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Statistical Medial Model dor Cardiac Segmentation and Morphometry

Abstract

In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular
shape features can help identify diseases; shape features can help match different instances of anatomical
structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical
structure's shape can help segment a new example of this structure in noisy, low-contrast images. A good shape
representation helps to improve the performance of the above techniques. The overall goal of the proposed
research is to develop and evaluate methods for representing shapes of anatomical structures. The medial
model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial
axis) and deriving the object's boundary via "inverse-skeletonization". This model represents shape compactly,
and naturally expresses descriptive global shape features like "thickening","bending", and "elongation".
However, its application in biomedical image analysis has been limited, and it has not yet been applied to the
heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the
medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model
which can be efficiently applied to complex shapes. The proposed medial model closely approximates the
medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and
local correction. I further develop a scheme to perform model-based segmentation using a statistical medial
model which incorporates prior shape and appearance information. The proposed medial models are applied
to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an
improved alignment of the patterns of commissural connectivity compared to a volumetric registration
method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which
provides detailed thickness maps characterizing different disease states. The model-based myocardium
segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments
demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide
useful parameters to characterize heart function.
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ABSTRACT

STATISTICAL MEDIAL MODEL FOR CARDIAC SEGMENTATION AND
MORPHOMETRY

Hui Sun

Paul A. Yushkevich and James C. Gee

In biomedical image analysis, shape information can bé&atlfor many purposes.
For example, irregular shape features can help identifyadies; shape features can help
match different instances of anatomical structures fotlissteal comparison; and prior
knowledge of the mean and possible variation of an anatdsticacture’s shape can help
segment a new example of this structure in noisy, low-cehtraages. A good shape rep-
resentation helps to improve the performance of the abaligues. The overall goal
of the proposed research is to develop and evaluate metbodspresenting shapes of
anatomical structures. The medial model is a shape repgeggenmethod that models a
3D object by explicitly defining its skeleton (medial axis)dederiving the object’s bound-
ary via “inverse-skeletonization”. This model represestiape compactly, and naturally
expresses descriptive global shape features like “thiokgyibending”, and “elongation”.
However, its application in biomedical image analysis hearblimited, and it has not yet
been applied to the heart, which has a complex shape. Irmigssst | focus on developing
efficient methods to construct the medial model, and apply #olve biomedical image
analysis problems. | propose a hew 3D medial model which eagfficiently applied to
complex shapes. The proposed medial model closely appabagrihe medial geometry
along medial edge curves and medial branching curves bypsofilty optimization and
local correction. | further develop a scheme to perform nibdsed segmentation using a
statistical medial model which incorporates prior shapgawpearance information. The

proposed medial models are applied to a series of imagessahsks. The 2D medial

iv



model is applied to the corpus callosum which results in aoraved alignment of the
patterns of commissural connectivity compared to a voluimetgistration method. The
3D medial model is used to describe the myocardium of thatedtright ventricles, which
provides detailed thickness maps characterizing diftadesease states. The model-based
myocardium segmentation scheme is tested in a heterogemeolt MRI dataset. Our
segmentation experiments demonstrate that the statistiedial model can accurately
segment the ventricular myocardium and provide usefulrpatars to characterize heart

function.
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while the red bars are samples that are displaced. Duringriga each
boundary node is displaced along ttieord direction(illustrated in Fig-
ure 5.2), and samples from the image neighborhood are usgehtrate
appearance features. Combining features from differdnests, at each
boundary node, I train an AdaBoost classifier with two clagsiésplaced
node vs. not displaced). (b). The deformable model is showed color
while the underlying object is shown in green color. Durimgmenta-
tion, the classifier is used to position boundary nodes dios@matomical
boundaries. Pairs of boundary nodes that share a medialpdgandmark
are displaced along the chord direction, governed by theBAdat clas-
sifiers corresponding to the nodes. Following these digphants, the
deformable model is updated so as to satisfy the necessamyagac con-

straints and to abide by the shape priors. . . . . . .. ... ... ...

lllustration of chord direction. For boundary nodéswhich correspond

to the medial pseudo-landmank, the chord direction which crosses

andb™ shown as purple lineinthefigure. . . .. ... ... ......
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5.3

5.4

5.5

5.6

lllustration of training exemplars of a “well-placeddindary node (class
0) and a “misplaced” boundary node (class 1) in AdaBoostitmgi The
manual segmentation of the anatomical structure is shovgnayp. The
medial model is fitted to the manual segmentation to obtaisiahpseudo-
landmarks and corresponding boundary points. The left diginows a
“well-placed” boundary node centered at the exact boundatige man-
ual segmentation. Note that since the manual segmentationat be per-
fect, | actually place three “well-placed” boundary nodaessdach bound-
ary location: one is on the exact boundary of the manual setatien as
illustrated in the left figure, the other two are on two sidéthe first one
and are obtained by applying a small displacement to it atbegchord
direction. The right figure shows a “misplaced” boundary esydvhich
is obtained by applying displacements to the well-placaghidary nodes

along chord direction. . . . . . . . ...

Example of automatic segmentation in a single subjdwat.tdp row shows
the manual segmentation in green and the model initialigddridmarks
in blue. The bottom row shows the segmentation result inveéti, nanual

segmentation in green. From left to right, slices progressfmost basal

slicetotheapex. . .. .. . . . . . . . .

lllustrate the mean segmentation error. The meshesoéweed by the
mean point-to-surface distance from the model boundarytoethie man-
ual segmentation boundary mesh. The left figures show thecandial
boundary of the left and right ventricles. The right figurbs\s the epi-
cardial boundary of the left and right ventricles. The tow snd bottom

row are figures from different view point. . . . . . ... ... ... .. 91

Bland-Altman plot for LVV comparing the manual measueatrand model-

based measurement. . . . . . . . ...



5.7 Bland-Altman plot for RVV comparing the manual measurahand model-

based measurement. . . . . . . . ...
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Chapter 1

Introduction

1.1 Motivation

Medical imaging technologies are providing physicians esgkarchers with images of
increasing spatial and temporal resolution. With the langeunt of data being generated,
there has been increased interest in automatic image @adgss which can help physi-
cians and researchers answer critical questions in masgiagbhysiology, and pathology
studies. In many applications, an accurate, informative @mnsistent description of an
object’s shape is particularly useful. For example, shafmmation can help characterize
disease. It can also be learned, and prior knowledge of slajbility can aid automatic
segmentation of the object in a new medical image. The wotkigmthesis develops a
shape representation method called the medial model, wiattirally expresses intuitive
and descriptive global shape features like “thickeninggyiding”,“twisting” and “elonga-
tion”. This model is evaluated in a variety of image analyasks, with a focus on cardiac

images.

1.1.1 Medial Model of Object Geometry

The medial model represents an object by its medial axisdtk®). Informally, the skele-

ton is the set of curves in 2D, or surfaces in 3D, that resutisifthinning an object by
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moving each of the boundary points inwards along the norraetior. Since the seminal
paper by (Blum, 1967), medial axis geometry has been stediehsively (Damon, 2005;
Giblin and Kimia, 2003; Choi et al., 1997; Bruce et al., 198H)e interest in medial axes
arises from their ability to provide a rich and intuitive daption of an object’s shape. The
branching properties of the medial axis can be used to exathahierarchical composi-
tion of an object into simple sub-shapes. The curvature®ttirves forming the medial
axis describes how the object bends locally. Each point ertadial axis is associated
with a circle in 2D (or sphere in 3D) that lies inside the obpatd is tangent to the object’s
boundary, usually at two points. This circle/sphere isriaximal inscribed balbf the
object. The radii/diameters of theseximal inscribed ballslescribe the thickness of the
object, a feature that is particularly relevant when stogyieart pathology (Azhari et al.,
1990; Sheehan et al., 1986) or neurodegeneration (Thongisaln 2003; Bouix et al.,
2005).

There are numerous deterministic algorithms that can coenjpe medial axis given
the boundary of an object (Bouix et al., 2005; Kimia et al.93;90gniewicz and Kubler,
1995; Naf et al., 1996; Siddigi et al., 1999). However, giweset of similar objects (e.g.,
some anatomical structure taken across a set of subjeetgynanistic methods cannot
guarantee that the extracted medial axes will have the sammder or configuration of

branches. This makes it difficult, if not impossible, to doast a statistical shape model.

The medial representation (m-rep) developed by Pizer ¢Pater et al., 1999, 2003;
Joshi et al., 2002) provides consistent medial featurestadistical analysis. In this ap-
proach, a deformable template, defined in terms of its media| is fitted to objects under
constraints that prevent changes in the number and configiiiaf medial branches. As
illustrated in Figure 1.1, an m-rep is an inherently diserepresentation that uses sparsely
sampled primitives calledhedial atomsas the building blocks of the model. Although
interpolation methods for discrete m-reps have been pexp@Bhall, 2004; Han et al.,
2006), the exact medial geometric relations are not exjlisatisfied by the interpolated

primitives.



Figure 1.1: An illustration of three-dimensional m-rep figwrganized as ax33 quadri-
lateral mesh of medial atoms. The atom in the middle of thehmes regular medial
atom, the rest are end atoms.

The continuous version of m-rep (cm-rep) has been propd&esthkevich et al., 2003).
In the cm-rep approach (Yushkevich et al., 2003, 2006b;ildemy, 2006; Yushkevich,
2008), an object is modeled by first definingynthetic medial axias a collection of
continuous manifolds, and then deriving the boundary oftioglel usingnverse skele-
tonization which achieves the inverse effect of the thinning processo(called skele-
tonization). However, because of the nature of medial gégtieverse skeletonization
is well-posed only if the synthetic medial axis satisfies faageconstraints, which in-
clude non-linear equality constraints that have to holshglthe edge curves (or in 2D,
end-points) or branching curves (or in 2D, branching-m)iof the synthetic medial axis.
In (Yushkevich et al., 2006b; Yushkevich, 2008), the caaists are satisfied by defin-
ing the synthetic medial axis as the solution of a partidedéntial equation (PDE) with
boundary conditions equivalent to the equality constgailnt (Terriberry and Gerig, 2006;
Terriberry, 2006), Terriberry and Gerig proposed anothay w0 handle the constraints
by using Catmull-Clark subdivision surfaces to model thalimleaxis and enforcing the
constraints by locally modifying the medial axis at edge arahching curves to use in-
terpolating splines. However, until now the applicatiohshe cm-rep have been limited

to simple shapes, whose medial axes consist of a single 3&csur

In this thesis, | further develop the medial model method@s used for applications
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in biomedical imaging. In Chapter 3, | work out the expliddsed form solution of the
ordinary differential equation (ODE) which is a 2D equivalef the PDE used in (Yushke-
vich et al., 2006b). In Chapter 4, | propose a new way to caosthe medial model by
enforcing the medial model constraints using soft penaitgns and local corrections in
the deformable model, which can be efficiently applied to ac8Bplex shape whose me-
dial axis has branches. In Chapter 5, based on the mediallmagosed in Chapter 4, |
develop a statistical medial model which incorporates Isbidipe and appearance priors,

and | use this model for image segmentation.

1.1.2 Geometric Model of the Heart

In cardiac studies, geometric models can help automatexthracéon of clinically relevant
parameters and provide better visualization. Simple géoermaodels, such as assuming
that the left ventricle (LV) is ellipsoidal in shape, arediteonal methods to obtain LV
parameters from echocardiography and angiocardiogralphfact, simple assumptions
are sometimes quite elegant and some of them are still §ctiveise, as shown in the
standard scheme to divide the LV into sixteen segments irla ptot (equal height and
equal angle division). Another example is the method deezldy (Germano et al., 1995)
for automatic quantification of LV function from gated-pesion single photon emission
computed tomography (SPECT) images, which also uses tipsatlal model and can
accurately determine most of the classical cardiac funatiparameters.

In the last few decades, along with the rapid developmentadiac imaging tech-
nology, many advanced geometric models have been devetopmkdpplied to analyze
cardiac shapes. For example, researchers have utilizedcgigarics (Barr, 1981; Chen
et al., 1995), Fourier functions (Staib and Duncan, 199B)4B harmonic descriptions
(Matheny and Goldgof, 1995), B-Splines (Gustavsson e1883) and polyhedral meshes
(Gopal et al., 1992) to represent the LV boundaries usingimoous functions; utilized
dense point distributions (Assen et al., 2006; Shi et aD02®eters et al., 2009) to dis-

cretely represent heart boundaries, and also utilized kets (Yezzi et al., 1997) and
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neural networks (Tseng et al., 1998) to implicitly représtwe heart boundaries. Vol-
umetric and deformation models (Frangi et al., 2002; Tast@nd Amini, 2006; Mansi
et al., 2009; Peyrat et al., 2008) are also quite populaeaslly for the analysis of tagged
MRI. (Frangi et al., 2001a) give a thorough review for themetric models being used in

cardiac applications.

The heart walls are thin, sheet-like structures which carebdily described by their
medial axes. And there have been some efforts to use the lnagdian cardiac analysis.
(Cauvin et al., 1993) proposed representing the LV by fitarigruncated bullet” model
to its skeleton. (Scellier et al., 1996) also leveraged Kedeson in the segmentation and
guantification scheme for myocardial SPECT. The 2D “cemerhethod” (Sheehan et al.,
1986) based on skeletons of 2D cardiac slices is widely usedh&asuring heart wall
thickness, and it has been extended to 3D by Bolson and Sh¢Bblson and Sheehan,
1993). However, statistical medial models that repredeathieart using a medial axis
with a consistent branching configuration and describe-dav@n shape variations have

not yet been constructed for the heart.

In this thesis, | construct statistical medial models folisvaf the left and right ventri-
cles and use these models in two important applicationgt aedl thickness analysis in

Chapter 4 and myocardium segmentation in Chapter 5.

The first application of the medial model is to provide a dethivall thickness map
of the left and right ventricles. The value of heart wall #rniess and systolic thicken-
ing (the changing ratio of thickness during a cardiac cyitieharacterizing myocardial
function has long been recognized (Azhari et al., 1990). thiekness or thickening can
change in response to a number of stimuli, such as exerdige,biood pressure, my-
ocardial ischemia and oxygen shortage. The change canhs &talized or uniformly
distributed, depending on the cause. A detailed map desgribe thickness and thicken-
ing in the normal state and their changes in different desesastes can provide valuable

information from clinical, prognostic and therapeutic msiof view. However, the way

5



that thicknesss defined and computed varies considerably (Frangi et @1&). Man-
ual measurements are frequently used in clinical studiggré@ximate approaches, such
as dividing the myocardium into small cuboid elements andpmating the ratio between
volume and surface area, have also been used (Azhari eB8D).1A widely accepted
way to define thickness is based on the medial axis, from wdigbint-wise local thick-
ness map can be derived. The 2D “centerline method” (Sheethaln 1986) and its 3D
version “centersurface method” (Bolson and Sheehan, 1&@3)videly used. However,
the centersurface method only deals with a single heart bharm addition, the detailed
thickness maps generated from different objects are ngiedi, which poses problems
for population comparison. In Chapter 4, | apply the branghmedial model to generate
aligned detailed thickness and thickening maps, and carthase maps across different
heart conditions.

Segmentation of the heart is frequently required to quatintély assess global or local
functional parameters of the heart, such as the ejectiatidra(EF) and heart wall thick-
ness and thickening. A large number of cardiac segmentsati@hes are conducted using
statistical boundary models, such as (Lotjonen et al., 288den et al., 2006; Lorenz and
von Berg, 2006; Zheng et al., 2008; Wierzbicki et al., 200&els et al., 2009). But seg-
mentation of the heart using a statistical medial model bab@en reported. In this thesis,
| use a statistical medial model which has an explicit thedsishape prior to segment the

bi-ventricular myocardium.

1.2 Contributions

The overall goal of this thesis is to further develop the rabdliodeling technique, making
it easily applicable for 3D complex shapes and demonsgatisrproperties through these

applications. Towards this goal, I claim the following capations:

1. New method: Constructing a 2D cm-rep by obtaining theiekmlosed-form so-
lution of the ODE, which is a 2D equivalent of the PDE used inghkevich et al.,
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2006bh).

. Application: Being the first to use the medial model to perf shape-based nor-
malization of the corpus callosum and to demonstrate pialeadvantages over a

registration-based approach.

. New method: Constructing a 3D branching medial model bgremg the equality
medial constraints using soft penalty terms and local ctioes in the deformable

model.

. Application: Using the 3D branching medial model to resera the left and right

ventricular myocardium, which yields aligned thicknesd #rickening maps.

. New method: Constructing a statistical medial model adsimy a shape prior of
the medial manifolds using principal component analysi3X), a shape prior of the
radial thickness field using Markov random field (MRF), andagpearance prior
of the image features around the model boundaries using tlagptAre Boosting

(Adaboost) algorithm.

. Application: Being the first to apply the statistical ma&dnodel to cardiac image
segmentation and show that it can segment the left and ragttticular myocardium

accurately.

These contributions highlight the development of the meati@deling approach in

terms of both methodology and application. The methodoldgyelopments include

new methods to construct the medial model for both 2D objedts simple shapes and

3D objects with complex shapes. The applications demaestinaee usages of the me-

dial model: providing shape-based normalization for défe instances of an anatomical

structure prior to comparison, providing meaningful shegagures for disease character-

ization, and providing model-based segmentation. Thetoacted medial model, which

describes intuitive shape features, can effectively mepreshapes of biological objects

and help to answer critical questions in morphology, pHgsgig and pathology studies.
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1.3 Chapter Overview

The thesis is organized into six chapters:

Chapter 2 presents the background information on the cetatthodology. It reviews
the statistical shape models and their applications to ésagmentation. Medial geome-
try and the existing medial model approaches are also int@dlin detail.

Chapter 3 analyzes the unique properties of the 2D equivafahe PDE-based cm-
rep method (Yushkevich et al., 2006b) and derives the swiub the ODE as a closed-
form expression. This enables efficient generation of therepnfor 2D objects. The
model is applied to the corpus callosum to examine the glolfitthe medial model to
provide shape-based correspondence that matches diffeséances of anatomical struc-
tures. Such shape-based correspondence is evaluatedapadrea with a correspondence
based on a volumetric registration in a DTI connectivitydgtéor chromosome 22q11.2
deletion syndrome.

Chapter 4 presents a novel branching medial model for 3DctshjeThe model is
generated and evaluated in a large cardiac MRI datasethwkimonstrates the robustness
of the method. The ability of the medial model to provide digdive shape features,
particularly thethickness measures also demonstrated in the chapter. The thickness
and thickening of different clinical groups are comparethviihhose of the healthy group
through statistical analysis.

Chapter 5 proposes a heart segmentation scheme that uséatistecal medial model.
The segmentation scheme uses prior knowledge which isdddrased on medial shape
features. Learning-based classifiers for boundary deteetie trained on appearance fea-
tures which are sampled according to the medial model. Topgsed scheme is evalu-
ated on two clinical datasets, and the results demonstratadcuracy and robustness of
the method.

Chapter 6 concludes the thesis by summarizing the work inhisis and discussing

future work.



Chapter 2

Background

In this chapter, | first review general shape representatiethods and their usage in
model-based segmentation. Then | focus on the continuodsahrepresentation (cm-
rep), a particular type of shape representation methodirdratiuce its geometric back-

ground and the current approaches to constructing it.

2.1 Statistical Shape Models and Image Segmentation

This section begins with a brief summary of various shapesggmtation methods. Then
| review one of the most important applications of shape rsdeodel-based image seg-
mentation. Specifically, | focus on the cardiac image sedatiem that is closely related

to the thesis work in Chapter 5.

2.1.1 Shape Representation Methods

In order to study shapes using statistical methods, one rapstsent each shape with a
fixed number of homologous measurements. A variety of shgmesentations have been
described in the literature. This section briefly descridmse approaches besides medial

modeling.



Representing a shape using a set of points sampled from threlboy surface, as em-
ployed by (Cootes et al., 1995; Dryden and Mardia, 1998; Btek, 1989), has been
extensively used in computer vision and medical image amalyrhese points are com-
monly referred a&andmarks (Dryden and Mardia, 1998) define three types of landmaks:
anatomical landmarkthat are points of special biological or structural sigmifice math-
ematical landmark#hat are points with unique geometric properties (suchregurity or
critical points), angbseudo-landmarkifiat are points whose positions are derived from the
positions of other landmarks. There are representatioing assparse set of landmarks,
such as (Bookstein, 1989) which uses interpolation to reftoot the geometrical form of
objects between the landmarks. The point distribution rh@@l2M) is constructed using
the coordinates of a dense set of boundary landmarks. Inapbelgr active shape model
(ASM) (Cootes et al., 1995) and active appearance model (A&Bdotes et al., 2001),
the PDM is used as a part of a combined model that describbshape and appearance
features. These types of combined shape and appearancésroadeserve as the prior
knowledge of anatomical structures and are widely usedutomaatic cardiac segmenta-
tion (Lotjonen et al., 2004; Assen et al., 2006; Lorenz anad Berg, 2006; Zheng et al.,
2008; Wierzbicki et al., 2008; Peters et al., 2009).

Instead of using discrete points to represent boundariedjelcts, another class of
geometric models uses continuous functions to approxithatboundaries. For example,
the boundary can be decomposed into a set of Fourier (Stdibancan, 1992) or spher-
ical harmonic (Brechbuhler et al., 1995) basis functi@m] the coefficients can be used
as shape features. These kinds of basis decompositiorsegpations are well adapted
to a coarse-to-fine shape representation framework (Stailbancan, 1992). They have
also been employed in deformable models for image segn@m{#telemen et al., 1999;
Szkely et al., 1996), among which there is cardiac image sagption (Staib and Duncan,
1996).

The above methods represent a shape by explicitly desgribenboundary. An alter-

native approach is to represent the boundary implicitighsas with the level set approach,
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which embeds the boundary of the object as the zero levef sdtigh-dimensional func-
tion (Sethian, 1996). The level set representation has bilgyato handle changes in
topology. As a numerical technique that can follow the etioftuof interfaces, it is widely
used to achieve image segmentation (Caselles et al., 198tdWand Sethian, 1995; Li
et al., 2007). The level-set representation has also bezhinstatistical shape modeling

for prior-based heart segmentation (Tsai et al., 2003).

In shape characterization based on volumetric registrat{®avatzikos et al., 1995;
Christensen et al., 1997; Joshi, 1997; Csernansky et &8§;%huang et al., 2008), the
shape difference between two objects is measured by theitndgof deformation needed
to optimally warp one object to the other based on maximitirgimage similarity. To
regularize the deformation, the deformation field needsdtteee to certain constraints,
such as rules of elastic deformations or diffeomorphic nragppWhen combined with
a labeled atlas, volumetric registration can also be usegtihieve heart segmentation
(Zhuang et al., 2008).

2.1.2 Model-Based Image Segmentation using the PDM

Model-based image segmentation is usually much more robastlow-level algorithms
since the model contains expected shape and appearanoeatiftm. Among all shape
representation methods used to construct statisticaleshmulels to achieve image seg-
mentation, the PDM is frequently used, especially givengbpularity gained by the
ASM and AAM. Additionally, our statistical medial modelirgpproach in Chapter 5 is
more analogous to the ASM. Therefore, in this subsectioncui$ on the model-based
image segmentation using the PDM. Below, | review the keymaments for these ap-

proaches.
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Statistical Shape Model Construction

Before constructing the statistical model, correspondiogndary landmarks need to be
aligned to remove the similarity transformations betweifiereent shape instances. Gen-
eralized Procrustes analysis (Gower, 1975) and tangeo¢ Sgaling (Dryden and Mardia,
1998) are frequently used for this purpose.

We assume each shape in the training sample is now reprddgnéa aligned fixed-
length shape featune; (for the boundary landmark systemy, would consist of all the
coordinates of landmarks). Constructing a statisticapshaodel basically consists of
extracting the mean shape and modes of variation. Until tlogvmost often used ap-
proach in statistical shape model is principal componeatyais (PCA), although many
techniques (Hyvarinen and Oja, 2000; Twining and Tayl6QZ2, De La Torre and Black,
2003; Fletcher and Joshi, 2004; Stegmann et al., 2006tr8yiket al., 2007) have been
proposed either to improve or to replace it.

In the PCA approach, givenshape samples, the mean shape is just a direct average

X = Ein (2.1)

S= 3 =0 — %7 2.2)

=1
Then, using eigendecomposition or singular value decompo$SVD) methods, the
eigenvectorg; and eigenvalues; can be calculated; are the modes of shape variations,
and); measures the respective variances. Now, we can approxanvati shape that has

the same shape variation with the training data by a lineaabaoation of the modes:
X = )_("—ijVj, (23)
j=1

whereb; are the shape parameters that quantify the variation. Tdrerethey need to

be limited to a certain interval. A common approach is to ¢@ms eachb; to lie in-
c b
J

side[—3);,3);]. Alternativelyb; can be constrained b ;_,

) < M, whereM is a
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threshold chosen from the’ distribution. Other methods to constraininclude utilizing
Gaussian mixture models (Cootes and Taylor, 1997) or nduttiensional tables that are
constructed from the training data (Li and Ito, 2005).

¢, which is the number of modes used in the statistical shagkemecan be chosen ac-
cording to the specific application. One popular way is toog®at so that the accumulated
varianceZ;:1 A, reaches a certain ratio (most oft@f — 0.99) of the total variance.

Various techniques have been proposed to improve or repl@2e Robust PCA is
proposed in (De La Torre and Black, 2003) to ensure that thgpatation of PCA modes
is less susceptive to outliers. The PCA modes generally ddvawe sparse structure,
meaning the modes would influence all shape features sinadtesly. Since sparsity is
usually desired, a number of techniques have been proposattdaduce sparse modes,
such as the Orthomax rotation (Stegmann et al., 2006) andespP&LA (Sjostrand et al.,
2007). Independent component analysis (ICA) (Hyvarined @ja, 2000) is proposed
to separate independent components linearly mixed in tteewdighout assuming the or-
thogonality of the components. (Fletcher and Joshi, 20@4dduced principal geodesic
analysis (PGA) for models where the features are parametedn a curved Riemannian
manifold rather than in an Euclidean space. Kernel PCA (iiwgrand Taylor, 2001) has
been proposed to perform a nonlinear form of PCA efficienting techniques of ker-
nel methods, in which data points are implicitly mapped togh+dimensional Euclidean

feature space.

Establishment and Evaluation of Model Correspondence

The construction of the statistical shape model for a pdmriaequires the extraction
of corresponding measurements from objects. The methodeffaming correspondence
can vary according to the shape representation method.elodhtext of landmark de-
scriptions, the problem would be finding a set of landmarkmisometimes also called
“pseudo-landmarks”, that are consistent across a populafiobjects. In early research,

those points were obtained by first manually identifying &matomical landmarks and
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then constructing new points via interpolation. Howeweis ts not only labor-intensive
but also limited by the inherent sparsity of available armatal landmarks, especially
for 3D shape characterization. Therefore, fully automaseudo-landmark selection,
which involves identifying corresponding locations acr@spopulation of objects, has

been widely explored.

Establishing landmark correspondence can be viewed aspe skgistration prob-
lem that can be categorized by the type of data represemtdicst, correspondence can
be computed througmesh-to-mesh registrationWell-established algorithms, such as
the iterative closest point (ICP) algorithm by (Besl and sligk1992) and the softassign
procrustes by (Rangarajan et al., 1997), can match two raesitie potentially different
numbers of vertices using a similarity transform. Nondigegistration of meshes has
also been used (Subsol et al., 1998). Yet another approachdem proposed to iden-
tify corresponding parts/points on meshes using classiffitiot et al., 2007). Second,
correspondence can be computed throongish-to-volume registratiothat is, adapting a
deformable surface model to the segmented binary volumgtslefining the correspon-
dences by the vertex locations of the deformable template tife surface evolution has
converged. This is the approach adopted in (Kaus et al., ;20080 and Teoh, 2008;
Lorenz and von Berg, 2006). A third way to compute correspoid is to register a vol-
umetric atlas and using the resulting deformation field tpppgate the landmarks placed
on the atlas to the training data (Frangi et al., 2001b), wken be categorized as estab-
lishing correspondence througblume-to-volume registrationFinally, it is possible to
establish correspondence throyggrameterization-to-parameterization registratidror
2D curves, this is often equivalent to uniform arc-lengtlrespondence (Brechbihler
et al., 1995). In 3D, it would be much more complex, and défgrapproaches have been
proposed, such as using spherical harmonics (SPHARM) (Kexteet al., 1999) or other
methods to parameterize or to re-parameterize the objeststpgy regularized by a limited

set of known/assumed correspondences (Thompson et ab).199
The approaches described above register a pair of shapémat &owever, it is hard
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to define a general rule of “good correspondence” that carifbetieely applied to pair-
wise registration. (Kotcheff and Taylor, 1998) proposedétermine the correspondence
through the population-wise optimization which minimizlee determinant of the covari-
ance matrix (DetCov) to favor a compact statistical modekezl on the DetCov approach,
(Davies et al., 2002) proposed the minimum descriptiontle(igDL) method. It searches
for the correspondence that allows the PDM to be expressad tle shortest possible
message. The objective function directly relates to haasgiuch variability as possible
occur in the first few principal components while keeping\hgability in the remaining
components on the order of imaging noise. Following the MDatmd, approaches have
been proposed to simplify the computation of the objectivestion (Thodberg, 2003) and
its gradient (Ericsson and Astrom, 2003) for the MDL methddaol helps to speed up

the computation.

The evaluation of the correspondence is not easy since ukectirrespondences of
biological shapes are generally not known. (Davies, 200)€3 et al., 2003c) proposed
a method to measure the goodness of a correspondence usagjthalities of the PCA
model built based on it: generalization ability, specificéind compactness. The general-
ization ability is the capability to describe shape outsitithe training set, which can be
guantified by the approximation error when the PCA model &lus fit an unseen shape
example in leave-one-out experiments. Compactness ishility 40 use a minimal set
of parameters to capture the shape variation within a ptipalavhich can be quantified
by the cumulative variance in the PCA model. Specificity & &bility to represent only
valid shapes, which can be quantified by the similarity betwexamples generated by the
PCA model and their nearest neighborhood in the training(S¢yner et al., 2003c) em-
ployed these three measures to compare models built by ihyvamigalized subdivision
surfaces, SPHARM parameterization, DetCov, and MDL usateral brain ventricle and
femoral head data and reported that DetCov and MDL give teerbsults.
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Appearance Model

In order to automatically fit the statistical shape model tgaen image data to achieve
segmentation, an appearance model is needed. Dependihg way that the appearance
features are sampled in the model, appearance models cariderldnto two categories:
boundary-based sampling and region-based sampling.

A representative of boundary-based sampling methods iA8M (Cootes et al.,
1995), where appearance features are sampled along tléiahr@erpendicular to the
model boundary. In the original version of the ASM (Cooteslet 1995), appearance
features are modeled using PCA, extracting a mean featatenand principal modes of
variations for each landmark. Later, the ASM was adapteatmus segmentation tasks
in the biomedical image field, during which different apesre features have been ex-
plored, and different ways for constructing the appearanodel out of the features have
been proposed. Commonly used appearance features inotade intensity values, their
derivatives, Haar wavelets, Gabor wavelets (Daugman, ;1488enna et al., 1997), and
steerable features (Freeman and Adelson, 1991). Duringhttel-based segmentation,
ASM searches along the directions perpendicular to the demyrto locate new bound-
ary landmarks. This is usually achieved by evaluating agiesli match function that is
supposed to achieve maximum at the boundary. The matchidarean be Mahalanobis
distance, a gradient-based edge detector, a k-nearggtboei(kNN) classifier (de Bruijne
et al., 2003), or other discriminative training-based siféexs (Zheng et al., 2008). De-
pending on the application, appearance features may or wiayany significantly over
the model boundary. Therefore, some choose to train a diffeappearance model at
each landmark point (Zheng et al., 2008; Peters et al., 2009) others may cluster the
landmarks into regions of similar appearance accordingedeature vectors (Brejl and
Sonka, 2000) to obtain more training data.

A popular method using region-based sampling is the AAM (€set al., 2001),
which samples the entire interior region of the model todaiffeature vector. To obtain

the feature vectors for different shapes, the regions neée normalized first, which is
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usually achieved by transforming each shape into the meagmeshThen, PCA is applied
to build a combined shape and appearance model. Examplesngf AAM in cardiac

image segmentation are (Mitchell et al., 2002; Lapp et a0A4.

Search Algorithms to Achieve Segmentation

The segmentation is achieved by matching the statistiegdesinodel to new image data.
This is naturally formulated as a Bayesian posterior proialestimation problem. The
Bayesian probability states that, given some data and sgpuliesis, the posterior prob-
ability that the hypothesis is true is proportional to thedarct of the likelihood multiplied
by the prior probability. Let/ be a model (hypothesis) ard be the image data, we have

P(D|H)P(H)

P(H|D) = =55

(2.4)

Here P(H) is theprior probability of H: the probability that{ is correct before the data
D was seen.P(H) is derived from the statistical model constructed fromnirag data.
P(D|H) is theconditional probabilityof seeing the dat& given that the hypothesig is
true, which can be measured by the match betweemd . P(D) is the marginal prob-
ability of D, which is a constant during the model fitting since the dafxésl. P(H|D)
is theposterior probability the probability that the model is true, given the data amd th
prior knowledge about the model. Locating the model in neagmdata thus can be for-
mulated as maximizing the posterior probability define®id) by altering the parameters
that define the model. However, it is usually inefficient tbvedhis optimization directly,
given the large size of the search space. Instead, varianshsalgorithms are formulated
to match an initial estimate of the model to image data. Bdlsammarize the classical
ASM and AAM approach.

In the ASM, an instance of the shape moreéh an image is defined by a similarity

transform?” and the shape parametéraccording to

x = T (X + Ob). (2.5)
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Starting from an initial model state, the ASM searches nesitjom for each landmark by
evaluating the fit of the appearance model at different mrstalong the normal vector
to the boundary surface. This gives a vector of new landmankliclatex. Now the pose
difference between the current state of the modmhd the new candidateis eliminated
by a similarity alignment, leading to a new similarity tréoren 7. Assume that the current
modelx is brought toy by the new similarity transform, the new shape parametardbea

computed by

b=b+d"T ' (x—vy).

After constraining to lie within appropriate parameter limits as describeddot®n 2.1.2,
we have an updated valid instance of the model. The above atewonducted iteratively,
until a specified convergence criterion is hit, e.g. the mmaxn or average landmark move-

ment is below a given threshold.

The AAM by (Cootes et al., 2001) features an unique searcbridihgn during the
model-based segmentation. Since AAM stores the complgieaapnce of the object,
it can synthesize realistic appearance of the modeled d&feM assumes a constant
linear relationship between appearance residuals antheteaupdates. This relationship
is learned using the training images. Then, during the satatien, AAM updates the
parameters in each step by computing a synthesized appeamparing with the real
appearance features to calculate the appearance residdalbtaining the updates using

the learned linear relationship.

2.2 Medial Geometry and Medial Models

This section provides the reader with necessary backgsoomthe Blum medial axis and

introduces medial modeling techniques.
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Figure 2.1: Examples of the medial axes for 2D and 3D objects.

2.2.1 Basics of Medial Geometry

| first briefly introduce the terminology and concepts of na¢dieometry. There is more
than one way to define the Blum medial axis of an object: aslibeksset of the Eikonal
PDE, or, as | do below, as the locus formed by maximal insdrii@ls. Given a geometric
object O in R?, | define amaximal inscribed ball (MIBjn O as any ball3 satisfying
B C O and for which there exists no ba® # B such thats ¢ B’ C O. The locus of
the centers and radii of all MIBs is called theedial axisof the object. The medial axis
is thus composed of two components: the locus of the centexi$ MIBs in R? denoted
by m, and the locus of radii ifR* denoted byR. In the literaturem is also sometimes
calledmedial surfacesmedial scaffoldcentersurfaceskeletonor evenmedial axiswith
the (m, R) being calledaugmented Blum medial axi€xamples of the medial surfaces

are illustrated in Fig 2.1.

The medial scaffold is &Vhitney stratifiedset (Damon, 2005), that is, a collection
of manifolds with boundaries that are connected along edgbsse manifolds will be
referred to asnedial manifoldsThe parts of their boundaries that are shared by multiple
medial manifoldswill be called medial seam®r branch curveswhile the parts of the

boundaries that only belong to one medial manifold will bkecmedial edges

Here | adopt the notation of (Giblin and Kimia, 2000) to clsthe type of points that
form the medial scaffold according to the order and multipliof tangency between their

MIBs and the boundary of the object. Each point is assignafiel bf the formA7*, where
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m indicates the number of unique points at which the maxinsdribed ball is tangent to
the boundary, and indicates the order of tangency between the maximal insdriiall
and the boundary. There are only two possible orders of tarygeontact of a maximal

inscribed ballB at a point P on the boundary surface S:
e A, contact:Bistangentto S at P;

e Aj contact: B is tangent to S at P. The radius Bfis one of the principal radii of
curvature of S at P, and the corresponding principal curedatua local extremum (

P is also called a ridge point of S).

For other orders of contact of a ball at a boundary point, tienbary must penetrate the
surface of the ball. Therefore the ball can never be maxjnadicribed.
(Giblin and Kimia, 2000) proved that for 3D objects, there &ve types of generic

points that form the medial scaffold. They are the following

1. A2 points on the interior of medial manifolds, where the MIB @gent to the

object’s boundary at two points; these points form two-disienal manifolds;

2. A; points on medial edges, where the MIB is tangent to the bayrataone point;

these points form one-dimensional manifolds;

3. A3 points on medial seams, where the MIB is tangent to the bayradéhree points
with first-order contact with the boundary; these pointsfane-dimensional man-

ifolds;

4. A,Ajz points at medial seam-edge intersections; these pointsZero-dimensional

manifolds;

5. A} points at medial seam-seam intersections; these points fero-dimensional

manifolds.

For 2D objects, there are three types of generic points tlat fnedial curves, which are:
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1. A% interior points of the medial curves, where the MIB is tartgenthe object’s

boundary at two points; these points form one-dimensioraadifalds;

2. As edge points, where the MIB is tangent to the boundary at oivg;gbese points

form zero-dimensional manifolds;

3. A3 branching points, where the MIB is tangent to the boundatkirae points with

first-order contact with the boundary; these points fornozimensional manifolds.

The composition of the medial scaffold into interconneateedial manifoldamakes it
possible to decompose geometrically complex objects imple components callefiy-
ures which are the union of closed balls whose centers and radi fa singlemedial
manifoldin the medial axis of an object.

Given a parameterized medial axis\(u, v), R(u,v)), spheres (or disks) of radius
R(u,v) are placed at each location(u, v) on the medial manifold, and the generated
boundary is the envelope of such a family of spheres or diskKD, the pointsx that

belong to this two-parameter family of spheres are definetth&ymplicit equation:
f(X7 U, U) = |X - m(u7v)‘2 - R<U7U)2 =0. (26)

Thus, any poink on the boundary of an object must satisfy the following eopelequa-
tions:
af of _

By solving these equations, we can derive two boundary pbihiandb~ for each point

m on a medial manifold, where the MIB is tangent to the objecirtntary for thidfigure

bt =m+RU (2.8)

U = VR £ /1 — [VeR| Nem, (2.9)

whereN, is the unit normal vector of the medial manifold at pcriim,tUi are unit length
vectors orthogonal t0O at b*, andV,, is the Riemannian gradient ¢t on the medial

manifold. The vectors - Ui, that is, the vectors pointing from the center of an MIB
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(a) (b)

Figure 2.2: (a) Example ahaximal inscribed balls (MIBdpr a 2D object. The color of
the MIBs identified the type of points on the medial axis agded with those MIBs: pink
MIBs (A? points) are tangent to the boundary at two points, green MIBspoints) are
tangent to the boundary at one point; and yellow MIB$ points) are tangent to boundary
at three points. (b) lllustration of medial geometry in 2Dis defined as the center of the
MIB. b* are the corresponding boundary points,, is the unit normal vector of the

medial curve at poinn. G* are unit length vectors called “spokes”, which are orth@jon
to the object boundary &

to the corresponding boundary tangency points, are cafjelles The local geometry is
illustrated in 2D by Fig 2.2.

2.2.2 Inverse-Skeletonization and Medial Constraints

The cm-rep approach leverages the ideanwerse skeletonizatiofiYushkevich et al.,
2006b), where the skeleton (medial axis) of the model is ddfiiirst, and the model’s
boundary is derived analytically from the skeleton by E@)2.Because the topology
and configuration of the skeleton (commonly referred tbr@nching topologyare pre-
defined, this approach guarantees the consistency of thet@kevithin a cohort, which
makes population studies possible. The key difficulty lreshe well-posedness of the
inverse skeletonization problem. That is, given arbit@mgnected surface patchesand

arbitrary positive field?, the{m, R} pair may not form the skeleton of any object. Rather,
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inverse skeletonization is only possible for fm, R} pairs that satisfy a set of constraints
enforced by the medial geometry. The medial constraintsried two classes. The first
class ensures that the boundary generated by the medias alased and connected. The
second class ensures that the boundary is nonsingular.

According to Eqg. 2.8, one medial surface will generate twortatary surface patches.
Therefore if all the boundary patches are to meet seamlégsdigrm the boundary of
an object, different constraints are needed for points fiardnt positions of the medial
manifolds.

Near a medial edge, the two spokes will get closer and closeath other, collapsing
to a single vector once the medial edge is reached, so thedwadary patches generated

by the medial surface close. The corresponding equalitgtcaint is:
IVmR|| = 1. (2.10)

Points on the medial seam belong to three medial manifioid$: = 1,2,3}. For
these points, the six spokes belonging to three medial wldsifpair up in such a way
thatlj;i and U;Z_@l (¢ denotes additional modulo 3) get closer, and eventuallys pi
spokes collapse to three vectors. This ensures that diffbl@indary patches generated
from the three medial manifolds come together to form thenblany of an object. These

constraints can be written as follows:
Vinies B = Vi R = /1 — [ Vin, R]| 2N, . (2.11)

At the seam-edge intersectiofiy, R|| = 1 for the medial manifold whose edge is
crossing the intersection, and the other two manifolds male angler (actually, they
merge into one manifold at the intersection point).

For the interior points of the medial manifolds, the two bdary patches should stay
disjointed, and the inequality constrajf¥ m R|| < 1 should hold.

The above constraints ensure that the boundary is closedammekcted. However, it

is still possible for the boundary to form singularitiestsi R needs to be constrained to
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be always positive:
R>0 (2.12)

The Jacobian constraint

obT  obt _—+  Om om o

Ji:i(%xw-u )/(%x% N) > 0 (2.13)

prevents the swallowtail singularity on the boundary patch

The Jacobian constraint can prevent local crosses of thedamies. However, it is still
possible for a global intersection to occur. For exampleloba] intersection can occur
when one end of an object wraps around and enters anotherTérese are difficult to
describe mathematically. Fortunately, for most objedtsytare relatively easy to avoid
during modeling, especially when geometric priors exist.

As can be seen from Equations (2.10) and (2.11), the equalitgtraints need to be
satisfied along curves (medial seams and medial edgesh\whi@ an infinite number of
points, while a cm-rep model can only have a finite number effaments, making the
model severely over constrained. This is the most chalfgngroblem for constructing
a cm-rep model, and various solutions have been proposeadhwae described in the

following subsections.

2.2.3 M-REP Approach

(Pizer et al., 1999) introduced the m-rep approach whichlatas extended to 3D (Pizer
et al., 2001; Joshi et al., 2002). The m-rep uses sparselpledmprimitives calledne-
dial atomsas the building blocks of the model. A basic medial atom is et =
{z,r,U',U?}, wherex is a point on the medial scaffold; is the radius of the MIB at
x; andU*!, U? are the unit spoke vectors pointing towards the boundamtpdgFletcher
et al., 2004). Another way to define a medial atom is to use ke twp= {z,n, R, 6},
wherez andr are still the center and radius of the MIR;is the orientation which can be
expressed as an orthogonal frafiben, ¢t} placed atr to define the bisectdr= %
the unit normal vectorn of the medial manifold, antl= b x n; and@d is the angle between
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the spoke vector and the bisectorBoth tuples contain sufficient information to recon-
struct two points on the boundary per medial atom. And oneeeeily convert between
the two representations of the medial atom.

A special class of medial atoms is used to model the locallindsical geometry of
nearly-tubular 3D objects such as blood vessels. Thesesatambe imagined as a regular
medial atom that is spinning around the biseétoin (Aylward and Bullitt, 2002), such
medial atoms are used to model vessel trees.

Another special class of medial atoms is used around medge eurves. Thend
atomcontains one extra parameter, an elongation fagtavhich is used to add a third
boundary point: + rnb. Therefore an end atom does not try to represent a prégisee-
dial point on a medial edge curve, but rather describes aengettion of the object in the
neighborhood of thel; point. In such representation, the end of a figure is appratech
by an oval arc (2D) or a locus of such arcs (3D).

(Han et al., 2004, 2005) proposed a multi-figure m-rep thatesents each part of a
complex object using single-figure m-rep, and then useasetilending to attach a child
single-figure m-rep to its parent. Each figure is an array aflimdleatoms. This type of
model is very useful when complex objects have a parenttcnganization of parts (like
the hand, with a palm and five fingers). It uses a membranestikeection between parts
instead of following the Blum’s medial geometry.

The medial atoms are typically sampled on a coarse meshefinerthe constructed
boundary nodes need to be interpolated to produce a finerlisgngp a continuous de-

scription of the boundary, which can be achieved using stgidn surfaces (Thall, 2002).

2.2.4 Implicit Domain Approach for CM-REP

The first cm-rep approach is proposed in (Yushkevich et @032, which deals with sim-
ple shapes whose medial axes consist of a single medial oiénih this approach, the
boundary of the domaif of the medial manifold is defined implicitly. Specificallyhe

parametric manifoldn and the scalar fiel& are first defined in a large regiéh which has
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the properties thatV, R|| > 1 on the boundary of) while at the same timg|lV,hR|| < 1

somewhere insid€. Then, the domain of the medial manifold is defined as the set
Q={ueQ : [VaR(u)] <1}.

By construction, the equality constraint (2.10) holdsadh Although this approach
makes it possible to represent medial manifolds and defbemtby adjusting the values
of basis function coefficients, it has shortcomings in thetert of deformable modeling
and statistical analysis. It is difficult to prevetfrom changing topology during defor-
mation, and, sinc€ changes as the model deforms, models of different instawfcie
same anatomical structure are defined on different dom@ialsing it difficult to establish

correspondences.

2.2.5 PDE-Based Approach for CM-REP

To overcome the above mentioned shortcomings in (Yushkestial., 2003), Yushkevich
et al. later proposed a PDE-based approach (Yushkevich 2086b; Yushkevich, 2008).
The method in (Yushkevich et al., 2006b) only deals with denghapes, but the improved
version (Yushkevich, 2008) can deal with complex shapessehmedial axis consist of
more than one medial manifold.

In (Yushkevich et al., 2006b), the equality constraint (3.tan be satisfied if the
radial field R is defined as a solution of a Poisson PDE with the boundaryitondhat
incorporates (2.10). This PDE is expressed in terme ef R? and has the following

form:

Am¢ = p, subject to]|Vme|* = 4¢ on o, (2.14)

where) € R? is the domain on which the medial manifald is defined,/\,, denotes
the Laplace-Beltrami operator an, andp is some smooth function defined én A 3D
cm-rep model is formed by specifying the manifatd, and the fieldp, and then solving
the PDE to obtain the radial fielR.
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(Yushkevich, 2008) generalized the PDE approach to congblages by using a fourth-
order biharmonic PDE. Let be the boundary ofn, veq4e b€ the medial edge curve, and
~seambe the medial seam curve. L& (s) be the unit tangent vector alongand 7 (s)
be the outward unit normal vector alongs) for medial manifoldm; (i = 1,2,3), i.e.,

v, L Nmi andy;, L ﬁy. Let 7 be a one-dimensional scalar field grsuch that- > 0 and

dr/ds < 1 everywhere ony. Theng = R? satisfies

Do = p, (2.15)

¢ly =72, (2.16)

~Yseam — 27 V 1- (dT/dS)lei@l ) 172@ 2 (217)
D5 lresge = —27/ 1 — (d7/ds)>. (2.18)

The PDE-based approach requires solving a PDE each time dkelmoefficients

b5,

are adjusted, which can be cumbersome for deformable nmadeli has been success-
fully applied to model 3D hippocampus (Yushkevich et alQ@0; Yushkevich, 2008) and
white matter tracts (Yushkevich et al., 2008) which havgd@shapes. No application on
complex shapes has been published.

In Chapter 3, | solve the corresponding ODE for 2D shapeschvhilows for the

efficient generation of cm-rep for 2D applications.

2.2.6 Control Curve Approach for CM-REP

Before (Yushkevich, 2008) was published, (Terriberry ardig 2006; Terriberry, 2006)
proposed the first solution to construct a 3D branching gomuaseng Catmull-Clark sub-
division surfaces and “control curves”. Catmull-Clark division surfaces are a general-
ization of B-spline knot insertion to meshes of arbitrargdlmgy. To enforce the medial
constraint (2.10), the medial surfaoeis still normally interpolated using control points
along the medial edges, but the radial scalar fiel interpolated using a control curve
instead of a few isolated control points. Giverand the derivative oi? along the medial

curve, the derivative oR? along the normal direction to the medial curve can be solwed t
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satisfy the constraint (2.10), from which the control cucam be computed. This method
also works for medial seams, along which the medial comgggR.11) can be enforced
by adjusting the radial scalar fiel using control curves away from the seam-edge inter-
sections. At seam-edge intersections, the adjustmenvesdoth the control points and
control curves.

This is the first published branching cm-rep approach. Hewew application has yet
been published for this method. One limitation of this ajggtois that it requires skele-
tons to be defined using Catmull-Clark subdivision surfagits quadrilateral elements,
which cannot handle corners on the edge due to the asymnfehg mterpolation, while
the biharmonic PDE-based approach (Yushkevich, 2008) lam@pproach proposed in

Chapter 4 are independent of the type of representationtasaddel the medial axis.
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Chapter 3

An Efficient CM-REP for 2D Geometric
Objects

In this chapter, the unique properties of the 2D equivaldnthe PDE-based cm-rep
method is examined and the solution to the ODE is formulased elosed form expres-
sion by utilizing Pythagorean hodograph splines (Farondi%akkalis, 1990; Farouki and
Neff, 1995). Then the ability of the medial model to matcHatént instances of anatomi-
cal structures is explored. The medial model can extenddeyrbased correspondences
to the interiors of structures, providing a shape-basenhabration to the texture informa-
tion before further comparison can be conducted. This nhetape-based normalization
is compared with the normalization provided by diffeomacpiegistration algorithm and

the experimental results are reported.

This chapter is based on a paper (Sun et al., 2007b) that wiissmtogether with Dr.
Paul A. Yushkevich, Dr. Hui Zhang, Dr. Philip A. Cook, Jeffré. Duda and Dr. James
C. Gee at University of Pennsylvania and Dr. Tony J. Simonravéisity of California-
Davis. The coauthors’ contributions were invaluable fa& tlonception, implementation,
and publication of the research described below. The cosgaexperiments were make
possible thanks to Dr. Brian B. Avants, who generously gitedithe diffeomorphic reg-

istration algorithm.
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3.1 Introduction

Geometric models are emerging as a powerful tool for anadyaiulti-modality and mul-
tivariate imaging data. In today’s imaging studies, itistmacommon to collect T1- or T2-
weighted, diffusion-weighted and functional MRI data inrgée session. Group analysis
of such rich datasets requires anatomical differencesdmtvindividuals to be normal-
ized. This is usually achieved by registration of structwegghted images to a common
template (Friston et al., 1994; Miller et al., 2005). Howevegistration may not be the
ideal normalization tool in cases where one is interesteshalyzing data associated with
a specific structure, especially in presence of irrecohl&@lanatomical differences in other
structures present in the images. In these cases, geomeittliels can provide a basis for
normalization, especially given the large body of researchorrespondence methods for
these models (Davies et al., 2002; Kotcheff and Taylor, 198gare et al., 1995). And
the medial model is especially suitable for normalizatibamatomical structures in mul-
tivariate datasets because of its ability to extend boynbdased correspondences to the

interiors of structures.

Yushkevich et al. (Yushkevich et al., 2006b) have previpysksented the PDE-
based cm-rep approach for modeling 3D structures. Howewene structures, such as
the corpus callosum, lend themselves well to two-dimeradiomodeling. This chapter
examines the unique properties of the 2D equivalent of thE-BBsed cm-rep method.
One contribution is to formulate the solution to the equewalordinary differential equa-
tion as a closed form expression by utilizing Pythagoreatolyoaph splines (Farouki and
Sakkalis, 1990; Farouki and Neff, 1995). Another contiitnuis the study of the medial
shape-based normalization of the corpus callosum, whicisesl to analyze patterns of
commissural connectivity in the human brain as derived fobffusion tensor imaging.
Shape-based normalization of the corpus callosum is caedgarregistration paradigms,

with results favoring the shape-based approach.
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3.1.1 Diffusion tensor imaging

Diffusion tensor imaging (DTI) (Basser et al., 1994) has mhbar of potential applications
for the study of brain white matter. The anisotropy of watifudion is sensitive to the
tissue composition and organization: when the fibers ar@nizgd into bundles with sim-
ilar orientation, the diffusion of water is hindered moreass the fibers than along them.
This anisotropy can be quantified in various ways within tHiision tensor framework,
the most widely used index is the fractional anisotropy (f8gsser and Pierpaoli, 1996),
which we use in this work.

Tractography makes use of the directional information andHfusion tensor to trace
the path of white matter tracts. The tractography algorghused in this paper belong
to the family of streamline-based methods. In these methsitd=amlines are derived by
following the local fiber orientation, which is assumed totbe direction with the max-
imum apparent diffusion coefficient (the principal eigestee of the diffusion tensor).
Anatomical connectivity between voxels can then be infefrem the resulting stream-
lines. Several methods have been proposed for trackingttbansline paths, Mori and

van Zijl (Mori and van Zijl, 2002) give a review.

3.1.2 Significance of Corpus Callosum in Neuroscience

The corpus callosum is the largest white matter structut@enbrain, and it is of great
interest in studies of brain connectivity. The shape and afethe midsagittal section
of the corpus callosum (MSCC) have been analyzed in studie®xal dimorphism
(DeLacoste-Utamsing and Holloway, 1982; Witelson, 198&et al., 1991), schizophre-
nia (Foong et al., 2000; Woodruff et al., 1997; Jacobsen.el887), autism (Just et al.,
2006; Vidal et al., 2006; Piven et al., 1997) and many othetiss. Differences in the size
and area of the MSCC are hypothesized to relate to diffesemceterhemispheric con-
nectivity. The advent of DTI has allowed a new way of analgaionnectivity differences

in the brain, i.e., by estimating the location of major fib@icts and examining anisotropy
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in diffusion. However, since DTI does not provide a compbiscription of connectivity,
it is natural to combine morphometric measurements of th&€®ISvith measurements
derived from DTI in white matter studies. The cm-rep apphodoat we advocate in this
paper allows precisely that: the analysis of features ddrivom DTI in the corpus callo-
sum coordinate frame.

Medial modeling has been applied to the corpus callosum ilieeanorphometric
studies. Golland et al. (Golland et al., 1999) fitted a piesewnear deformable model to
a distance map to compare the medial axes of the MSCC betvatiem{s and controls.
Yushkevich et al. (Yushkevich et al., 2001) used discreteps-to derive a set of morpho-
metric features that are invariant under similarity transfations. However, there is no
prior work on using continuous medial modeling in the MSC®@wousing medial models

to normalize the MSCC between subjects.

3.1.3 Alternatives to Whole-Brain Normalization in Neuroimaging

In multi-subject studies of functional MRI, DTI and other lixariate imaging data, nor-
malization is typically achieved by registering subjeetsatomical images to a common
template, and warping the multivariate data into the temefdlaspace. Such is the ap-
proach taken in SPM (Friston et al., 1994). In neuroimagivigyle-brain registration can
lead to poor alignment of smaller structures, such as thedas@mpus (Carmichael et al.,
2005). This is especially true in the presence of largeesaahtomical differences, which
are common in certain neurological conditions: Fig. 3.1lvghan example from a study
of DS22q11.2 deletion syndrome (Emanuel et al., 2001), vkiez topology of the cor-
pus callosum and fornix is different between two subjectstldies interested in specific
structures, some alternatives to whole-brain registndteve been proposed. The ROI-AL
method (Stark and Okado; Miller et al., 2005) applies regigin to regions of interest,
rather than whole brains, resulting in higher sensitivitiMRI group analysis. However,
concerns have been raised in the community that the comdspees computed by the

registration within homogeneous structures are primatilyen by regularization priors
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Figure 3.1: Example of two T1-weighted images with largetamacal differences. There

is a topological difference, both in 3D and in the midsaggttion, in the connectivity

between the fornix and the corpus callosum. Such differepose a challenge to whole-
brain registration methods.

that differ among algorithms (Rohlfing, 2006). From thisgpesctive, normalization based
on explicit geometric correspondences may be advantagésukis paper shows, in the
corpus callosum, shape-based normalization appeargtoatatomically-defined corpus

callosum sub-regions better than whole-brain and regfeinterest registration.

3.2 Methods

3.2.1 2D Inverse-Skeletonization Problem and ODE-Based Aypoach

In 2D, the boundary of a medial model can still be derived as

b*(t) = m(t) + R(t) U~ (t) (3.1)
where
L4 dR _ dR|?* -

According to (Yushkevich et al., 2006b) which deals with 3Dduls, in order to ensure
the validity of the Inverse-Skeletonization, the medialdmioshould satisfy| Vi, R|| = 1,

whereV,, is the Riemannian gradient on manifatd and in 2D it has the form

dR

=1 fort=0,1. (3.3)
ds
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In 3D, this constraint can be satisfied if the radial fi&lis defined as a solution of a Pois-
son PDE with the boundary condition that incorporates thelimear equality constraint.

This PDE is expressed in terms®f= R? and has the following form:
Amo = p, subjectto]|Vme||* = 4¢ ondQ, (3.4)

where() € R? is the domain on which the medial manifotulis defined A\, denotes the

Laplace-Beltrami operator am, andp is some smooth function defined &n A 3D cm-

rep model is formed by specifying the manifoid, and the fieldp, and then solving the

PDE to get the radial fiel&. Sincem and R satisfy the sufficient conditions of inverse

skeletonization, the boundary of a cm-rep model can therebeet! analytically.

An equivalent construction is possible in 2D. For a mediaveun(t) = {x(t),y(t)}

with arc lengths(¢) andt¢ € [0, 1], the Poisson PDE simplifies to the following ODE:
&¢
ds?

= p(t); (3.5)
d¢

subject to:(d—)2 = 4¢ att=0,1.
S

As described in (Yushkevich et al., 2006b), cm-rep modetsheafitted to anatomical
structures in a Bayesian framework by iteratively applydefprmations tan andp, deriv-
ing the radial field and the boundary, and comparing the gmboaindary to the boundary
of the target object. However, this requires the PDE/ODEetadlved at every iteration
of this optimization. In 3D, the PDE is solved numericallyyiah is costly and, due to the
non-linear nature of the PDE, sensitive to initializatidtowever, in 2D, a closed-form
expression for the solution of the ODE (3.5) can be derivddclvwill improve both the

efficiency and accuracy. This derivation is described infdflewing two sections.

3.2.2 Solution for ODE in 2D Via Green’s Function

First note that the ODE (3.5) has a non-linear boundary ¢mmdi That is, if¢; and¢s
are the solutions of (3.5) for right hand sidggsandp, respectively, thew; + ¢, is not a
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solution for the right hand side, + ps:

AT — i)+ palo 3.9
but: (WY # 4(d1+¢2) att=0,1.

Denotingo(t) = %, the ODE (3.5) can be expanded using the chain rule

— dt
o), _ |

subjectto: (¢/(t))*? = 40*(t)¢(t) att=0,1,

which is a Sturm-Liouville equation with nonlinear bounglaonditions. Its Green'’s func-

tion G(t, u) satisfies the equation

G'(t, )

and the solution can be expressed as
1
o(t) = / G(t,u)p(u)o(u) du+ h(t), (3.9)
0

whereh(t) is the harmonic function satisfyin% =0, i.e.,

HereC; and(C; are just constants.

Solving equation (3.8) by integration leads to the follogvsolution
G(t,u) = H(t —u)[s(t) — s(u)], (3.11)

whereH denotes the Heaviside step function, id /ot = 6(t).
Now, substitute (3.11) and (3.10) into solution (3.9) and e boundary conditions
of (3.7), and that determiné&$, andCs:

_ 4LP—4Q - P?
C, = P — L) (3.12)
(ALP — 4Q — P?)?
¢ 16(P — 2L)? (3.13)
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HereL = s(1) is the length of the medial curv®, = fol p(u)o(u) du, and@ = fol s(u)p(u)o(u) du.

Now the solution of ODE (3.9) can be written as
o) = stt) [ plu)atudu-
/0 s(u)p(u)o(u) du+ Cys(t) + Cq (3.14)

Sinces(t) is itself an integral ofr(¢), this solution forg(t) involves a double integral:

o) = [ <>du/t (1)) s —
// w) dw du + (3.15)

1/0 o (1) du + Cy (3.16)

thus this solution does not have a closed form for arbitragutar curves:(¢), y(¢) and
p(t). In order to further simplify cm-rep modeling, we take ackesye of Pythagorean
hodograph (PH) curves (Farouki and Sakkalis, 1990; Faran#iNeff, 1995; Choi et al.,
1999).

3.2.3 Closed Form Solution via Pythagorean Hodograph Cune

PH curves are polynomial parametric curveg) = {z(¢), y(¢)} for which there exists a
polynomialé(¢) such that

2(t) + 9% () = 6°(t) . (3.17)

For PH curves{z’, ¢, 5} form a Pythagorean triple, so that not orl§t) and(t), but
also the arc length(¢) along the curve, can be expressed as a polynomial function.

In (Kubota, 1972), it is proved that PH curves must have tiefo

() = w)[p*(t) — )],
y'(t) = 2w(t)p(t)q(t), (3.18)
at) = w(t)[p*(t) + (1)),

wherew(t), p(t) andq(t) are polynomial functions.
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If we use a piecewise PH curve to define the medial caryg, and also defing(t) as
a piecewise polynomial function, then all functions in thBBsolution (3.16) are piece-
wise polynomial functions or integrals of piecewise polgmal functions, and a closed
form of ¢ can be obtained with ease. We can also obt&if andy(¢) immediately if we
are given the boundary conditiqm(0),y(0)). In practice, we only need to manipulate
the coefficients of those polynomial functions, which isrertely fast. However, ifv(t)
crosses zero, the givei:(¢), y(¢)} pair would fail to generate a regular curve becagise
vanishes there. To avoid that, we can simply:s@ = 1. At the same time, since we use
piecewise curves, we can subdivide the whole curve into g@m@ieces to ensure that we
have enough freedom to deform the curve for fitting the anet@nstructure.

Examining (3.18) reveals that wherit) = 1, the sign of the polynomial functionst)
andq(t) can be simultaneously changed to get the same pdit@f, y(t)}. Confining
the sign ofp(¢) or ¢(¢) would guarantee the uniqueness of the solution. This cathdre
be done as a constrained optimization, or, by simply chec&imd flipping the signs after
the optimization.

A cm-rep in 2D can be completely defined by the coefficients(of,q(t),p(t) and a

translation ternfzy, yo) as the following:

{087 70?\[7087”' 70?\/7087”' 705)V7x07y0} (319)
so that
p(t) = iy dBis(t),
q(t) = SilociBia(t), (3:20)
p(t) = Yo Bia(t),

whereB; »(t) is the uniform quadratic B-spline basis function.

In our currentimplementation(t), ¢(t) andp(t) are approximated by uniform quadratic
B-spline functions. The generated medial curves are pisee®dth-order polynomial
curves, whiley(t) are piecewise 12th-order polynomial functions, and oveath medial

curves andh(t) areC?.
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3.2.4 Model Fitting and Smoothed Local Symmetries

The cm-rep model for a MSCC is constructed by fitting a defdrlm@m-rep template
to a binary segmentation of the structure. The fitting apginda described in detail in
(Yushkevich et al., 2006b) for 3D applications, and mosthaf aspects are identical in
2D.

A 2D cm-rep model is defined by a set of parameters listed kB3 By changing the
values of these parameters, we can generate cm-rep modelstre the same branching
topology (i.e., single-curve medial axis) as the originaldal. To fit a cm-rep model to
a binary segmentation of a structure, we minimize the opeglaor between the model
and the structure while also minimizing a set of prior termkich incorporate inequal-
ity constraints required for inverse skeletonization. Séheonstraints are described in
(Yushkevich et al., 2006b). In this application the Conjpegaradient Descent algorithm
provided by GNU Scientific Library(GSL) (Galassi et al.) sadl to solve the optimization
problem. The objective function can be computed very efiityebecause the computa-
tion of the cm-rep boundary is analytic, and the derivatiivéne overlap between a model
and an image can be approximated by a boundary integral.

The initial template for the MSCC was constructed from ciiging results for a
large MSCC dataset in a previous morphometry study (Sun,&@07a). This template is
first aligned to the target structure by optimizing in thecspaf similarity transformations,
and then the parameters defining the cm-rep model are ogtiniiza multi-resolution
scheme. During the fitting, the number of coefficients fordimerep template is gradually
increased, and at the same time, the standard deviatiore @alussian kernel, which is
used to smooth the binary image segmentation, is graduadledsed. For the uniform
guadratic B-spline basis we use, there exists an efficiéineraent scheme to increase the
number of control points while holding the spline curveshargged.

Closely related to the Blum skeleton is tBeoothed Local Symmetrigal S) (Brady
and Asada, 1984). While the Blum skeleton is formed by théezsrof MIDs, SLS is
formed by the midpoints of the chords connecting the pdibtsb~), where the MID is
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(a) Blum skeleton (b) SLS

Figure 3.2: lllustration of medial geometry in 2D. (a) Bluketetonm is defined as the
center of the maximal inscribed disk (MID), with “spokes’egafrom them to b* (b) SLS
m is defined as the center of the “chord” which connects the tid fdngency pointd®
on the boundary.

tangent to the object’s boundary. An attractive propertyefSLS axis is that its endpoints
lie on the boundary of the object, as opposed to the Blum gkelevhose endpoints of
the axis lie some distance away from the boundary (the distaquals to the radius of the

MIB at that endpoint).

The SLS axis, denotatdl is derived as:

m(t) = m(t) — R(t) " 7. (3.21)

Like thespokesn Blum skeleton, thehordsin SLS also span the whole object interior,
connecting the SLS skeleton with the object boundary. Wehfge= 1|b* — b~ || to
denote the half length of the chord, andd&t= 1(b* — rn) denote the unit length vector

pointing fromm to b*, as illustrated in Fig. 3.2.

After the cm-rep model is fitted, the SLS skeleton is derivied @-parameterized to
establish correspondences between subjects. Here thieaeglength parameterization is
used, i.e., we find a diffeomorphism [0, 1] — [0, 1] such that(u(t)) is a linear function

of t.
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3.2.5 Shape-Based Normalization

In biomedical imaging applications, the need to factor m#tamical differences between
individuals often arises in the context of multi-modal orltivariate analysis. The prob-
lem of normalization can be stated in terms of parametéozatach point in each in-
dividual must be assigned a set of parameter values suclpaivets that have the same
parameter values across individuals are anatomically kagoas. Normalization is often
resolved by means of volumetric registration. However, tmegistration methods do not
explicitly incorporate shape information. On the otherdhahere are many techniques in
the shape analysis field that establish shape-based condespces between boundaries
of structures. The cm-rep method has a unique property tleatsaboundary-based or
skeleton-based correspondences to be propagated toehelisbf objects, thus enabling
shape-based normalization.

Given a cm-rep model with a parametric expression of the Bllkeleton, the interior
of the model can be parameterized by a shape-based coadysiem where one of the
axes is the skeleton and the other goes along the spokes oghogonal to the model’s
boundary. This parameterization associates each poont the interior of the objead

with a pair of coordinates € [0, 1] and{ € [—1, 1] according to the mapping

X(t,€) = m(t) + |€|R(£)T™" (3.22)

Following the proof in (Yushkevich et al., 2006b), the mappX : [0, 1]x[-1,1] — O
is onto and “almost” one-to-one, with the exception ocawyratt = 0 andt = 1, where
X(t, &) = X(t, =£). This coordinate system associates each péjnt¢) inside the object
with the nearest boundary poiKt¢, sign(£)) through the coordinate and indicates the
point’s relative position between the skeleton and the damnthrough the coordinate

The SLS axis presents another way to parameterize thedrgesf cm-rep models.

Similarly to (3.22), we can define the map:

X(t,€) = m(t) + [¢|h(t)& O (3.23)
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(a) Blum Skeleton Based parametrization (b) SLS Based parametrization

Figure 3.3: The grid lines of the two different parametiizas are shown, the zoomed
sections show the details near the right endpoints. Notetligagrid lines for Blum-
skeleton-based parametrization are getting more and nparses when approaching the
endpoint, while the grid lines for SLS-based parametrizatemain dense.

which associates each pohii(t, ¢) inside of the object with its corresponding boundary
pointX (, sign(¢)) and SLS skeleton poiX(z, 0) through coordinate, and indicates the
point’s relative position between the SLS skeleton and damnthrough the coordinate

Besides the parametrization defined by the map (3.22) oB)3vzhich is onto and
almost one-to-one (except the points with- +1 ), there also exists a homeomorphism
from the cm-rep interior to the interior of an ellipse (Yushich et al., 2006b). As a
conseqguence, one can construct a homeomorphism betweemaoljects with a single-
curve medial axis.

The parametrization based on the Blum skeleton can propdlgatcorrespondence
along the directions orthogonal to the boundary but it is eehat ill-behaved near the
endpoints of the medial curve, because the Jacobian of tippingb™*(m) goes to in-
finity there. This causes increasingly sparse samplinggalba cm-rep boundary when
approaching the endpoints, if we sample the medial curvi@umly. In contrast, the SLS
skeleton, whose endpoints lie on the boundary, allows maiferun sampling of the points
on the boundary near the endpoints. Fig. 3.3 shows the tierelift parametrizations and

the details near endpoints. In this application the SLS®tamrmalization is adopted.

3.2.6 Application and Validation of the Normalization

Diffusion MRI studies provide an attractive framework witlwhich to evaluate the per-

formance of corpus callosum normalization via cm-reps atierotechniques. In this
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chapter, we compare cm-rep normalization to diffeomorpéggstration. With the help of
diffusion tensor tractography, every location in the carpallosum can be associated with
a set of features derived from fiber tracts passing throughldication. In a multi-subject
experiment, these features can be used to detect strudiifiea¢énces between control and
DS22q11.2 cohorts. The effect of different normalizatiagtinods on the statistical signif-
icance of detected differences can then be analyzed. Fortine, normalization methods
can be evaluated by examining how well they align anatoryitatbeled fiber tracts within
cohorts. The following sections describe the approached tesevaluate normalization

from these different standpoints.

Features Derived from Diffusion Tensor Tractography

Diffusion tensor tractography is a tool for studying the tehmatter connectivity in the
brain. We combine tractography and the cm-rep method to mgkeantitative comparison
of the white-matter microstructure along the fiber pathwagssing through the MSCC.
First, the midsagittal plane is identified automaticallg@cling to the symmetry of the
left and right hemisphere and the MSCC is manually segmentde midsagittal plane.

In our study two streamline tracking methods implementatiéopen source Camino
toolkit(Cook et al., 2006) are used. The FACT method progdse Mori et al (Mori
et al., 1999), follows the local fiber orientation in each epxhanging direction at voxel
boundaries. We also track using a fixed, sub-voxel step ®#ewing interpolated ori-
entations taken from the vector field at each step using alsigght-neighbor trilinear
interpolation. This is referred to as the VINT (vector imelation) method.

Both of the tracking algorithms use an anisotropy threstolterminate the track-
ing: when the streamline approaches a voxel where the Fa liallow the threshold, the
streamline is judged to have left white matter and trackes¢erminated. A curvature
threshold is also imposed: if the streamline path curvebyntuch over the length of a
voxel, the tracking is stopped. Most white matter pathweaggeHow curvature and thus

high curvature is interpreted as a sign that the streamdif@lowing an erroneous path.
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The fiber pathways of the corpus callosum in each subjecteymanted by seeding
streamline tractography in every voxel in the diffusionger image and retaining only
streamlines that intersect the MSCC. Following a similathud to Corouge et al. (Cor-
ouge et al., 2006), we examine the fractional anisotropy (FAliffusion along the length
of each streamline. Thieact FA for a streamline is the mean FA along the whole stream-
line. The tract FA is plotted on the MSCC. The value of eacheVisxthe mean tract FA

of all streamlines that pass through that voxel.

The shape-based normalization is applied to make an iotgest comparison of the
tract FA in MSCC. Permutation based cluster size infereHegé§saka and Nichols, 2003)
is performed with the null hypotheses of the zero differennethe tract FA between

control group and DS22q11.2 group.

In addition, | show another advantage of the shape-basedngdrization, which is
to further reduce the dimensionality of the data by collagghe tract FA value to the
SLS skeleton. More specifically, at each point along the Hefeson, a medial tract FA
is obtained as the average of all values along the “chordteced at this point and con-
necting two corresponding boundary points. Multiple hyyasis testing is also performed
with the null hypotheses of zero difference on the mediaittFd values between control

group and DS22q11.2 group.

The fiber trajectories recovered by streamline tractograjpé dependent on the track-
ing algorithm and the thresholds used to terminate the itmgckn order to examine the
stability of our comparisons with respect to the choice d&edaarameters of the diffusion
tensor tractography algorithm, the tract FA comparisorge@peated using eight different
sets of streamlines. The FA threshold is eithép or 0.25, the curvature threshold allows
a maximum curvature of either 45 or 60 degrees, and the |dildirection is determined
by either the FACT or VINT algorithm. With the interpolatelyjarithm, the step size is

0.4mm.
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Corpus Callosum Connectivity Labeling

A qualitative examination of the cortical connectivity isnaplimentary to the quantitative
tract-based measures. Following (Mori et al., 1999; Ged. e2@05; Cook et al., 2005;
Styner et al., 2005), the MSCCs are subdivided accordingaa@ortical connectivity. To
label the fiber trajectories, an anatomical atlas is usedast constructed using a combi-
nation of manual, semiautomatic and automatic technigueshkevich et al., 2005), and
divides each hemisphere of the cerebral cortex into fouorsg frontal, parietal, tem-
poral and occipital. The atlas is aligned to the T1-weightedge of each subject using
a diffeomorphic image registration algorithm (Avants anee(G2004). Examples of the
warped atlas in space of the T1-weighted image are showrgin3H. Then the warped
atlas in the space of the T1-weighted image is further atignethe space of the diffu-
sion tensor image using the transformation that coregisker T1-weighted image to the

diffusion tensor image.

Now each fiber derived from tractography in the diffusiong@apace can be assigned
a label according to the cortical region of its endpointswieer, given that the principal
diffusion direction can not be reliably estimated using phi@cipal eigenvector when FA
is low, the derived tracts almost never reach the gray mates. In practice, some tracts
are much shorter and far away from any of the cortical regitimsse fibers were filtered
out in our algorithm by requiring that the end of the fibersidtdoe at least within 15mm
of one of the cortical regions. In addition, when a fiber watedeined to be closest to
two different cortical regions (from the two hemispherésyas removed as well to ensure
that only homologous connections are considered. Examplabeled fibers as shown in

Fig. 3.4.

Finally, each voxel in the MSCC can be labeled accordingeatnnectivity of fibers
crossing it. If streamlines passing through the voxel coht® multiple cortical zones,
the voxel is labeled according to the cortical zone that hagsriost fibers passing through

the voxel. If no streamlines pass through a voxel, it has ar ¢ébel.
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Figure 3.4: Examples of warped labeled atlas in the spacé-e¥dighted image (top row)
and labeled fibers (bottom row). The left ones are axial vaawl, the right ones are sagittal
view. The colors are: red for frontal lobe, blue for paridtdde, yellow for temporal lobe
and purple for occipital lobe.)

Registration Based Normalization

Deformable registration is used to normalize the same éftasd the results are com-
pared with shape-based normalization. The Symmetricatiffaphic registration algo-
rithm developed by Avants et al. (Avants and Gee, 2004), dtieeostate-of-the-art high-

dimensional large deformation registration algorithrasjsed.

Experiments are carried out for both whole-brain and stmeetpecific registration.
The template used in the registration is iteratively geteekdrom the dataset itself as

described in (Avants et al., 2006).

In the whole-brain normalization experiments, the FA insagkeeach subject is regis-
tered to the template. Then he labeled fibers are warpedhatetnplate space according
to the registration result. The MSCC segmentation and thaextivity labeling are there-
fore performed in the template space. However, in our etialuaataset, due to the low
signal-to-noise ratio in the FA images, the normalizatioaldy is quite poor. And thus

the results are not used in the comparison.

In the structure-specific registration, considering thenbgeneity on the interior of
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Figure 3.5: An illustration of 2D diffeomorphic registrati, (a) is a single subject, (c) is
the template constructed from the population of 30 corpalasa, and (b) and (d) are the
results after registering (a) and (c) diffeomorphicly apchmetrically.

corpus callosum, the segmented 2D binary mask image of MS@@dctly used for reg-
istration. For each subject, the MSCC mask image is regdter the template, and the
DTI-based measurements are then warped to the template apaarding to the registra-
tion results.

Fig. 3.5 shows the constructed template for 30 instancesmius callosum and the

registration result for one subject.

3.3 Results

3.3.1 Subjects and Data Acquisition

The evaluation experiments use a dataset from a chromosagid 2 deletion syndrome
(DS22q11.2) study at the Department of Psychiatry and BehalvScience, M.I.N.D.
Institute of University of California, Davis and ChildrenHospital of Philadelphia. It
includes 3 Tesla high-resolution structural MRI and diifusstensor MRI scans for 11
typically developing children and 19 children with the D§22.2 syndrome. Scans were
performed on 3 Tesla Siemens Trio scanners at the Hospithleof)niversity of Penn-
sylvania (13 children with DS22q11.2 and 7 controls) andhatWniversity of California,
Davis Imaging Research Center (6 children with DS22g11d4acontrols). The analysis

below does not consider the confounding effects of locatimwvever, similar results of
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lower significance are observed when analyzing the data &ach location separately.
The structural MRI was acquired using a T1-weighted magagtin-prepared rapid gra-
dient echo (MP-RAGE) sequence with the following scanniagameters: repetition time
(TR) 1620 ms, echo time (TE) 3.87 ms,°1ffip angle, number of averages = 1, matrix
size = 256x 192, slice thickness of 1.0 mm, spacing between slices ofntn) yielding
160 axial slices with in-plane resolution of 0.980.98 mm. A single-shot, spin-echo,
diffusion-weighted echo-planar imaging (EPI) sequencs used for the diffusion tensor
MRI. The diffusion scheme was as follows: one image withaffitision gradients (b =0
s/mnt), hereafter referred to as the [b = 0] image, followed by #dmages measured
with twelve non-collinear and non-coplanar diffusion ediog directions isotropically
distributed in space (b = 1000 s/mn Additional imaging parameters for the diffusion-
weighted sequence were: TR = 6500 ms, TE = 99 msfl§Dangle, number of averages
=6, matrix size = 128« 128, slice thickness = 3.0 mm, spacing between slices = 3.0 mm

40 axial slices with in-plane resolution of 1.%21.72 mm.

3.3.2 Cm-Rep Fitting Accuracy Analysis

The MSCC was manually segmented from the FA images using3IN&P (Yushkevich
et al., 2006a) (www.itksnap.org). Then, following the prdare described in the methods
section, cm-rep models were fitted to the MSCC mask imagesoutrncurrent imple-
mentation, a multi-resolution cm-rep template is used, imctv the number of cm-rep
coefficients goes from6 x 3 + 2 t0 30 x 3 + 2. It usually takes 3-4 mins to fit a cm-rep
to one MSCC on a single CPU. Without the closed-form soludiescribed in Sec. 3.2.2,

the same process takes 20-30 mins.

Fig. 3.6 shows some fitting examples, in which the fitted cpiseoverlaid on the

mask images of the MSCC. The grid lines of PISA reference érame also illustrated.

The overlap between a fitted cm-rep modeénd the target MSCC instand# is
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Figure 3.6: lllustration of fitted cm-reps overlaied on tlredny images of corpora callosa,
with Dice coefficients given on the top. The boundary of thedittm-reps are outlined in
dark blue. The red lines are PISA medial curves. The thiitliijue curves indicate the
grid lines of PISA reference frame. Example (a) Dice coedfitis the highest among all
30 subjects,and example (b) Dice coefficient is the lowest.

measured using tHeice Similarity Coefficien{Dice, 1945)

2\ol(C )
Vol (C) + Vol (H)’

The mean Dice coefficient for 11 controls is 95:26L.00%, and the 19 DS22q11.2 sub-
jects is 95.3H- 0.76%, statistics on the Dice coefficients shows that hame sgnificant
difference in fitting accuracy for the groups (p-value: ®@% The mean Dice coefficient

for all 30 subjects is 95.2% 0.84 %.

3.3.3 \Validation of the Closed Form Solution

The analytical solution given in previous section guaraestthat as long as the cm-rep
coefficients generated from the solution satisfy certagguality conditions defined in
(Yushkevich et al., 2006b), the locym(t), R(t)} is precisely the medial axis of the ob-
jectb generated by inverse skeletonization. This assertionlidatad empirically by ex-
amining the displacement between the medial axis encod#égiom-rep model and the
medial axis computed using Voronoi skeletonization of tleelel's boundary. The model
boundary is sampled into discrete points and their intevoednoi Diagram is computed.
Then the distance from each vertex of the internal Voronagbam to the continuous me-
dial curve is computed. The maximum and mean values of tetaice, averaged over all

30 MSCC cm-rep models, are plotted in Fig. 3.7. With an insirganumber of sampling
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Vor onoi Skel et on Convergence to CM-Rep
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Figure 3.7: The convergence of the Voronoi skeleton ottherepboundary to them-rep
medial curve, over increasing sample density. The numbsawiple points on them-
rep boundary is plotted on the horizontal axis, and the distdérme the discrete Voronoi
skeleton to the continuouwsn-repmedial curve is plotted on the vertical axis. Both the
mean distance and the maximum distance are plotted. Thes/ahe averages over 30
cm-repmodels.

points, the medial axis computed with Voronoi skeletonaagpproaches the medial axis

encoded in the model.

3.3.4 Matching of the Connectivity Labels

Given the connectivity-based labeling of the MSCC desdibeSec. 3.2.6 and shown in
Fig. 3.8, it is possible to evaluate normalization algarighbased on how well they align
connectivity labels across subjects. Although there is graund truth” against which
different normalization methods can be evaluated, theesegr which connectivity labels
are aligned can be construed to reflect the ability to rectwerunderlying anatomical
correspondences.

In our evaluation experiment, each normalization methoslapgplied to the DS22q11.2
cohort, the control cohort, and the two cohorts combineaalch case, the subjects’ con-
nectivity maps were warped into the normalized space. Gudivity maps vary slightly
depending on the variation of the fiber tracking method usesbtain them. Fig. 3.9 and

Fig. 3.10 compare the mean connectivity maps of all 30 stibfjec two of the 8 tracking
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Figure 3.8: Example of connectivity labeling on MSCC. Th# dnd right figures are
for FACT and VINT tracking method respectively, with FA tereld 0.25 and curvature
threshold 60 degrees. A number of voxels have a clear lalb&thmmeans that the tractog-
raphy could not trace a streamline passing through that vaxeboth ends close enough
to the same cortical regions in the left and right hemisphere

methods described in Sec. 3.2.6. The boundaries betwefenedif labels vary slightly,

but the segmentations are broadly similar.

To measure how well each normalization method aligns theectivity maps, we
measure the Dice overlap coefficient between normalizedsm&verlap is computed
separately for each of the four labels in the connectivitypraad is averaged among
all pairs of subjects within each cohort. Table 3.1 lists @lverage overlaps for one of
the tracking settings, showing significantly higher overar the cm-rep method. The
comparison was repeated for the 8 variations of the trackeiting, and in all 8 cases,
the overlaps with the cm-rep method were higher than fororegpased registration for
all four lobes and for both DS22q11.2 children and contrdlse difference in overlaps
was statistically significant in almost all cases, with tixeeption of the temporal lobe,
where the p-value exceeded 0.05 (the temporal lobe occapiesy small portion of the
connectivity map and is matched poorly by all normalizatmethods). The maximum
p-values among all 8 tracking methods are also includedneTa 1.

We also attempted to use whole-brain registration diremmtlyA images to normalize
the MSCC. However, the images in the DS22g11.2 dataset bavgignal-to-noise ratio,
which results in poor normalization quality and low overfapconnectivity maps. There-
fore we did not include these results in the comparison, &g itiiay not reflect fairly on

the method’s performance in a different dataset.

To help explain the differences between the two normabrathethods, we examine
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Table 3.1: Comparison of deformable registration basethabration anccm-repbased
normalization for matching the connectivity label of eadd in 30 subjects from a
DS22q11.2 study. The quality of label matching is quantifisthg Dice similarity co-
efficients between pairs of subjects. Statistics are choig to measure the significance
of the differences between normalization methods. Reandtdisted for tracking setting
1 (FACT, FA threshold 0.25 and curvature threshold 60 degreehe max p-values over
all 8 tracking settings are also listed.

| | | FRONT| PAR |TEMP| OCC |

CTRL || registration (sety 0.735 | 0.481 | 0.124 | 0.514
ting 1)
(11 cm-rep (setting 1)) 0.811 | 0.553 | 0.134| 0.633
sub- || p-value (setting| < 0.001| 0.006 | 0.387 | <0.001
1)
jects) || p-value (max|| < 0.001| 0.030 | 0.478 | 0.007
over 8 settings)

DS22(-registration (sety 0.768 | 0.481 | 0.264 | 0.495
11.2 | ting1l)
(19 cm-rep (setting 1)) 0.835 | 0.546 | 0.272 | 0.608
sub- | p-value (setting| <0.001| <0.001| 0.362 | < 0.001
1)
jects) || p-value (max|| <0.001| <0.001| 0.408 | < 0.001
over 8 settings)
All registration (sety 0.761 | 0.483 | 0.209 | 0.503
ting 1)
(30 cm-rep (setting 1)) 0.824 | 0.543 | 0.215| 0.614
sub- || p-value (setting| <0.001| <0.001| 0.334 | <0.001
1)
jects) || p-value (max]| <0.001| <0.001| 0.420 | <0.001
over 8 settings)

(@) FACT (b) VINT

Figure 3.9: The mean connectivity map rendered on the cncoepdinate system. The
left and right figures are for FACT and VINT tracking methodpectively, with FA thresh-
old 0.25 and curvature threshold 60 degrees.

51



C X

(a) FACT (b) VINT
Figure 3.10: The mean connectivity map obtained by the gmapgproach rendered on

mean MSCC shape. The left and right figures are for FACT andThisdcking method
respectively, with FA threshold 0.25 and the curvatureshoéd 60 degrees.
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Figure 3.11: lllustration of the Jacobian determinant map&le the MSCC for one sub-
ject. On the left is the result for cm-rep mapping, on thetrigtthe result for deformable
registration. The color coded Jacobian determinant mapplatted on the top. The
histograms of the Jacobian determinant maps are plottelaeonattom.

the Jacobian determinant maps associated with warpingsedoject into the normalized
space. The average (over all 30 subjects in the study) \@iaithe Jacobian determinant
map inside MSCC i8.22 for registration based normalization, ahd6 for cm-rep based
normalization. We plotted the Jacobian determinant mapistiagir histograms for one
of the subjects in Fig. 3.11. The Jacobian map for cm-rep abzation is much more
uniform over the extent of the MSCC than the Jacobian mapefgistration. This is to be
expected, since cm-rep correspondences are more globaturerthan correspondences
based on local regularization priors, which are employedgistration. This difference in
deformation fields can help explain better alignment of emtinity maps by the cm-rep

method.
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Figure 3.12: An example of the tract-wise mean FA map for ainext.

3.3.5 Statistics on Tract FA Maps

Finally, we compare the effect of normalization on the powkstatistical analysis in-
volving mean FA features derived from diffusion tensor togcaphy. As described in
Sec. 3.2.6, a tract-wise mean FA value is associated with paint in the corpus callo-
sum in each subject. An example mean FA map is shown in Fig. 8l&ing each normal-
ization method, these mean FA maps are warped to a commotatienspace, in which
point-wise statistical analysis (a two-sample unpairgest-comparing DS22q11.2 chil-
dren and controls; 28 degrees of freedom) is performed.dRegif statistical significance
in the template space are found using cluster analysis eitimptation testing(Hayasaka
and Nichols, 2003), which is a well-established strategynjorove sensitivity by analyz-
ing co-activation at contiguous pixels. The threshold &.13 is used to select clusters,
and permutation testing is used to build an empirical digtion of cluster size under the
null hypothesis.

For normalization based on region-of-interest registrgtino clusters withp-value
below 0.05 are detected, regardless of the tracking metked.un contrast, cm-rep nor-
malization finds a significant cluster in the mid-sectionha MSCC. This cluster is found
consistently for different tracking methods, as illusédcin Fig. 3.13.

By collapsing the tract FA data on the PISA skeleton, theed#ht pattern of the two
groups becomes more clear. We summarize the value of altgwith the same PISA
coordinate, and plot the averaged value along PISA skelamshown in Fig. 3.14. The
averaged tract FA values for control group appear to hawsetpeaks along the PISA

skeleton, while for DS22q11.2 group there is no obvious meigubak. The statistical
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Figure 3.13: Areas showing significant differences forttFé maps between the control
and DS22q11.2 groups, shown as colored overlays on the m&@COwhape. The left

and right images are results for FACT and VINT fiber trackingtinod respectively, with

FA threshold 0.25 and curvature threshold 60 degrees. Reashtiained by cm-rep based
normalization and permutation based clustered pixel amalyrhe adjusted p-values for
colored regions are below tled5 threshold.

analysis confirms the significance of this difference. Thigegiment demonstrates an
extra utility of the shape-based reference frame. In anhlitb shape normalization, the
shape-based reference frame also offers a way to groupsvmedningfully, which may

improve the statistical power in group analysis.

3.4 Discussion

This chapter presents a new efficient algorithm for modelngasuring and normalizing
2D anatomical structures on the basis of medial geometryadtfition it undertakes a
comparison of shape-based normalization of the corpuestath between the proposed
method and the technique most commonly used to normalizginmgalata: registration.
The purpose of this comparison is to demonstrate the retevahthe proposed method
by showing that it can have a positive impact on the outconmeexfical imaging studies.
The results using DTI data from a chromosome DS22q11.2idelstudy demonstrate
that shape-based normalization of the corpus callosungesmreps makes it possible to
detect statistical differences between populations tleaewiot detected when registration
was used to normalize the structures. A direct comparis@heoflignment of connectiv-

ity maps between cm-reps and registration give furtheifjcation to the use of cm-reps,
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Mean | ntegrated-FA Mean | ntegrated-FA
0 0.2 0.4 0.6 0.8 1. 0.2 0.4 0.6 0.8 1.

o

0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

0 0.2 0.4 0.6 0.8 1. 0.2 0.4 0.6 0.8 1.
-l og (adj usted p-val ue) -l og (adj usted p-val ue)
0 0.25 0.5 0.75 1. 0 0.25 0.5 0.75 1.

o

0 0.25 0.5 0.75 1. 0 0.25 0.5 0.75 1.

Figure 3.14: This figure illustrates the differences of swarized tract FA on PISA skele-
ton between the control group and DS22q11.2 group. Diftdranking methods are used
for producing figures on left and right, both with FA thresth6l25 and curvature thresh-
old 60 degrees. FACT is used for the images on the left, andi\iNised for the images
on the right. Figures on the top shows the mean tract FA mapadf groups after collaps-
ing onto the PISA skeleton. The blue curves are for controligrand red curves are for
DS22q11.2 group. Figures on the bottom are the plot of -Ldjg&ied p-values) for mul-
tiple statistical tests on the difference between the tvangs. The p-values are corrected
for multiple comparison using step down permutation. Theeline is the significant
threshold corresponding to adjusted-p=0.05.
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suggesting that shape-based correspondences in the calfmsaim more accurately re-
flect the underlying anatomical correspondences. The fettlioth types of results are
stable with respect to the choice and the parameters of fhesidin tensor tractography
algorithm adds further weight to our findings. Togethersthéndings give compelling
support to the use of cm-reps in DTI morphometry studies.

While registration is a general technique, the 2D cm-repra@gogh is limited in its
applicability in the human body. However, given the inteéiasDTI-based white matter
analysis, and given the number of studies that examine sazpliosum morphometry,
the method’s ability to improve inferences about this gtites properties justifies, in our
view, the additional efforts associated with using it inadst

Further improvements to the shape based correspondenpessible under the cm-
rep framework. In this study, the correspondence is estadudi by equal arc length sub-
division of the PISA skeleton. An alternative would be to @aseMDL-style approach
to compute optimal boundary or skeleton correspondenoelsp@pagate them to object
interiors. The thickness and curvature information, whécattached to each points on the
boundary or skeleton curve, can be readily used for suclespondence optimization.

Knowing that the corpus callosum has a homogenous intaristructural MRI, the
correspondences computed in the current method are grdgliape-based. If there was
intensity or other appearance information inside the stine¢ the correspondence prob-
lem could be formulated as a registration inside of the cmeaeordinate space. The
deformation field by this registration is then just a locdimement of the correspondence
established by the global shape, with several availablewst (1) deformation restricted
to ¢, which stretches the medial curve and preserves the “deptbvdinates; (2) defor-
mation that allows us to stretc) but preserves the boundary and medial curve; or (3)

fully free deformation irt, €.
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Chapter 4

A New Branching Medial Model for 3D

Geometric Objects

After examining a 2D medial model and its application in Clea3, this chapter deals
with 3D cases. | propose a new way to construct the branchedjahmodel which can

be efficiently applied to 3D complex shapes. The new bramchiedial model is tested
on a large segmented cardiac dataset. | also explored hawatil features of the heart
vary among different disease groups.

This chapter is based on papers (Sun et al., 2008a,b, 2008)xdauthors of the three
papers include Dr. Paul A. Yushkevich, Dr. Sandhitsu R. Dak@r. James C. Gee at
University of Pennsylvania and Dr. Alejandro F. Frangi, Bederico Sukno, Dr. Sebas-
tian Ordas, Catalina Tobon-Gomez at University of Pompdudand Dr. Marina Huguet
at CETIR Sant Jordi in Barcelona. Their contribution is iodle for the conduction of

the research.

4.1 Introduction

Most 3D applications of the medial models in the literatue far anatomical structures

with simple shapéalso calledsingle-figureshape) whose medial axis can be described by
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a single curve or surface sheet (Pizer et al., 2003; Gerig @083; Styner et al., 2003a,b).
There have been efforts to model complex shapes (whose hsedia have branches)
using m-reps. Han et al. (Han et al., 2005) proposedaiti-figureé’ m-rep that represents
each part of a complex object using single-figure m-rep, had tises surface blending to
attach a “child” single-figure m-rep to its “parent”. Thiggyof model is very useful when
complex objects have a “parent-child” organization of pélike the hand, with a palm and
five fingers). But it uses a membrane-like connection betvpeets instead of following
the Blum’s medial geometry. For cm-rep, as | have introduoechapter 2, two different
types of approaches have been proposed to construct bngnoieidial model. Terriberry
et al. proposed the first solution which is tightly coupledie underlying Catmull-Clark
surface representation. And Yushkevich et al. (Yushkeva€l98) extended the PDE-
based cm-rep approach to branching medial model by usiragrbiinic PDE instead of
the Poisson PDE. However, to the best of my knowledge, bathoaghes have not yet

been applied to large-scale anatomical modeling.

An important message conveyed by Terriberry’s method isthigaequality constraints
required by the medial geometry along edge and branchingswan be enforced by local
corrections, without affecting the medial model globallyspired by this idea, | propose
a new way to resolve the problem and construct branchingahedidels. | first use soft
penalties to admit solutions that only slightly violate #guality constraints, and then
use brute-force local adjustment to correct the remainiatatrons. This approach does
not couple the modeling approach to a particular representaf the medial surface and

leaves the freedom to choose the suitable representatondicg to the application.

In this chapter, | demonstrate the proposed branching retbdel by applying it
to 3D cardiac shapes. Analysis of cardiac images is an aat®a of research (Frangi
et al., 2001a). One important feature of medial axis is theam be used to compute wall
thickness. The 2D “centerline method” (Sheehan et al., 1886 its 3D extension 3D
“centersurface method” (Bolson and Sheehan, 1993) arelfasitd on medial axis. How-

ever, the 3D “centersurface method” only deals with a sihgiart chamber. In addition,
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the detailed thickness maps generated from different tdogge not aligned, posing prob-
lems for further population comparison. Although it is pbtsto divide the thickness
maps into big segments using the standard 17-segments lefftiventricle in polar plot
(Cerqueira et al., 2002), the spatial variation within esegment will be lost. As opposed
to skeletonization, the medial model describes the skeleta structure of interest using
parametric surfaces, which allows us to directly performiezie-based statistical analysis.
In this chapter, | applied the branching medial model to gatieedetailed thickness and
thickening maps based on the segmented MR images. The mekanea$s and thickening
maps for healthy population are computed and visualizelsol ase the statistics derived
from the healthy group to identify regions with abnormalkimess or thickening for a
new patient as an example of the usage. The thickness akeénimig maps of acute my-
ocardial infarction (AMI) patients and hypertrophic cansiyopathy (HCM) patients are

compared with those of normal subjects using cluster-basatysis.

The rest of this chapter is organized as follows: Sec 4.2gpteghe proposed method
in detail. Sec 4.3 shows the results of fitting a bi-ventacuhedial template to a large
set of cardiac segmentations and the comparison betweellyi-iSec 4.4 discusses the

paper’s contributions, limitations and future researanpl

4.2 Methods

This section presents the detail of the branching medialataad how the model is con-
structed for bi-ventricular shapes. As illustrated in it@rry’s demonstration (Terriberry,
2006), if the medial axis is modeled by Catmull-Clark sulxion surfaces, the equality
medial constraints along medial edge and branching curaese enforced by locally
modifying the medial axis at edge and branching curves tanisepolating splines. In

fact, examination of equations reveals that the equalit§iadeonstraints only involve the

first order derivatives of variables along the edge and viagccurves, and thus can be
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satisfied by localized adjustment. In this chapter, instdagkplicitly working out the lo-
cal adjustment for a special type of surface representa®done by Terriberry et al., we
would like to propose a new method to first obtain solutiorad tnly slightly violate the
medial constraints via soft-penalty optimization, andhtkaforce the constraints implic-
itly by a local adjustment. Unlike Terriberry’s approachierhis specific to Catmull-Clark
subdivions surface, the new proposed approach can be gaplBmented for a large class
of function representations for skeleton in the medial nhotteSubsec 4.2.1, we derive
the soft penalties corresponding to the equality condgaiiThe soft penalties will be
equal to zero when the equality constraints are satisfiedi hame positive values when
the equality constraints are violated. In Subsec 4.2.2, xpéagn how those soft penal-
ties, along with other terms, are incorporated in the deédolea model fitting framework
to derive medial models for real-world objects. The solutdtained by model fitting is
still not perfect, and in Subsec 4.2.3, we describe how tinéurocally correct the medial
model. Subsec 4.2.4 describes the process to construenbiiaular medial template for

the heart and implementation details are given in Subse6.4.2

4.2.1 Soft Penalty Terms

Along the medial edge curve, the soft penalty for violatihg medial constraint can be

simply written as:

(IVmR|| = 1)%. (4.1)
Now let us focus on the equality constraints along mediatsaarves. Let(s) : [0, L) —
R? denote the parametric form of the medial seam curve, pamiped by the arclength
s, whereL is the length of the seam curve. Lﬁt(s) be the unit tangent vector along

and let7(s) be the outward unit normal vector alongs), i.e.,7; L Ny, andz; L ﬁ.

Note that
Vi,R=R,T,+ Ry,
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whereR ; andR ; denote the partial derivative @t with respect tas andz; respectively.

This expression allows us to rewrite the equality constraliong the medial seam curves

L, =1 = (Rs)? cosa; =0, (4.2)

whereq; is the angle between the tangent planes of the medial mdsaifol,; andm;gs,

as:

Rvﬁi

i.e.,

COS Oy = Vg1 * Vig2

with @& denoting addition modulo 3. Accordingly, the soft penatty ¥iolating this con-

L — /1= (R)? cos ;)% (4.3)

4.2.2 Deformable Model Fitting

straint can be put as:

(R,ﬁi

This section addresses the problem of how to derive the redidel to describe a real-
world objectH. Similar to other continuous medial models (Yushkevichlet2006b;
Terriberry, 2006), a medial templafeis deformed by modifying the control coefficients
of C, so as to maximize the match between ¢thand 7, while ensuring thaf satisfies
certain regularity and validity constraints.

Formulated in the Bayesian framework, the branching medraplateC is fitted to a
real-world objectH by maximizing the posterior probabilityC|H) ~ p(H|C)p(C). The
optimization problem is solved by the Conjugate Gradiertdd¢ method.

The first likelihood termp(H|C) is measured by the volumetric overlap between the
real-world object and the medial model interior. In this ptes, we assume the object is
represented by a mask imagé : R® — R such thatM is positive onH and negative
on R*\'H. In practice, masks are generated by the interpolationredriicharacteristic

images, possibly after smoothing. Thus the first term carobgpaited by:

p(H|C) = VLH/CM(x)dx, whereVy, = /HM(x)dx (4.4)
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The spoke vectors in the medial model allow us to sample th@emmedial model
interior, so that the overlap term in (4.4) can be computédieftly.

The second term is the prior term which ensureswldity and regularity of the
solution. Thevalidity terms enforce the medial constraints. The equality coimssralong
medial seam and edge curves are enforced using soft peeattg tis given in Eqs (4.1)
and (4.3). There are also several more inequality conssrémat have been described in
detail in literatures (Yushkevich et al., 2006b), like,, R|| < 1 for all type 1 points and
the Jacobian constraint to prevent local self-interseatiothe boundary. Theegularity
terms further regularize the solution by enforcing despeaperties, such as the quality
of the control mesh or the preservation of area elements. r@@palarity terms in our

implementation are described in Subsec 4.2.5.

4.2.3 Local Correction

A small violation of the medial constraints still remaingsathe soft-penalty optimization.
The following local adjustments are applied to ensure thatttoundary generated from
the medial axis is closed. Along the medial edge, each papokes is given the mean
value of this pair:
gtV ru (4.5)

2
and the corresponding boundary points are updated. Siyni#gdong the medial seam, we

assign spokes to be:

. Ut +uU_

Uy, = —m et 5 Mig1 (4.6)
- Un +Un...

M;gp1 = #@7 (47)

and the corresponding boundary points are subsequentteghd
These small local corrections ensure all parts of the bayrtdaconnect seamlessly,
resulting in a similar effect as explicitly adjusting theigatives of medial axis to enforce

the medial constraints in Terriberry’s Catmull-Clark siviiglon surface medial model
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Figure 4.1: This figure illustrates the result of the defdoleamodel with soft penalties
and the effect of local correction. The left column shows ithsults after deformable
fitting with soft penalties. The right column shows the résalfter local correction. The
top row is part of the model boundary, note that before theection, there are very tiny
seams on the boundary, indicated by the arrows, which desappafter the correction.
The bottom row shows part of the spoke vector field. Note tkeédrde the correction, the
6 spokes for the point on medial seam do not match perfedibydnbut have very small
discrepancy within each pair (one red and one blue as a pdiile after the correction
only 3 spokes can be observed.

(Terriberry, 2006). As long as the soft penalties are emfdr@n the geometry at medial
edges and seams, the needed correction should be tiny iticeradig 4.1 shows the

medial geometry before and after the local correction aldbha medial seam.

4.2.4 Bi-Ventricular Medial Template

The deformable medial model fits an initial cardiac medialg&ate to the cardiac shapes;
thus, prior to the fitting, a cardiac medial template needsetgenerated. In theory the
template can be any simple hand-created model as long asahehing topology is cor-
rect. However, a data-driven model which is closer to the swolution obviously would
help the deformable model avoid local minima in the optirticaprocess.

In our work, the myocardium of the left and right ventricleg a&xplicitly modeled
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using medial surfaces. The template of the heart wall isvddrthrough several steps.
We start from the manual segmentations. First, a volumtgrplate is iteratively gen-
erated from the segmentations using a scheme in (Joshi @08K) and the symmetric
diffeomorphic registration algorithm developed by Avaetal. (Avants and Gee, 2004).
Then, the volumetric template is binarized and the Vorokel&on of the binary image is
computed using ghull (Barber et al., 1996). We then intérdexdense Voronoi Skeleton
mesh with a set of cutting planes that are orthogonal to théoldg axis and obtain the
2D intersection curves. The curves are uniformly samplegeteerate the mesh points.
The final medial template for the LV and RV contains 195 poartd 381 triangles at the
basic control mesh. We note this is sparser than the boumdesfes of some published
papers. For example, in (Zheng et al., 2008), 545 points &&6 friangles are used for
the left ventricle while 761 points and 1476 triangles aredu®r the right ventricle. And
in (Peters et al., 2009) 7286 vertices and 14771 triangkessed for all four chambers of
the heart. We have experimented to use a denser mesh by sliiglihhe template control
mesh, however, the performance gain is trivial. Thus it setimat a light weighted tem-
plate is good enough for our application on short-axis MRge® Figure 4.2 illustrated
the medial template. To initialize the deformable modeldqrarticular cardiac shape, we
warp the medial template according to the deformation fieddsaved in the volumetric
template construction step, and we use the deformed mediglate as the initialization.

The pipeline is illustrated in Fig 4.2.

4.2.5 Implementation Details For The Medial Model

In our implementation, Loop subdivision surfaces (Loop &&Rose, 1990) are used to
represent skeletons. Loop subdivision surfaces are esdlyagell suited for describing the
skeleton with complicated topology, because of their gidar elements and simplicity.
The triangular control meshes for Loop subdivision surfacan be recursively refined
by inserting a vertex into each edge in the parent-level r@cg to a set of subdivision

rules, allowing multi-resolution model fitting. Boundamsgconstruction from the skeleton
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Figure 4.2: Medial template building and deformable modgialization pipeline. First:
the boundary of the binrized volumetric template conseddiy iterative unbiased aver-
aging algorithm. Second: the pruned Voronoi Skeleton; tmde it still has some small
branches and the mesh is dense. Third: the medial templastraoted under manual
control. Fourth: example of a deformed medial template asrthialization for one car-
diac shape.

requires only up to first order derivative information. Weéccdate them according to the
equations given by Xu (Xu, 2004), which involves one ring efghbors for each vertex.
The soft penalties are computed on all vertices along mediains and medial edges
and their average values are used in the objective funcfitineodeformable model. In
practice, we find that the vertices on the medial seam needu® &t least a valence of 3
to get enough freedom to satisfy the branching constraints.

In our implementation, tweoegularity terms are used in the deformable model fitting.
Since we use a Loop subdivision surface to represent thetskelone regularity term is
used to control the quality of the subdivision mesh by peinajilarge and small angles in

the mesh triangles. It can be put as:

T 3
Pregularity—mesh ™~ Z Z COS(H]i), (48)

=1 k=1
whereT is the total number of triangles on the subdivision medialesie and) are the
internal angles of these triangles. The second regulaity tve use enforces area-based
correspondence of the skeleton by penalizing the distodfarea elements with respect
to the template. In our Loop subdivision surface represemtathis term is implemented
as: ” o,
Pregulatity—correspondence ™ Z va(f”ﬁ’ (4.9)
=1

template
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whereV is the total number of vertices on the subdivision medidiesitr, A° is the effec-
tive area element of th&" vertex which can be computed as one third of the total area of
all triangles belonging to this vertex, and similardy,,, ... is the effective area element
of thei*" vertex on the template.

The multi-resolution deformable model fitting has two stagé&he initial template
mesh is subdivided once in the first stage and twice in thergkestage to represent the
medial axis, and the target bi-ventricular binary mask isatned by Gaussian kernel with

variance 2 in the first stage and variance 0.6 in the secogd.sta

4.2.6 Cluster-Based Comparison Between Subject Groups

After the medial model is fitted for each subject, the radtallar field is used as a local
thickness measurements. And the systolic thickedihgs defined as the changing ratio

in thickness from ED to ES relative to the ED thickness,

A = oBs —SeD (4.10)
SED

whereSrs andSgp are the ES and ED thicknesses, respectively.

Groupwise comparison can be a useful tool to study variotiepagy processes. For
example, it might be interesting to investigate whetherehg a difference in the thick-
ness and thickening pattern of ventricular hypertrophyseduby different stimuli (eg,
high blood pressure and exercise). Also, although the AMucslocally for each patient,
still some areas might be affected more often than othersriaio population. This infor-
mation can potentially be revealed by groupwise comparnigdhickness and thickening
maps.

The medial model provides a detailed thickness and thiciemap on the skele-
ton mesh where a direct pointwise comparison can be easifgrpeed. To account for
multiple hypothesis testing, the widely used non-paraimetuster-based analysis with

family-wise error rate (FWER) correction (Hayasaka andhdls, 2003) is applied to the
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groupwise comparison of thickness and thickening. Cldsésed analysis prefers to se-
lect larger connected regions with group difference rathan isolated points based on
the assumption that the change of myocardium should hata&mrextent of continuity.

To compare the thickness/thickening between two groupdjrgtecompute a point-
wise t-value using two sample Student’s t test at every pminthe skeleton. Note that
the t-value can be either positive or negative dependingldowgroup has a larger mean
value. Then, given a thresholg, corresponding to a p-value, if ¢, is positive, the
clusters(connected regions on the skeleton mesh) with ¢, (or p < py) are extracted,;
similarly, if t, is negative, thelusterswith ¢ < ¢, (or p < p,) are extracted. The cluster
mass is defined as the integral|tfover a cluster. Permutation testing is used to build an
empirical distribution of cluster mass which yields fhermutation correcteg-value for

each cluster (Hayasaka and Nichols, 2003).

4.3 Results

4.3.1 Materials

The data set we used contains 428 heart shapes from 90 sutgesisting of both healthy
subjects and patients suffering from common cardiovas@athologies, including my-
ocardium infarction, hypertrophy, LV dilation, LV aneurgs RV dilation, LA dilation,
RA dilation, and pericarditis. The MR images were generppsbvided to us by CETIR
Sant Jordi Centre (Barcelona, Spain). The MR acquisitioarpaters are: TR: 3.75 4ms,
TE: 1.5-1.58ms, FA: 45, slice thickness: 8-1fwm, slice size: 256x 256 pixels, res-
olution: 1.56x 1.56mm and FOV: 400x 300mm?, on a General Electric CVI 1.5 T
MR facility. Expert segmentations were manually drawn anehdocardial left ventricle
and right ventricle borders, and on the epicardial bordehefwhole heart to construct a
2-chamber heart model usually including 8-12 slices fromkhse to the apex. Five dif-
ferent phases of the cardiac cycle were segmented: EndogED), Mid Systole (MS),
End Systole (ES), Diastole 1 (D1) and Diastole 2 (D2).
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Figure 4.3: lllustration of the medial template. The top ramd bottom row are shown
from different viewpoints. The medial surfaces are showeoésred meshes with the color
indicating different branches of the medial model. Theeethree different branches: the
blue surface models the left ventricular posterior wall; greensurface models the inter-
ventricular septal wall; and theed surface models the right ventricular wall. The curve
where these three different colored surfaces join togethtére branching curve, which
is marked usingellowcolor on the left figure where the medial surfaces are rendase
transparent meshes. The boundary surfaces are shomimtagransparenimeshes on the
right figure.

4.3.2 Branching Topology

The branching topology of the bi-ventricular medial modgelillustrated in Fig 4.3. The
medial scaffold is composed of three medial manifolds: amdte septal wall that sep-
arates LV and RV, one for the heart wall that only belongs todM one for the heart
wall that only belongs to RV. The three medial manifolds jmgether along a U-shaped
branching curve. Because there is a manual cutoff of theatedtright ventricles on the
base in the segmentation, the model is left open there mhsteanforcing a virtual cap.
Therefore the medial model does not have medial edge cuflieere are two type of
points on the medial scaffold for this model: type (3) poimtsthe branching curves and

type (1) points on everywhere else.
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Table 4.1: The results of fitting branching medial model t8 4a@rdiac segmentations.
Mean| Std

Dice Overlap 0.92 | 0.017
Avg. Dist. Model to Target (mm) 0.67 | 0.179
Avg. Dist. Target to Model (mm) 0.85 | 0.220

4.3.3 Fitting Accuracy

The proposed branching medial model is fitted to the 428 nmasegmentation of 2-
chamber heart model on a 8-CPU Linux cluster over approxindt8 hours. Examples
of fitting results are illustrated in Fig 4.4. Given that theefil cardiac shapes are from both
healthy subjects and patients suffering common cardiavaspathologies, this fitting
experiment demonstrates the robustness of the method.

The quality of the fit between a target cardiac shapeand a fitted medial model
C is evaluated using the following criteria: the Dice simifarcoefficient (Dice, 1945)
V—;\I%%; average and maximum distance from boundary tf boundary of{; and
average and maximum distance from boundar{+ofo boundary ofC. The results are
summarized in Tab 4.1. The cardiac shapes are fitted with eanoverlap coefficient
of 0.92(+0.017) considering the 8-10mm distance between slicesaVérge distances
between the medial model and the target boundaries are th@&rm 0.85mm respectively,
both at sub-voxel level. Fig 4.6 shows a color map of the ayeeintwise distance from
the model boundary to the target. Most mismatch occurs andemy points associated

with vertices on the branching curve with a small valencenitiht be due to the lack of

freedom for these vertices to deform while trying to satisky branching constraints.

4.3.4 Groupwise Comparison of the Thickness and Thickeninlylaps

This study uses the branching medial models of 73 subjedtsdp@g to three groups:
HCM group (7 subjects with average age 61#517.7), AMI group (38 subjects with
average age 63.% 11.6), and healthy heart group (28 subjects with averages@ge

14.7) where no pathology in the heart has been found.
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Media Model: (m,R) Media Model: b* Target Object

02 7.4 140
Il .

Radius Scalar Field

Figure 4.4: Examples of medial models fitted to binary segatems of 2-chamber heart
shapes. For each heart shape, shown are the medial marofotéa by the radius func-
tion R, the model boundary generated by inverse skeletborgand the boundary of the
segmentation to which the medial model was fitted.
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Figure 4.5: lllustration of distance (mm) between the bauydf the target shape and the
fitted medial model. The left figure overlays the model boupdahich is shown as white
wireframe, on the binary segmentation boundary, which aswshas green surfaces. The
middle figure is the distance map from the target to the moaiedl the right figure is the
distance map from the model to the target.

Figure 4.6: Average pointwise distance (mm) from the modeliralary to the target for
all 428 cardiac shapes.
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Figure 4.7: The mean thickness (left) and thickening ()ighdap for 28 healthy hearts in
our data set.

The mean thickness and thickening map for the healthy heattpgare illustrated
on Figure 4.7. As an example, the statistics derived froniting&ieart group is used to
identify regions with abnormal thickness or thickening éonew patient. The result is
illustrated in Figure 4.8. This patient has a region witrckier wall and a region with
decreased thickening, suggesting a coexisting conditidiypertrophy and myocardial

infarction. Results are consistent with the visual insjpedby an expert clinician.

We performed cluster-based groupwise analysis on our elateemparing the AMI
group and HCM group with the healthy heart group. Significdnsters of each patient
subgroup are shown in Table 4.2 and illustrated in Fig. 4,410 and Fig. 4.11. Only
clusters withpermutation correctegb-value less than 0.01 are listed. The pairs of com-
pared groups are detailed on the furthest left column (ggnbkkfor details). Note that the

interpretation of results might be limited to the dataset.

Group difference and t-value maps are visualized in Fig0 40t HCM patients and
in Fig. 4.9 for AMI patients. As can be observed in Fig. 4.9 stqaatients did not display
myocardial loss due to AMI. Myocardial loss (wall thinningpay present itself after the
AMI event as a chronic consequence of the lesion (Dymarkoetsél., 2005). Instead,

a high percentage of the patients in this database devebmdlized mild hypertrophy
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Figure 4.8: The abnormal thickness (left) and thickenimght) regions for a patient are
depicted with contours on the difference maps of the normalg mean and this patient
(patient minus the average of normal group).

along the septum and the anterolateral wall (cluster S1 @hd\Eanual examination pro-
vided by an expert clinician supports these findings. Indaedt of the patients found in
clinical practice are affected by several conditions. Tdwalization of these two clusters
suggest an overload condition of the LV (i.e. high blood pues or aortic stenosis) (Bo-
gaert and Taylor, 2005) is common for the patients in thesgatd=or the group of HCM
patients, meaning patients whose main pathological camndg hypertrophy, we observed
an increased wall thickness over all the LV walls. This uniity distributed (concentric)

pattern of hypertrophy is one of the most commonly found @wogand Taylor, 2005).

The group difference and t-value maps of the wall thickemirggdisplayed in Fig. 4.11
for AMI group. The M1 cluster is related to the prevalent nefad areas of this population
since an infarcted area will display reduced contractil¥jost infarctions appear to be
located at the anterolateral wall at basal and mid-veriaiidevel. The inferior wall is

affected more on the apical segments. No significant thickeciuster is found for HCM

group.
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Figure 4.9: Thickness differences between the healthyt lggaup (28 subjects) and the
acute myocardial infarction group (38 subjects). The leftumn shows the average group
difference (healthy group minus AMI group) whereas the trighlumn shows the corre-
sponding t-statistic map. Significant clusters of groupedénce are depicted with con-
tours on the t-maps, and are also listed in Table 4.2. Differews are shown from

different viewpoints.
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Figure 4.10: Thickness differences between the healthyt lggaup (28 subjects) and
the hypertrophic cardiomyopathy group (7 subjects). Thecldumn shows the average
group difference (healthy group minus HCM group) whereasripht column shows the
corresponding t-statistic map. Significant clusters otugrdifference are depicted with
contours on the t-maps, and are also listed in Table 4.2 ef@ifit rows are shown from
different viewpoints.
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Figure 4.11: Systolic thickening differences between athy heart group (28 subjects)
and the acute myocardial infarction group (38 subjectsg [€ft column shows the aver-
age group difference (healthy group minus AMI group) wherié right column shows
the corresponding t-statistic map. Significant clustergroup difference are depicted
with contours on the t-maps, and are also listed in Table Bifferent rows are shown

from different viewpoints.
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Table 4.2: Table enumerating clusters of significant défifies in thickness and thickening
between different pairs of subject groups, as defined innapl@. Column 1 also gives
information of which group has a greater thickness/thigkgrior the particular cluster.
Cluster mass is the integral gf over the cluster. Every cluster is defined as a connected
region with ap < pg. p.or IS the FWER-corrected p-value of the cluster.

Thickness clusters
Group contrast|| cluster| cluster mass py | Peorr
Normal < AMI S1 3942.6 0.01| 0.005
Normal < AMI S2 4600.7 0.01| 0.002
Normal< HCM S3 38120.4 | 0.05| 0.001

Thickening clusters
Normal>AMI || M1 | 10608.8 | 0.05] 0.001

4.4 Discussion and Conclusion

In this chapter a new branching medial model has been pexsemextend the continuous
medial model to complex shapes with multi-figures. This apph allows us to model
a much larger class of shapes using continuous medial eget®n, which not only

provides rich descriptive shape features, but also paeaines the entire model interior,

setting up a framework to perform a combined statisticalyemsof shape and appearance.

Regarding the ways to define thickness, there are sevee pdissibilities which are
all based on the medial axis. One way is to define thicknessdbas the SLS. For sheet-
like structures, the SLS thickness is about (but less thaitetof the Blum thickness.
SLS thickness might be more analogous to the clinical praatihich identifies pairs of
boundary points and measures the point distance. Howewarbset of points on the
boundary - the points belonging to multigigures or in another words, the boundary
points generated by points on medial seam curves - will hawe tthan one SLS thickness
measure, one for eadlgure There’s yet another way to define thickness in literature.
In the “centersurface method” (Bolson and Sheehan, 1988)thHickness is defined as
the length of the line segment that is orthogonal to the séeland lies between the
boundary surfaces. This defines the thickness as the destesro the boundary to the

skeleton, as opposed to skeleton to the boundary in the Bligkrtess. However, there is
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neither guarantee that each orthogonal line only cuts hdbundary exactly twice nor
proof of how many times each point on the boundary can be héue orthogonal lines.

Shape features other than wall thickness, like the Mean angs&kan Curvatures of the
endocardium/epicardium/medial surfaces, are not exgloréhis study. But they might

also be useful in characterizing certain pathologies.

The medial modeling is particularly useful for populatismse comparison and anal-
ysis. Comparing with deterministic skeletonization, whigelds discrete surfaces with
uncertain number of vertices and uncertain number of bresthat are sensitive to noise
on the boundary, the medial model produces a robust appadximto the medial axis
with consistent branching configuration and consisterfasarrepresentation. This sim-
ple and robust representation of the medial manifolds allpapulation-wise study and is
also useful for visualization of statistical results.

We also demonstrate a statistical scheme to analyze theotgat thickness and thick-
ening maps. Derived from the medial model, the ventricutkégckihess and thickening
maps were used for statistical studies on a data set congpatHCM patients, AMI pa-
tients and subjects with no pathology in the heart. Thesttesiof the healthy heart group
is used to identify regions with abnormal thickness or thigkg in a patient. Cluster-
based analysis reveals the prevalent patterns of thiclamesthickening change for AMI
and HCM patients in this dataset. The statistical studielslynformation that can poten-

tially be helpful for diagnosis and treatment.
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Chapter 5

Model-Based Segmentation using

Statistical Medial Model

This chapter presents a novel approach for the automatmeesgigtion of the myocardium
in short-axis MRI. The method uses the branching medial inpd®osed in Chapter
4, whose ability to explicitly represent the thickness ofeats is leveraged to construct
a Markovian prior on myocardial thickness. This thicknegsrpis combined with the
best practices from the ASM literature, such as a globalelpajor, statistical modeling
of appearance, and the use of local search to guide modehagtion, all of which are
adapted to the medial model. The performance of the segtimntaethod is evaluated
by comparing to manual segmentation in a heterogeneousM®lldataset. The results
show that the proposed method can provide a robust and éec@gmentation with over-
all mean point-to-surface error 1.6 (0.21) mm for the endo- and epicardial surfaces of
the left and right ventricles. The left ventricle volumefdrences between the manual
measurement and model-based estimation (manual-modielhis range of-6.2 ~ 13.8
ml. The model also automatically provides a thickness egton for the myocardium
being segmented. The mean absolute estimation error of & thhickness for the left
ventricular wall, the interventricular septal wall and tinght ventricular wall is 0.47 L
0.36) mm, 0.534 0.38) mm and 0.664 0.31) mm respectively.
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The research described in this chapter was done in collaboraith Dr. Hongzhi
Wang and Dr. Paul A. Yushkevich at University of Pennsylaaamd with Dr. Alejandro
F. Frangi, Dr. Federico Sukno and Catalina Tobon Gomez atddsity of Pompeu Fabra,

who together contributed to every facet of the work.

5.1 Introduction

Automatic segmentation of the human heaiirnivoimaging data is one of the persistent
challenges in biomedical imaging analysis. Segmentasam mecessary step for virtu-
ally any subsequent analysis of heart structure and fumcgsatistical shape models are
widely used to segment cardiac images, since the modedIs#ggnentation approaches
are usually more robust than low-level algorithms giverytbentain information about
the expected shape and appearance of the structure okinterebably the most generic
and, at the same time, the most popular way for a model to septea shape is by rep-
resenting its boundaries. A large number of studies on aarsigmentation have been
conducted using boundary models (Lotjonen et al., 2004eAss al., 2006; Lorenz and
von Berg, 2006; Zheng et al., 2008; Wierzbicki et al., 2008l et al., 2009). In this
chapter, however, | would like to investigate the feadipitif using thestatistical medial

modelin cardiac segmentation.

The medial models, have been used successfully for severaédical image segmen-
tation tasks, such as hippocampus and kidney segmentRizar et al., 2001; Joshi et al.,
2002). However, to the best of my knowledge, this is the fipgiraach to use deformable
medial models for myocardium segmentation. An importaapprty of the medial model
is that it can represent and control thickness explicitiinisTcan be particularly helpful
during the segmentation of thin, sheet-like structureshss the myocardium. The ben-
efits of regulating the thickness during the myocardium sagation have been explored
in (Zeng et al., 1998; Paragios, 2002; Jolly et al., 2009)himchapter, | segment the my-

ocardium of both left and right ventricles with a Markoviaigp on myocardial thickness.
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Most existing cardiac segmentation approaches, even tlesang with 4-chambers
such as (Zheng et al., 2008; Wierzbicki et al., 2008; Peterd.£2009; Zhuang et al.,
2008), conventionally only segment the myocardium of theventricle, which is rela-
tively thick. For the right ventricle, most authors (Zhengk, 2008; Peters et al., 2009;
Zhuang et al., 2008) only model the endocardial surface.raieki et al. (Wierzbicki
et al., 2008), whose application is towards image-guidediaa surgery, model the epi-
cardium of the right ventricle but leave the endocardiumtiemaled. As we know, the
myocardium of the right ventricle is also an important pdrthe heart and can be useful
for characterizing a variety of pathologies, such as riggmitrsicle hypertrophy, right ven-
tricular infarction, and ventricular arrhythmias (Sheelzand Redington, 2008; Haddad
et al., 2008). One reason that the right ventricular myaocandsegmentation has been
largely ignored might be due to the doubt about how reliahtk@seful the segmentation
can be given the thinness of the structure and the limitealugtsn of the image. With
the improvement of cardiac imaging, the interest on righttrreular myocardium seg-
mentation is increasing. Another reason might lie in thetation of the boundary model
itself. In order to use a boundary model to segment the thiarlaf right ventricular
myocardium, particular care needs to be taken to preverggieardial and endocardial
surfaces from intersecting or folding into each other. W& medial model, the folding
would not be a problem since the thickness should be alwagsiym And even better,
the segmentation might further benefit from an explicitkhiess prior. In this chapter, |
conduct the model-based biventricular myocardium segatient, compare its agreement

with manual segmentation, and assess its ability to estimgbcardium thickness.

In this work, a single medial model is used to represent tapaslof both left and right
ventricles. The model is first adapted to segmented bindyywes in the training data and
the shape priors are constructed based on the medial stapeefe The local appearance
model is also constructed for each boundary position byzirtd the Adaptive Boosting
(AdaBoost) algorithm (Freund and Schapire, 1997) to pidk @mbine weak classifiers

to build a strong one. Then the medial model is adapted toaimsardiac images under
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the guidance of the boundary detection results and undeethdarization of the shape
priors to achieve model-based segmentation.

The rest of the chapter is organized as follows. The medialehand shape pri-
ors are introduced in Section 5.2 and the appearance moihtaduced in Section 5.3.
Section 5.4 reviews the overall segmentation algorithmSention 5.5 the experimental
results are reported. The comparison with literature, tineespondence problem, the lim-
itations and plans for future research are discussed indBes6. Section 5.7 concludes

the chapter.

5.2 Shape Priors

To fit the model to unseen image data, | still use the same Bay&smework as | used
in the binary image adaptation, but change the definitiomeflikelihood term and add
additional shape priors terms. | will discuss the new liketid term in Section 5.4. In this
section | deal with the shape prior terms.

The medial model has two types of parameters: the parametdrs describe the
medial surfaces, which in my implementation are the X, y,andordinates of the medial
control points, and the parametétso describe the associated radial thickness. Variability
in medial surface shape is modeled using a multivariate Sanislistribution: PCA is
applied tom. Before PCA, Generalized Procrustes Analysis (Gower, 1&7&pplied to
m to factor out the differences in scaling, rotation, anddigiotion. The number of PCA
modes: is chosen to capture 95% of total variability. During thersegtation algorithm,
to calculate the probability af given the PCA model, | first apply Generalized Procrustes
Analysis to align it with the PCA meam. Then the alignedn’ is projected onto the PCA
space to obtain the coefficienis Since there are always variation that cannot be fully

captured by PCA, | allow a residual but regularize it to behiita reasonable range:
= : bz2 / / 2
_log(p<m;m7)\17"'7)\07vlu"'7VC)> NZ)\__'_QHm _mPCAH ) (51)
i=1 "
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wherev;, \; are the eigenvector and eigenvalue of the PCA covariancexnaty, . , is
the reconstructed model parameter using the projected@RecBefficients);. Thickness
variability is modeled by a more localized Gibbs distributii.e., thickness is treated as

a Markov random Field):

l . - ~ 1)° (17 = Bel = o)
_Og(p<R17"'7RN7,u070-0 NZ _'_/6 Z y (52)

U
i=1 (4,k)EE Jk

where: = 1,...N indexes vertices in the medial surfade,s the set of all edges of the
triangle mesh, andlw;, o;, 11,1, 01} are parameters estimated from the training data.
The reason | use different priors for and R stems from the fact that thickness varies
much more smoothly than the X, y, and z coordinates of the ahedirface. Thus, the
MREF is an appropriate model for thickness, but it is too reste for shape. | performed
experiments that show that using PCA for boathand R leads to worse segmentation

performance than using PCA for and MRF forR.

5.3 Appearance Model and Boundary Detection

In the popular ASM approach, texture features are samplaghdrthe boundary land-
marks along the direction perpendicular to the model boyndia the original version
of the ASM (Cootes et al., 1995), appearance features arelgobdsing PCA, extracting
a mean feature vector and principal modes of variationsdohéandmark. Later, ASM
was adapted to various segmentation tasks in the biomediege field, during which
different appearance features have been explored, ardafhffways for constructing the
appearance model out of the features have been proposedn@uidynused appearance
features include image intensity values, their derivati\éaar wavelets, Gabor wavelets
(Daugman, 1988; McKenna et al., 1997), and steerable fea{ireeman and Adelson,
1991). During the model-based segmentation, ASM seardbieg the directions perpen-

dicular to the boundary to locate new boundary landmarkss iBhusually achieved by
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evaluating a designed match function that is supposed texaemaximum at the bound-
ary. The match function can be Mahalanobis distance, a gmatased edge detector,
a k-nearest-neighbor (kNN) classifier (de Bruijne et alQ320 or other discriminative

training-based classifiers (Zheng et al., 2008).

The AdaBoost algorithm (Freund and Schapire, 1997), whiolviges a way to se-
lect and combine different features from a potentially éefgature pool to build a strong
classifier, is used in this work. AdaBoost has been used iaraeimage segmentation
applications. For example, Morra et al. (Morra et al., 2088w that AdaBoost can
automatically select good features for hippocampus setatien. In this application,
AdaBoost algorithm is used to help construct local appearamodels which are used to
drive image segmentation, as illustrated by Figure 5.1 0Bdldescribe the appearance

model in detail.

5.3.1 AdaBoost Training and Classification

At each vertex in the medial model, | build a model of local eg@ance, which is subse-
guently used to drive image segmentation. Recall that fatmedial pseudo-landmarks
there are two corresponding boundary nodes, one on each sidéhese two nodes,
the maximal inscribed ball which centers at the medial psdaddmark is tangent to
the model boundary. The exceptions are the medial pseunivrlarks on the branching
curves at the two ends of the interventricular septum, whiate three corresponding
boundary nodes. Theiple tangencybranching points are treated as the limit case, where
threebitangencypoints meet together. Each one of these three bitangennysgmlongs
to one branch of the medial axis and is treated normally dutie training and boundary
detection. After boundary detection, the triple tangenegdial pseudo-landmark and the
radius will be updated as the average of the three indepéhdangency detection results.
Below | only deal with bitangency cases.

At each boundary node, | train an AdaBoost classifier to argoate between a “well-

placed” boundary node and a “misplaced” boundary node|wesriited in Figure 5.3. A
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Figure 5.1: lllustration of appearance matching using tklaBoost classifier. (a). The
classifier is trained to differentiate between boundaryesddcated at the correct anatom-
ical boundary and displaced boundary nodes. In the figueeyelow bars show samples
drawn from correct anatomical boundary, while the red beesamples that are displaced.
During training, each boundary node is displaced alonghtized direction(illustrated in
Figure 5.2), and samples from the image neighborhood a tosgenerate appearance
features. Combining features from different subjectsaahdoundary node, | train an Ad-
aBoost classifier with two classes (displaced node vs. sptatied). (b). The deformable
model is shown in red color while the underlying object iswshan green color. During
segmentation, the classifier is used to position boundatgsiolose to anatomical bound-
aries. Pairs of boundary nodes that share a medial psendo&k are displaced along
the chord direction, governed by the AdaBoost classifiemesponding to the nodes. Fol-
lowing these displacements, the deformable model is uddatas to satisfy the necessary
geometric constraints and to abide by the shape priors.
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Figure 5.2: lllustration of chord direction. For boundarydesb® which correspond to
the medial pseudo-landmark, the chord direction which crossés andb~ shown as
purple line in the figure.

well-placed boundary node lies within a certain distancéhtocorresponding anatomi-
cal boundary in the training image, and a misplaced boundade lies some distance
away from the anatomical boundary, as illustrated in FiguB Well-placed boundary
nodes are obtained by fitting models to manual segmentatiotiee myocardium in the
training data. Misplaced boundary nodes are obtained blyagpdisplacements to the
well-placed boundary nodes along the direction betweetwbeorresponding boundary
nodes. This displacement direction, caltdurd directionsince it is a chord of the MIB,
is illustrated in Figure 5.2. Therefore training exemplarseach classifier include well-
placed and misplaced versions of a given boundary nodesaaliagibjects included in the
training subset. To further increase the number of traiexemplars and make classifiers
less sensitive to location, | include, as training exengdlar each classifier, misplaced and
well-placed versions of the boundary nodes in the two-rigigimborhood of the boundary

node associated with the classifier.

During local boundary detection, each sample correspgrtdia pseudo-landmark go
through two classifiers, one for each of the two correspapdoundary nodes. According
to the classification scores, a pair of points satisfyingftlewing conditions is selected
to be the new candidates of boundary nodes: (1) they arefetdsas correct boundary
nodes according to the two classifiers respectively; (2) treler is consistent with the

right order of the boundary nodes (otherwise the boundartedd intersect); and (3) the

86



chord direction r/

class O class 1

Figure 5.3: lllustration of training exemplars of a “wellped” boundary node (class 0)
and a “misplaced” boundary node (class 1) in AdaBoost tnginlThe manual segmenta-
tion of the anatomical structure is shown in gray. The medhiatiel is fitted to the man-

ual segmentation to obtain medial pseudo-landmarks amdsmonding boundary points.
The left figure shows a “well-placed” boundary node centexethe exact boundary of
the manual segmentation. Note that since the manual segtimentan not be perfect, |

actually place three “well-placed” boundary nodes for elagtindary location: one is on

the exact boundary of the manual segmentation as illustiatéhe left figure, the other

two are on two sides of the first one and are obtained by applyismall displacement
to it along the chord direction. The right figure shows a “ntaspd” boundary nodes,

which is obtained by applying displacements to the weltpthboundary nodes along
chord direction.
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overall classification score is the highest for all pairsséging condition (1) and (2). If
no such pair can be located for a particular medial pseuddntark, the local boundary

detection algorithm will return a void result for this meldiseudo-landmark.

5.3.2 Features of AdaBoost

A rich set of features is used to build these AdaBoost classifi

First, for each MRI slice, | compute a set of texture desorpiat different scales,
which are calledrreducible Cartesian differential invariantéSchmid and Mohr, 1997,
Walker et al., 1997; Sukno et al., 2007). Using Einstein tiata with L denoting image
derivative in direction € {z,y}, these descriptors are given by L;L;, L;;, L;L;;L;,
and L;;L;;. The Cartesian differential invariants are invariant @iditransformations.
The termirreducible means that any other algebraic invariant can be reduceditear |

combination of elements of this minimal set.

These texture descriptors are sampled around each boumaldeyusing a cylindrical
sampling grid oriented along the chord direction. A 2D ittasion is in Figure 5.3. The
axis of the cylinder lies along thehord direction On the cross-section of the cylinder, grid
points are put both at the center of the circle and on the banynof the circle. Assume
that there areX. points on the boundary of the circle on each cross-sectiat,adong
the axis of the cylinder there até cross-sections being sampled. Each sample will have

(X.+ 1) x Y. points.

Linear interpolation is used to sample texture descrigieta/een slices. Thousands of
features are obtained for each boundary node. For eachrdeataimple threshold-based
weak classifier is constructed. AdaBoost is used to combieset weak classifiers into a

single strong classifier.
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5.4 Segmentation Algorithm

The current model uses landmark-based initialization. ddex manually selects six land-
marks, including the LV apex point and five points at the masb slice. Based on these
landmarks, a similarity transformation is determined,ahiplaces the model in the image
and serves as the initialization. Subsequently, the madigformed by iteratively apply-
ing two stepsiocal searchandBayesian deformatiarBoth of these steps are adaptations
of the segmentation algorithm used in active shape modelstésS et al., 1995), and | only
summarize them here.

In the local search step, AdaBoost classifiers are used tongémd candidate posi-
tions for boundary nodes, as described above in Sectionlba&8pair of new boundary
candidates can be located for a medial pseudo-landmarky tempute a new medial
pseudo-landmark and radius by assuming that the anglegéetivechord directionand
theradial directions(the vectors starting from the medial pseudo-landmark anatipg
to the corresponding boundary points) stay the same. Letisrae that in a previous state
the medial pseudo-landmark and radius @re R) and that the corresponding boundary
points argb™, b~), while in candidate model state after local boundary deteste have

new boundary candidatQﬁJr, b ). Then the new medial pseudo-landmark and radius

(f, R) are
) . b —b
. b — b

Following local boundary detection, the medial model wil longer be in a valid
state, as the equality medial constraints will surely beéatenl. Likewise, the model is
likely to adhere poorly to the shape prior defined in Sectigh 3o address this, I fit the
deformable medial model to the new candidate medial pséamttmarks(rh, R) using
Bayesian maximum a posteriori estimation, with likelihagmgen by the distance from the

deformable model nodes to the candidate medial pseudoniarkd, and the prior terms
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Figure 5.4: Example of automatic segmentation in a singdgest. The top row shows the
manual segmentation in green and the model initialized hgrizarks in blue. The bottom
row shows the segmentation result in red, with manual setatien in green. From left
to right, slices progress from most basal slice to the apex.

to ensure the validity and regularity of the medial modelc®mpute this likelihood term,
| calculate the values of medial pseudo-landmarks and tiiefram the model, denoting

them agm,,,, R,,), and define the distance to the candid4tasR) as

d=>[[[M—m,|*+ (R - R,)’.

=1

This likelihood treatsn and R as having the same units, which has not been a problem
in practice. A likelihood term based on Mahalanobis distaoculd also be used as an
alternative. The prior term of the Bayesian model contdesterms used in the binary

segmentation adaptation and the shape prior terms as defigegdiation (5.1) and (5.2).

This procedure of local boundary detection followed by gloimodel adaptation is
repeated iteratively. Experiments show that the deformaiddel converges within a few
iterations. | adjust the relative weights of the priors téoece a strong shape constraints at
the beginning, when the model is likely to be far from the segmentation, and relax the
shape constraints towards the end to allow the model magddra to follow the boundary

detection results.
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Figure 5.5: lllustrate the mean segmentation error. Theneweare colored by the mean
point-to-surface distance from the model boundary meshhéomanual segmentation
boundary mesh. The left figures show the endocardial boynafathe left and right
ventricles. The right figures show the epicardial bounddmpe left and right ventricles.
The top row and bottom row are figures from different view poin

5.5 Experiments

5.5.1 Data Set

Two data sets are used in the experiments. The first data B&j @ntains 81 manually
segmented short-axis cardiac MRI volumes in the end dexgtbhse from both healthy
subjects and patients suffering from common cardiovas@athologies, including my-
ocardial infarction (25), hypertrophy (21), LV dilation)(8V aneurysm (2), RV dilation
(2), LA dilation (5), RA dilation (2), and pericarditis (4Jhe MR images were generously
provided to us by CETIR Sant Jordi Centre (Barcelona, Spaimg expert segmentations
were manually drawn on the endocardial left ventricle agtitrventricle borders, and on
the epicardial border of the left and right ventricles tostomct a 2-chamber heart model

that typically spans 8-12 slices from the base to the apex.
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The second data set (DB2) contains 40 short-axis cardiac tMdRes from 4 differ-
ent groups: healthy (10), myocardial infarction (MI) (1@ypertrophy (10) and dilated
cardiomyopathy (DCM) (10). Hui Sun, an author, manuallymnsegted the endocar-
dial and epicardial surfaces of the ventricles using ITKABN Yushkevich et al., 2006a)
(www.itksnap.org). The segmentation is reviewed by Cagaliobon-Gomez, another au-
thor and also a trained expert, to ensure the quality.

The acquisition parameters of both datasets are: TR/TEE2.ens, flip angle=4%
in-slice resolution = 1.5625 mm 1.5625 mm, slice thickness= 8 mm, slice separation=
0 mm, field of view= 400 mmx 340 mm, on a General Electric Signa CVi-HDx 1.5T

scanner (GE Healthcare, Milwaukee, USA).

5.5.2 Experimental Design

The DB1, which consists of 81 manual segmentations, is oséddor medial template
building and shape prior training. The DB2, which consis#é®images and their manual
segmentations, is used for training appearance models\ahdaéng the segmentation
performance through cross-validation experiments. Itmeaand of cross-validation, the
appearance model is built on a subset of 24 images (6 imagesdach subgroup) and
the segmentation results are evaluated on the remaininghages. Cross-validation is
repeated 10 times (the AdaBoost training is time-consurainyprecludes us from doing
a much larger number of cross-validation experiments) hadverage results on the 160
segmentations are reported. The results for each grouplsveaeported separately to

study the influence of different heart conditions on autécrsggmentation.

5.5.3 Initialization Error Tests

To evaluate the influence of initialization on this segmgateapproach, the cross-validation
experiment is performed four times. In these experimenéaisSian noises are added to

the X, y, and z coordinates of the true landmark positionskarge the initialization error.
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Table 5.1: Initialization error tests. The erroes §tandard deviation) are point-to-mesh
distances with the manual segmentation meshes. Here L\iBMate the endocardial
surface of the left/right ventricle, while EPI means thecapilial surface of both left and

right ventricles.

Noise LV(mm) RV(mm) EPI(mm)
N(0,0) | Initialization Error 4.51+ 1.19 4.44+ 1.35 3.95+ 0.84
Final Error 0.87+£0.23 1.19+£0.28 0.98+0.23
N(0,1) | Initialization Error 4.58+ 1.22 4.43+ 1.38 4.00+ 0.85
Final Error 0.87£0.22 1.19+£0.28 0.98+0.24
N(0,5) | Initialization Error 5.22+ 1.64 4.99+ 1.95 4.85+ 1.54
Final Error 0.92+£ 0.28 1.25+£0.32 1.02t 0.27
N(0,10) | Initialization Error 6.66+ 2.73 6.13+2.91 6.48+ 2.80
Final Error 1.26+1.32 1.7141.50 1.54+1.77

The Gaussian noises added in the four experiments have zansvand their standard
deviations are Omm, 1mm, 5mm, and 10mm. The initializativoreand the final error
are summarized in Table 5.1. The boundary delineation®ei@ measured by the widely
used point-to-mesh distance (Assen et al., 2006; Zheng,&2048). For each point on
the mesh, the closest point (not necessarily mesh triaregteces) on the other mesh is
located and the Euclidean distance between these two psioédculated. This distance
is computed for each point on the mesh and the weighted avéaagording to the area)
defines the point-to-mesh distance to the other mesh. Thendes is calculated from
model-based segmentation mesh to the ground-truth and/eisa to make the measure-

ment symmetric.

Table 5.1 lists the results separately for: the endocastidhce of the left ventricle
(LV), the endocardial surface of the right ventricle (RWetepicardial surface for both
left and right ventricles (EPI). The initialization erronéthe final error increases with
the added inaccuracy. When the noise goes\if, 10), the result becomes less stable

although the average final error is still reasonable.
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Table 5.2: The mean point to mesh errotis gtandard deviation) between the manual
segmentation meshes and model-based segmentation mesieesdn cross-validation.
Here LV/RV indicate the endocardial surface of the leftitigentricle, while EPI means
the epicardial surface of both left and right ventricles.

LV(mm) RV(mm) EPI(mm)  Whole mesh(mm)

healthy 0.78: 0.13 1.07+ 0.20 0.96:0.20  0.94+ 0.14
M 0.94+037 1.16+0.34 1.06:0.38  1.05:0.36
DCM 0.88+0.19 1.33+0.29 0.97+0.13  1.03£0.12
hypertrophy 0.87-0.15 1.19+0.22 0.92+0.12  0.97+ 0.10
all 0.87+0.23 1.19+0.28 0.98: 023  1.00+0.21

5.5.4 Boundary Delineation

Figure 5.4 shows an example of model-based segmentatigare=.5 shows the distri-
bution of the mean segmentation error on the boundary mesé.bdundary delineation
errors based on the cross-validation described in Secti®r2 @re summarized in Ta-
ble 5.5.4. All the segmentation cases in the cross-vatidakperiments are included in
the calculation. The table lists the results separatehytf@ endocardial surface of the left
ventricle (LV), the endocardial surface of the right vetl&i(RV), the epicardial surface
for both left and right ventricles (EPI), and whole heart m@4/M). The mean error for

the whole mesh is 1.6 0.21) mm. According to the results, the disease state, edlyec

the MI, does slightly affect the performance of the modeddzthsegmentation. However,

results for all different groups are quite encouraging.

The Markovian prior on myocardial thickness helps to imgrtve result. Instead of
using PCA form and MRF for R, if | use PCA for bothm and R, the mean point-to-
mesh errors for the endocardial surface of the left vemtriehdocardial surface of the
right ventricle, and epicardial surface for both left anghtiventricles would go up to
0.95(0.28) mm, 1.24£0.51) mm and 1.0%0.32) mm.
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Table 5.3: Error of the heart wall thickness estimation irdimkemodels fitted directly to
MRI images comparing with medial models fitted to manual seggations.

SEP Wall LV Wall RV Wall
Mean Absolute Error (mm) 0.58 0.38 0.47+£0.36 0.664+ 0.31
Bias (mm) -0.35-0.55 -0.41+0.42 -0.65+0.34
Error Range(mm) -1.741.37 -1.8~0.47 -1.60~0.31

5.5.5 Thickness Measurements

The heart wall thickness is an important parameter to asagesardial function. The
medial model associates each point on the medial surfabahétdiameter of the maximal
inscribed ball, which can serve as a thickness measuree BaBlsummaries the error of
the mean thickness estimation. Note that although the mesn-fo-surface distances
for the endocardial and epicardial surface are around 1 mmeean absolute thickness
errors are only within 0.4¥0.66 mm. This might be a bonus of using statistical medial
model which regularizes the thickness explicitly. Howetlegre is a systematic bias in the
thickness measure within -0.650.35 mm. This could be due to the fact that the training
data and testing data are segmented by different individilnglt may have systematic

different preferences.

5.5.6 Left Ventricular Volume

In this section | analyze the estimation of the left ventiacwolume (LVV) based on the
model segmentation. Table 5.4 summarizes the mean re3ilesaccuracy of the LVV

estimation was calculated as the percentage of absoluieneadlifference relative to true

LV Vinodetl=LV Vinanual
vamanual

volume, orl — abs( ). The accuracy is quite similar across different

disease groups and the overall mean accuracy is 36264)%.
Agreement of LVV model-based measurements with manual uneaents is further
assessed by means of Bland-Altman plot (Bland and Altma86)i& Figure 5.6. The plot

shows a slight underestimation of the LVV for model-basedsoeement with a mean bias
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Table 5.4: The mean left ventricular volume §tandard deviation) through manual mea-
surement and model-based estimation, as well as the mearaagof model-based esti-
mation ¢ standard deviation)

manual (ml)  model (ml)  accuracy)

healthy 83.14-225 81.9+222 96.44+ 2.2
Ml 104.4+ 27.2 103.2+ 27.6 96.9+- 1.8
DCM 145.0+£ 33.4 140.2-33.5 96.6+ 3.3
hypertrophy 91. 74 22.0 88.7+ 20.6 96.4+ 2.1
all 106.0+ 35.6 103.5+-34.6 0.966+ 0.024
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Figure 5.6: Bland-Altman plot for LVV comparing the manuatasurement and model-
based measurement.

of 2.6 ml. This might be caused by the overestimation of tretheall. The volume dif-
ferences between the manual measurement and model-bdisedties (manual-model)
is in the range of-6.2 ~ 13.8 ml. These values are very much within intraobserver

variability (Bailly et al., 2008). The mean absolute errar £VV estimation is 3.5 ml.

5.5.7 Right Ventricular Volume

This section briefly analyze the estimation of the right vientar volume (RVV) based
on the model segmentation. Agreement of RVV model-basedunements with manual
measurements is assessed by Bland-Altman plot in FigureThé plot shows a slight

underestimation of the RVV for model-based measuremeriit avinean bias of 7.5 ml.
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Figure 5.7: Bland-Altman plot for RVV comparing the manuaasurement and model-
based measurement.

The volume differences between the manual measurement addlibased estimation
(manual-model) is in the range of-1.8 ~ 19.8 ml. The mean absolute error for RVV

estimation is 7.6 ml.

5.6 Discussion

5.6.1 Compare with Literatures

It is not easy to compare the heart segmentation errors fiiereht papers since they
use different model, different data sets and differentrameasures. Nevertheless, | sum-
marizes them as much as | can in Table 5.5 for the segmentatticerdiac MR images
reported in the literature. The error in this approach issén@nd smallest according to a
direct comparison of boundary displacement error. Ovéralpaper by Peter et al. (Peters
et al., 2009) gives the smallest error, but their image teggmi is much better than images
used in other papers, and only the endocardial surface msesggd for the right ventricle

in their method.
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Table 5.5: Errors£ standard deviation if applicable) reported in the literatfor MR
image segmentation.
resolution (mmM) LV (mm) RV (mm) EPI(mm)

mitchell 02 (*) 1.56<1.56x9  2.75:0.86 - 2.63-0.76 (LV)
Lotionen 04  1.61.0 (+) 2.01:0.31 2.37-0.50 2.772-0.49 (LV+RV)
van Assen 08 1.51.5x10 1.72 - 1.55 (LV)

Zhuang 08 X2x2 2.4+1.1  2.6:1.5  1.3:0.21 (LV)

Jolly 09 1.25¢1.25x8  2.26 - 1.97 (LV)

Peters 09(**)  0.6:0.6x0.8 0.69 0.74 0.83 (LV)

This approach  1.561.56x9 0.8A40.23 1.19-0.28 0.98:0.23 (LV+RV)
(*) distances are measured on 2D slices.

(**) surface to surface distance is used as the error measure

(+) both short-axis and long-axis images are used.

5.6.2 On the Establishment of Model Correspondence

As discussed in Section 2.1.2, there are many different oaistiio enforce the corre-
spondence for landmark-based boundary models. One of thena imesh-to-volume
registration, i.e., adapting a deformable surface mod#éieéosegmented binary volumes
and defining the correspondences by the vertex locationseofié¢formable template af-
ter the surface evolution has converged. This is the appradopted in (Kaus et al.,
2003; Zhao and Teoh, 2008). The approach in this chaptemigasito this type of corre-
spondence, with the difference that the deformable modsétus medial model, which
defines the correspondence on the medial surface and ptepagt the boundary sur-
face, rather than the boundary model, which defines the sjmorelence directly on the
boundary surface. There are several commonly raised aosé@rusing mesh-to-volume
registration to establish the correspondence. The firgeibias introduced by a randomly
chosen template. In my approach, the medial template igatefrom an iteratively built
volumetric template using the the symmetric diffeomorphkigistration (Avants and Gee,
2004), which minimized the possible bias. The second caorisérow well the deformable
model can approximate the shape. The medial model’s abiligpproximate the left and
right ventricles accurately was demonstrated in Chaptehdravthe deformable medial

model is fitted to 428 three-dimensional heart shapes witleamDice overlap of 0.92.
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Zhao and Teoh (Zhao and Teoh, 2008) proposed to improve {h@x@mating accuracy
of the deformable model by introducing “bridging” shapestftose shapes that are not
well approximated in the first round of model fitting. This apgch can also be adapted in
this medial model in the future to further improve the appma¢ion accuracy. The third
concern is whether the deformable model is properly com&da which in this approach
the deformable model is regularized by an internal energyitomize the area-element
distortion of the medial surface. This regularization fava correspondence that is similar
to 2D arc-length-based correspondence, which, althougimgaguarantee to be anatom-

ically meaningful, is a correspondence with explicit getmoenterpolation.

5.6.3 Limitations and Future Work

As the first attempt to use statistical medial model to segrtiencardiac shapes, this
method bears several limitations that can potentially bgraved in future research.

First, the landmark-based initialization still requireamual operation, which can be
replaced by an automatic heart localization procedurehéniterature, several methods
have been proposed to achieve heart localization, suchtaminpg a match function
between the model and the image using gradient minimizgtiotjonen et al., 2004),
using global or local affine registration to propagate alldbatlas (Zhuang et al., 2008),
using machine learning based 3-D object detection methbdr(@ et al., 2008). Similar
techniques can be tested for the medial model in the future.

Second, the two datasets used are only manually segmented dherefore the in-
traobserver and interobserver variabilities are not paréal. This is a limitation of the
dataset.

Third, | have only experimented on one type of local textuesaldiptor in the pa-
per, which is the irreducible Cartesian differential inaats. There are several other
compelling texture descriptors, such as Haar waveletspQGahbvelets (Daugman, 1988;
McKenna et al., 1997), steerable features (Freeman andséalel991) among others,

which might work equally well or even better. An comparatwvelysis between a number
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of image features could be of interest to optimize the sedgatien results.

5.7 Conclusion

In this chapter, | present a segmentation method, whiclordotg to my knowledge, is the
first reported method using the statistical medial modeétpreent the left and right ven-
tricular myocardium. The medial model provides a set of uaighape features, including
the thickness, which are learned and incorporated as thpe givéors in the model-based
segmentation. The boundary detection is performed usiraBAdst learning-based clas-
sifiers.

The segmentation algorithm is tested on short-axis catdi@démages and proved to
be accurate and robust. The segmentation of the right eekdrimyocardium is rarely
conducted in the literature due to its thinness nature. Vgumahat in a typical short-
axis cardiac data set, it is possible to segment the rightricetar myocardium pretty
accurately. An extra advantage using medial model to seggthemmyocardium is that it
instantly provides the thickness measure which is an inapbgtarameter to characterize
the myocardium function.

The accuracy of the segmentation is evaluated separatefpdo different groups:
the healthy group, the acute myocardial infarction grobp,hypertrophy group and the
dilation group. This can be important if the segmentaticuhts are intended to be used in
clinical studies so that the segmentation performance eaobsidered when interpreting

the final results.
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Chapter 6

Conclusions

6.1 Summary of Contributions

At the end of this work, this chapter revisits the contribatclaims laid out in Chapter 1
and discuss limitations and future research. These claiens:w

1. New method: Constructing a 2D cm-rep by obtaining the eiptiosed-form
solution of the ODE, which is a 2D equivalent of the PDE used@Yushkevich et al.,
2006Db).

This work is built upon the PDE-based cm-rep approach inlfkesich et al., 2006b),
which enforces the medial equality constraints as the bawyncbndition of the Poisson
PDE. In Chapter 3, the closed-form solution of the corregpanODE for 2D objects is
derived by utilizing Pythagorean hodograph splines(Harand Sakkalis, 1990; Farouki
and Neff, 1995), so that the PDE-based approach can be efficepplied to generate
cm-rep for 2D objects without the need to numerically solwe ©DE in each iteration.
However, since the Possion PDE approach is only feasiblsifapes whose medial axes
consist of a single medial manifold, the application of tiisthod is limited to simple 2D
shapes.

2. Application: Being the first to use the medial model to perfaghape-based

normalization of the corpus callosum and to demonstratemil advantages over a
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registration-based approach.

This application demonstrates the ability of the medial el¢al provide a shape-based
correspondence and to extend the correspondence fromuneldéxy or the medial axis to
the entire interior region of the model. The correspondemployed in this experiment
is the equal arc-length subdivision of the symmetry curwésch is entirely shape-based.
This demonstration of the correspondence based on the 2ahmeddel also serves as
a good justification for the correspondence adopted in thetabstical medial model in
Chapter 4 and 5, which is enforced by penalizing the areaehé distortion of the medial

surface and thus achieves a similar effect as the equaeagtH subdivision in 2D.

This shape-based correspondence for corpora callosa isazethwith the technique
most commonly used to normalize imaging data: volumetrgisteation. The results
using DTI data from a chromosome DS22q11.2 deletion studyotstrate that shape-
based normalization of the corpus callosum using cm-repgeemd possible to detect
statistical differences between populations that weredet¢cted when registration was
used to normalize the structure. A direct comparison of fignaent of connectivity
maps between cm-reps and registration gives further jcestiifin to the use of cm-reps,
suggesting that the shape-based correspondences in thes @alosum more accurately
reflects the underlying anatomical correspondence. TheHatboth types of results are
stable with respect to the choice and the parameters of fhusidin tensor tractography

algorithm adds further weight to our findings.

However, this evaluation is limited to one registrationcaithm using one set of pa-
rameters. Therefore the conclusion should not be genedatiz judge correspondences

that are based on other volumetric registration techniques

3. New method: Constructing a 3D branching medial model byremfg the equality

medial constraints using soft penalty terms and local adiens in the deformable model.

This new approach to construct 3D medial model for complaypsk is given in Chap-
ter 4. This approach allows us to model a large class of shageg the cm-rep, which

not only provides rich descriptive shape features, but pésameterizes the entire model
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interior, setting up a framework to perform a combined staial analysis of shape and
appearance. The deformable branching medial model is remtstl by first defining a

synthetic medial axis (connected manifolds with radialad#elds) and then obtaining an
object whose true medial axis coincides with the synthegdial axis viainverse skele-

tonization The validity of such an object depends on a set of medialtcainss, including

non-linear equality constraints that hold along the edgkl@anching curves of medial
manifolds and inequality constraints that hold everywloeréhe medial manifolds. These
constraints ensure that the boundary of the object is clasddhot self-intersecting. Our
method deals with the medial constraints using a simpleffiotent approach: enforcing
them as soft penalty terms in the deformable model to mirerttie violation, and then
applying small local corrections to ensure the smoothneé#seamodel boundary. Com-
paring with existing branching medial models (Yushkeviz@08; Terriberry and Gerig,
2006), the proposed approach’s simplicity in implementaand low computation load

make it easily applicable to model 3D objects with complexpss.

4. Application: Using the 3D branching medial model to reprastne left and right

ventricular myocardium, which yields aligned thicknesd #rickening maps.

This experiment answers a critical question: is the medjalgsentation flexible enough
to represent the full range of cardiac shape configuratioasslikely to encounter in clin-
ical practice. It has long been pointed out in the literatbheg medial models and skeletons
have certain attractive features for shape analysis, diredy) in particular, the ability to
represent thickness explicitly and succinctly. Howeueegré has always been skepticism
about the flexibility of medial models: the ability to coveetfull range of shapes that one
would like to study in a given application. In Chapter 4, thexitbility of medial models is
demonstrated by an experiment on a large scale cardiacetatarssisting of both healthy

subjects and patients.

Medial modeling not only provides descriptive shape fesgubut also is particularly
useful for population-wise comparison and analysis, asahetnated by the experiment

to analyze ventricular thickness map and thickening mapdmta set consisting of HCM
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patients, AMI patients and subjects with no pathology inhbart.

5. New method: Constructing a statistical medial model cosipg a shape prior of
the medial manifolds using PCA, a shape prior of the radiekhess field using MRF, and
an appearance prior of the image features sampled aroundrbeel boundaries using

the Adaboost algorithm.

In chapter 5 we present a scheme to construct the statistexdial model for segmen-
tation. Segmentation is an important application of sigasboundary models. The me-
dial model has advantages over the boundary model in terpowiding intuitive shape
features, which potentially make better shape priors fagensegmentation. Just like
there are many different ways to construct a statisticahdary model, we have a large
number of choices on how to construct a statistical medialehol' he way we choose is
similar to the state-of-art ASM, but with all the scheme mageed to fit the medial model

framework.

Two different shape priors are constructed out of diffesdrdpe features. The PCA
approach is used to model the coordinates of the medial pdandmarks, while MRF
is used to model the radial scalar field. Boundary detecs@eirformed using Adaboost
classifiers built on boundary-based samples. The sampliegtibn is along the chord
direction of the MIB which connects two corresponding boanydhodes, rather than along

the perpendicular direction of the boundary surface in ASMs

6. Application: Being the first to apply the statistical medmabdel to cardiac image
segmentation and show that it can segment the left and rightricular myocardium

accurately.

This probably is the most important application in the tee$he segmentation of car-
diac images is frequently needed for heart function studdssthe first statistical medial
model for cardiac segmentation, this experiment is an itapbrdemonstration of how
well the statistical medial model can perform in such tadikse experiment reveals that
it does work extremely well, providing a robust and accuratailt. It successfully seg-

ments both the left and right ventricular myocardium, thtelebeing rarely segmented by
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boundary models. And not only can the statistical medial@edgment the myocardium
accurately, but also it can provide a thickness measurénontyocardium, which is an

important function parameter.

6.2 Discussion and Future Work

Chapter 3, 4 and 5 are the three main chapters of this thesish &apter focuses on
demonstrating a unique property of the medial model. Ch&teemonstrates the power
of the medial model to perform shape registration. Chapegmonstrates the ability of
the medial model to perform shape analysis. And Chapter Sodstrates the power of
the medial model in image segmentation.

Chapter 3 connects to the other two chapters rather loo€#igpter 4 and 5, which
describe the methodology developments on 3D branchingahedidel and the applica-
tion to cardiac data, are the focus of this thesis. Chapteth®h describes a 2D method
and its application to corpus callosum study, provides stppy evidence on advantages
of the correspondence provided by medial geometry. The 3Biase of this correspon-
dence is adopted in Chapter 4 and 5. The limitation of Ch&pisrobvious. There are
only a limited number of anatomical structures that lendrtbelves well to 2D modeling.
And the conclusions drawn from 2D studies do not necessextisnd to 3D cases. In that
sense, it would be better if a similar study on the correspond can be conducted on 3D
structures to help estimating the correspondence usedgiilve cardiac study in Chapter
4 and 5.

Chapter 4 and 5 are closely connected. They develop 3D hranotedial model and
apply it to solve problems in cardiac studies. Chapter 4adtisis and solves the problem
of how to stitch the medial manifolds together during theodefable modeling, which is a
fundamental problem that all branching cm-rep approacked to address. It also solves
a series of application-specific problems, such as how id the medial template for car-

diac data, how to maintain the mesh quality during modehfjttiChapter 5 is probably the
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most important chapter in the thesis. It combines the dedbienmedial model with the
best practices from the ASM literature, such as statisticaleling of appearance, and the
use of local search to guide model deformation, and develn@itomatic segmentation
algorithm of the myocardium in short-axis MRI. To the bestof knowledge, this is the
first approach to use deformable medial models for myocardiegmentation. And the
performance of the segmentation compares favorably withighed works. This good
performance is due to a number of reasons, including the @akthalgorithm which se-
lects best image features in the local appearance modélegpupled searching scheme
of the endocardial and epicardial borders of the myocardamad the Markovian prior
on myocardial thickness. However, comparing with ASM, thiedial-based segmenta-
tion algorithm is much slower. A worthwhile research direwtin the future would be
improving the speed of the algorithm.

Among the techniques that have been proposed for cm-repDiebased approach
provides a solution that is mathematically rigorous andhg heen tested by applications
on hippocampus (Yushkevich et al., 2006b; Yushkevich, 2@0®] white matter tracts
(Yushkevich et al., 2008). The biharmonic PED approachsis able to handle branching
medial model. The drawback of this approach is that it rexgusolving a PDE each time
the model coefficients are adjusted, which can be cumbersomgeformable modeling.

Our model can serve as a near perfect initialization for B&-based models.
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