2,225 research outputs found

    Knowledge-Based Deformable Surface Model with Application to Segmentation of Brain Structures in MRI

    Full text link
    We have developed a knowledge-based deformable surface for segmentation of medical images. This work has been done in the context of segmentation of hippocampus from brain MRI, due to its challenge and clinical importance. The model has a polyhedral discrete structure and is initialized automatically by analyzing brain MRI sliced by slice, and finding few landmark features at each slice using an expert system. The expert system decides on the presence of the hippocampus and its general location in each slice. The landmarks found are connected together by a triangulation method, to generate a closed initial surface. The surface deforms under defined internal and external force terms thereafter, to generate an accurate and reproducible boundary for the hippocampus. The anterior and posterior (AP) limits of the hippocampus is estimated by automatic analysis of the location of brain stem, and some of the features extracted in the initialization process. These data are combined together with a priori knowledge using Bayes method to estimate a probability density function (pdf) for the length of the structure in sagittal direction. The hippocampus AP limits are found by optimizing this pdf. The model is tested on real clinical data and the results show very good model performance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85930/1/Fessler166.pd

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation

    Shape Priors in Medical Image Analysis: Extensions of the Level Set Method

    Get PDF
    The 3D medical image segmentation problem typically involves assigning labels to 3D pixels, called voxels, which comprise a given medical volume. In its simplest form the segmentation problem involves assigning the labels part of the structure of interest or not part of the structure to each voxel using locally measured properties and prior knowledge of human anatomy. Robust segmentation remains an open research problem today due to the significant challenges in the task including: partial volume averaging, overlapping intensity distributions and image noise. In the face of these challenges prior knowledge needs to be added to make the segmentation methods more robust. Active contours were introduced in the late 1980\u27s mainly to address situations in which the object to be segmented had a single closed boundary. To address situations in which the object(s) to be segmented have unknown topology the level set framework was recently introduced to segment medical images. Unlike active contours, the level set method relies on an implicit shape representation rather than an explicit shape representation and hence new methods to impose prior knowledge about expected shape have to be devised for the new framework. This paper explores recent segmentation methods from four research groups which address the task of imposing prior knowledge of shape for object boundary segmentation. Three of the methods impose priors onto the level set technique and one employs a medial axis shape representation and Statistical shape information to guide a model-based segmentation. All of the methods include a notion of a statistical shape distribution. Each method is described, analyzed for its strengths and weaknesses. The paper concludes with a comparison of all four methods and recommendations for their applicability

    A Multiresolution PDE-Based Deformable Surface for Medical Imaging Applications

    Get PDF
    We recently developed a multiresolution PDE-based deformable surface whose deformation behavior is governed by partial differential equations (PDEs) such as the weighted minimal surface flow. Comparing with the level-set approach, our new model has better control of the mesh quality and model resolution, and is much simpler to implement since all the computations are local. The new deformable model is very useful for a variety of medical imaging applications including boundary reconstruction, surface visualization, data segmentation, and topology discovery. In this paper, we demonstrate both the accuracy and robustness of our model on areas such as medical image segmentation through a number of experiments on both real (MRI/CT) and synthetic volumetric datasets

    Statistical Medial Model dor Cardiac Segmentation and Morphometry

    Get PDF
    In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular shape features can help identify diseases; shape features can help match different instances of anatomical structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical structure\u27s shape can help segment a new example of this structure in noisy, low-contrast images. A good shape representation helps to improve the performance of the above techniques. The overall goal of the proposed research is to develop and evaluate methods for representing shapes of anatomical structures. The medial model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial axis) and deriving the object\u27s boundary via inverse-skeletonization . This model represents shape compactly, and naturally expresses descriptive global shape features like thickening , bending , and elongation . However, its application in biomedical image analysis has been limited, and it has not yet been applied to the heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model which can be efficiently applied to complex shapes. The proposed medial model closely approximates the medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and local correction. I further develop a scheme to perform model-based segmentation using a statistical medial model which incorporates prior shape and appearance information. The proposed medial models are applied to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an improved alignment of the patterns of commissural connectivity compared to a volumetric registration method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which provides detailed thickness maps characterizing different disease states. The model-based myocardium segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide useful parameters to characterize heart function
    corecore