higher total output and the advantage of a Kanban System (for HR) by having controllable WIP levels. Significantly, this research contributes to the knowledge in the area of PCS in multi-product multi-stage environment considering reworking process.For future research, this work can be extended to the analysis of more complicated system configurations such as a machine breakdownand run the simulation model for various types of industries

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model: A Case Study

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. Perkembangan pesat dalam bidang industri semikonduktor kini telah memerangsangkan teknik untuk mengoptimumkan penggunaan mesin-mesin dengan efektif setelah membelanjakan beribu juta dalam perlaburan. Tanpa penggunaan perisian komputer yang canggih dalam analisis, adalah sukar untuk menggunakan teknik purba dalam analisis pengiraan apabila menghadapi perkembangan produk yang semakin tinggi teknologinya. Dalam kajian ini, satu model simulasi telah dibina untuk menganalisis masa mendulu dalam alatan photolithography melalui teknik yang lebih sistematik dan efektif. Model simulasi ini telah dibina berasaskan perisian computer yang memerlukan informasi yang teliti seperti mas a memproses dan juga aliran proses dalam alatan photolithography. The industry of semiconductor wafer fabrication ("fab") has invested a huge amount of capital on the manufacturing equipments particular in photolithography area which has driven the needs to re-look at the most profitable way of utilizing and operating them efficiently. Traditional industrial engineering analysis techniques through mathematical models or static models for the studies of photolithography process are simply not adequate to analyze these complex environments. In this research, a more realistic representation of photolithography tools that can give a better prediction results and a more systematic methodology for minimizing photolithography cycle time is presented. The proposed method is to reduce waiting time and increase utilization of the photolithography process, which would result in an overall equipment cycle time reduction

    Aerial Refueling Process Rescheduling Under Job Related Disruptions

    Get PDF
    The Aerial Refueling Scheduling Problem (ARSP) can be defined as determining the refueling completion times for each fighter aircraft (job) on the multiple tankers (machines) to minimize the total weighted tardiness. ARSP assumes that the jobs have different release times and due dates. The ARSP is dynamic environment and unexpected events may occur. In this paper, rescheduling in the aerial refueling process with a time set of jobs will be studied to deal with job related disruptions such as the arrival of new jobs, the departure of an existing job, high deviations in the release times and changes in job priorities. In order to keep the stability and to avoid excessive computation, partial schedule repair algorithm is developed and its preliminary results are presented

    Evolving control rules for a dual-constrained job scheduling scenario

    Get PDF
    Dispatching rules are often used for scheduling in semiconductor manufacturing due to the complexity and stochasticity of the problem. In the past, simulation-based Genetic Programming has been shown to be a powerful tool to automate the time-consuming and expensive process of designing such rules. However, the scheduling problems considered were usually only constrained by the capacity of the machines. In this paper, we extend this idea to dual-constrained flow shop scheduling, with machines and operators for loading and unloading to be scheduled simultaneously. We show empirically on a small test problem with parallel workstations, re-entrant flows and dynamic stochastic job arrival that the approach is able to generate dispatching rules that perform significantly better than benchmark rules from the literature

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies. We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future
    corecore