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Statistical Medial Model dor Cardiac Segmentation and Morphometry

Abstract
In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular
shape features can help identify diseases; shape features can help match different instances of anatomical
structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical
structure's shape can help segment a new example of this structure in noisy, low-contrast images. A good shape
representation helps to improve the performance of the above techniques. The overall goal of the proposed
research is to develop and evaluate methods for representing shapes of anatomical structures. The medial
model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial
axis) and deriving the object's boundary via "inverse-skeletonization". This model represents shape compactly,
and naturally expresses descriptive global shape features like "thickening","bending", and "elongation".
However, its application in biomedical image analysis has been limited, and it has not yet been applied to the
heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the
medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model
which can be efficiently applied to complex shapes. The proposed medial model closely approximates the
medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and
local correction. I further develop a scheme to perform model-based segmentation using a statistical medial
model which incorporates prior shape and appearance information. The proposed medial models are applied
to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an
improved alignment of the patterns of commissural connectivity compared to a volumetric registration
method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which
provides detailed thickness maps characterizing different disease states. The model-based myocardium
segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments
demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide
useful parameters to characterize heart function.
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ABSTRACT

STATISTICAL MEDIAL MODEL FOR CARDIAC SEGMENTATION AND

MORPHOMETRY

Hui Sun

Paul A. Yushkevich and James C. Gee

In biomedical image analysis, shape information can be utilized for many purposes.

For example, irregular shape features can help identify diseases; shape features can help

match different instances of anatomical structures for statistical comparison; and prior

knowledge of the mean and possible variation of an anatomical structure’s shape can help

segment a new example of this structure in noisy, low-contrast images. A good shape rep-

resentation helps to improve the performance of the above techniques. The overall goal

of the proposed research is to develop and evaluate methods for representing shapes of

anatomical structures. The medial model is a shape representation method that models a

3D object by explicitly defining its skeleton (medial axis) and deriving the object’s bound-

ary via “inverse-skeletonization”. This model representsshape compactly, and naturally

expresses descriptive global shape features like “thickening”,“bending”, and “elongation”.

However, its application in biomedical image analysis has been limited, and it has not yet

been applied to the heart, which has a complex shape. In this thesis, I focus on developing

efficient methods to construct the medial model, and apply itto solve biomedical image

analysis problems. I propose a new 3D medial model which can be efficiently applied to

complex shapes. The proposed medial model closely approximates the medial geometry

along medial edge curves and medial branching curves by soft-penalty optimization and

local correction. I further develop a scheme to perform model-based segmentation using a

statistical medial model which incorporates prior shape and appearance information. The

proposed medial models are applied to a series of image analysis tasks. The 2D medial

iv



model is applied to the corpus callosum which results in an improved alignment of the

patterns of commissural connectivity compared to a volumetric registration method. The

3D medial model is used to describe the myocardium of the leftand right ventricles, which

provides detailed thickness maps characterizing different disease states. The model-based

myocardium segmentation scheme is tested in a heterogeneous adult MRI dataset. Our

segmentation experiments demonstrate that the statistical medial model can accurately

segment the ventricular myocardium and provide useful parameters to characterize heart

function.
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Chapter 1

Introduction

1.1 Motivation

Medical imaging technologies are providing physicians andresearchers with images of

increasing spatial and temporal resolution. With the largeamount of data being generated,

there has been increased interest in automatic image analysis tools which can help physi-

cians and researchers answer critical questions in morphology, physiology, and pathology

studies. In many applications, an accurate, informative and consistent description of an

object’s shape is particularly useful. For example, shape information can help characterize

disease. It can also be learned, and prior knowledge of shapevariability can aid automatic

segmentation of the object in a new medical image. The work inthis thesis develops a

shape representation method called the medial model, whichnaturally expresses intuitive

and descriptive global shape features like “thickening”,“bending”,“twisting” and “elonga-

tion”. This model is evaluated in a variety of image analysistasks, with a focus on cardiac

images.

1.1.1 Medial Model of Object Geometry

The medial model represents an object by its medial axis (skeleton). Informally, the skele-

ton is the set of curves in 2D, or surfaces in 3D, that results from thinning an object by
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moving each of the boundary points inwards along the normal vector. Since the seminal

paper by (Blum, 1967), medial axis geometry has been studiedextensively (Damon, 2005;

Giblin and Kimia, 2003; Choi et al., 1997; Bruce et al., 1985). The interest in medial axes

arises from their ability to provide a rich and intuitive description of an object’s shape. The

branching properties of the medial axis can be used to examine the hierarchical composi-

tion of an object into simple sub-shapes. The curvature of the curves forming the medial

axis describes how the object bends locally. Each point on the medial axis is associated

with a circle in 2D (or sphere in 3D) that lies inside the object and is tangent to the object’s

boundary, usually at two points. This circle/sphere is themaximal inscribed ballof the

object. The radii/diameters of thesemaximal inscribed ballsdescribe the thickness of the

object, a feature that is particularly relevant when studying heart pathology (Azhari et al.,

1990; Sheehan et al., 1986) or neurodegeneration (Thompsonet al., 2003; Bouix et al.,

2005).

There are numerous deterministic algorithms that can compute the medial axis given

the boundary of an object (Bouix et al., 2005; Kimia et al., 1995; Ogniewicz and Kübler,

1995; Näf et al., 1996; Siddiqi et al., 1999). However, given a set of similar objects (e.g.,

some anatomical structure taken across a set of subjects), deterministic methods cannot

guarantee that the extracted medial axes will have the same number or configuration of

branches. This makes it difficult, if not impossible, to construct a statistical shape model.

The medial representation (m-rep) developed by Pizer et al.(Pizer et al., 1999, 2003;

Joshi et al., 2002) provides consistent medial features forstatistical analysis. In this ap-

proach, a deformable template, defined in terms of its medialaxis, is fitted to objects under

constraints that prevent changes in the number and configuration of medial branches. As

illustrated in Figure 1.1, an m-rep is an inherently discrete representation that uses sparsely

sampled primitives calledmedial atomsas the building blocks of the model. Although

interpolation methods for discrete m-reps have been proposed (Thall, 2004; Han et al.,

2006), the exact medial geometric relations are not explicitly satisfied by the interpolated

primitives.
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Figure 1.1: An illustration of three-dimensional m-rep figure organized as a 3×3 quadri-
lateral mesh of medial atoms. The atom in the middle of the mesh in a regular medial
atom, the rest are end atoms.

The continuous version of m-rep (cm-rep) has been proposed (Yushkevich et al., 2003).

In the cm-rep approach (Yushkevich et al., 2003, 2006b; Terriberry, 2006; Yushkevich,

2008), an object is modeled by first defining asynthetic medial axisas a collection of

continuous manifolds, and then deriving the boundary of themodel usinginverse skele-

tonization, which achieves the inverse effect of the thinning process (also called skele-

tonization). However, because of the nature of medial geometry, inverse skeletonization

is well-posed only if the synthetic medial axis satisfies a set of constraints, which in-

clude non-linear equality constraints that have to hold along the edge curves (or in 2D,

end-points) or branching curves (or in 2D, branching-points) of the synthetic medial axis.

In (Yushkevich et al., 2006b; Yushkevich, 2008), the constraints are satisfied by defin-

ing the synthetic medial axis as the solution of a partial differential equation (PDE) with

boundary conditions equivalent to the equality constraints. In (Terriberry and Gerig, 2006;

Terriberry, 2006), Terriberry and Gerig proposed another way to handle the constraints

by using Catmull-Clark subdivision surfaces to model the medial axis and enforcing the

constraints by locally modifying the medial axis at edge andbranching curves to use in-

terpolating splines. However, until now the applications of the cm-rep have been limited

to simple shapes, whose medial axes consist of a single 3D surface.

In this thesis, I further develop the medial model methodologies used for applications
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in biomedical imaging. In Chapter 3, I work out the explicit closed form solution of the

ordinary differential equation (ODE) which is a 2D equivalent of the PDE used in (Yushke-

vich et al., 2006b). In Chapter 4, I propose a new way to construct the medial model by

enforcing the medial model constraints using soft penalty terms and local corrections in

the deformable model, which can be efficiently applied to a 3Dcomplex shape whose me-

dial axis has branches. In Chapter 5, based on the medial model proposed in Chapter 4, I

develop a statistical medial model which incorporates bothshape and appearance priors,

and I use this model for image segmentation.

1.1.2 Geometric Model of the Heart

In cardiac studies, geometric models can help automate the extraction of clinically relevant

parameters and provide better visualization. Simple geometric models, such as assuming

that the left ventricle (LV) is ellipsoidal in shape, are traditional methods to obtain LV

parameters from echocardiography and angiocardiography.In fact, simple assumptions

are sometimes quite elegant and some of them are still actively in use, as shown in the

standard scheme to divide the LV into sixteen segments in a polar plot (equal height and

equal angle division). Another example is the method developed by (Germano et al., 1995)

for automatic quantification of LV function from gated-perfusion single photon emission

computed tomography (SPECT) images, which also uses the ellipsoidal model and can

accurately determine most of the classical cardiac functional parameters.

In the last few decades, along with the rapid development of cardiac imaging tech-

nology, many advanced geometric models have been developedand applied to analyze

cardiac shapes. For example, researchers have utilized superquadrics (Barr, 1981; Chen

et al., 1995), Fourier functions (Staib and Duncan, 1996), 3D/4D harmonic descriptions

(Matheny and Goldgof, 1995), B-Splines (Gustavsson et al.,1993) and polyhedral meshes

(Gopal et al., 1992) to represent the LV boundaries using continuous functions; utilized

dense point distributions (Assen et al., 2006; Shi et al., 2000; Peters et al., 2009) to dis-

cretely represent heart boundaries, and also utilized level sets (Yezzi et al., 1997) and
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neural networks (Tseng et al., 1998) to implicitly represent the heart boundaries. Vol-

umetric and deformation models (Frangi et al., 2002; Tustison and Amini, 2006; Mansi

et al., 2009; Peyrat et al., 2008) are also quite popular, especially for the analysis of tagged

MRI. (Frangi et al., 2001a) give a thorough review for the geometric models being used in

cardiac applications.

The heart walls are thin, sheet-like structures which can bereadily described by their

medial axes. And there have been some efforts to use the medial axis in cardiac analysis.

(Cauvin et al., 1993) proposed representing the LV by fittinga “truncated bullet” model

to its skeleton. (Scellier et al., 1996) also leveraged the skeleton in the segmentation and

quantification scheme for myocardial SPECT. The 2D “centerline method” (Sheehan et al.,

1986) based on skeletons of 2D cardiac slices is widely used for measuring heart wall

thickness, and it has been extended to 3D by Bolson and Sheehan (Bolson and Sheehan,

1993). However, statistical medial models that represent the heart using a medial axis

with a consistent branching configuration and describe data-driven shape variations have

not yet been constructed for the heart.

In this thesis, I construct statistical medial models for walls of the left and right ventri-

cles and use these models in two important applications: heart wall thickness analysis in

Chapter 4 and myocardium segmentation in Chapter 5.

The first application of the medial model is to provide a detailed wall thickness map

of the left and right ventricles. The value of heart wall thickness and systolic thicken-

ing (the changing ratio of thickness during a cardiac cycle)in characterizing myocardial

function has long been recognized (Azhari et al., 1990). Thethickness or thickening can

change in response to a number of stimuli, such as exercise, high blood pressure, my-

ocardial ischemia and oxygen shortage. The change can be either localized or uniformly

distributed, depending on the cause. A detailed map describing the thickness and thicken-

ing in the normal state and their changes in different disease states can provide valuable

information from clinical, prognostic and therapeutic points of view. However, the way
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that thicknessis defined and computed varies considerably (Frangi et al., 2001a). Man-

ual measurements are frequently used in clinical studies. Approximate approaches, such

as dividing the myocardium into small cuboid elements and computing the ratio between

volume and surface area, have also been used (Azhari et al., 1990). A widely accepted

way to define thickness is based on the medial axis, from whicha point-wise local thick-

ness map can be derived. The 2D “centerline method” (Sheehanet al., 1986) and its 3D

version “centersurface method” (Bolson and Sheehan, 1993)are widely used. However,

the centersurface method only deals with a single heart chamber. In addition, the detailed

thickness maps generated from different objects are not aligned, which poses problems

for population comparison. In Chapter 4, I apply the branching medial model to generate

aligned detailed thickness and thickening maps, and compare these maps across different

heart conditions.

Segmentation of the heart is frequently required to quantitatively assess global or local

functional parameters of the heart, such as the ejection fraction (EF) and heart wall thick-

ness and thickening. A large number of cardiac segmentationstudies are conducted using

statistical boundary models, such as (Lotjonen et al., 2004; Assen et al., 2006; Lorenz and

von Berg, 2006; Zheng et al., 2008; Wierzbicki et al., 2008; Peters et al., 2009). But seg-

mentation of the heart using a statistical medial model has not been reported. In this thesis,

I use a statistical medial model which has an explicit thickness shape prior to segment the

bi-ventricular myocardium.

1.2 Contributions

The overall goal of this thesis is to further develop the medial modeling technique, making

it easily applicable for 3D complex shapes and demonstrating its properties through these

applications. Towards this goal, I claim the following contributions:

1. New method: Constructing a 2D cm-rep by obtaining the explicit closed-form so-

lution of the ODE, which is a 2D equivalent of the PDE used in (Yushkevich et al.,
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2006b).

2. Application: Being the first to use the medial model to perform shape-based nor-

malization of the corpus callosum and to demonstrate potential advantages over a

registration-based approach.

3. New method: Constructing a 3D branching medial model by enforcing the equality

medial constraints using soft penalty terms and local corrections in the deformable

model.

4. Application: Using the 3D branching medial model to represent the left and right

ventricular myocardium, which yields aligned thickness and thickening maps.

5. New method: Constructing a statistical medial model comprising a shape prior of

the medial manifolds using principal component analysis (PCA), a shape prior of the

radial thickness field using Markov random field (MRF), and anappearance prior

of the image features around the model boundaries using the Adaptive Boosting

(Adaboost) algorithm.

6. Application: Being the first to apply the statistical medial model to cardiac image

segmentation and show that it can segment the left and right ventricular myocardium

accurately.

These contributions highlight the development of the medial modeling approach in

terms of both methodology and application. The methodologydevelopments include

new methods to construct the medial model for both 2D objectswith simple shapes and

3D objects with complex shapes. The applications demonstrate three usages of the me-

dial model: providing shape-based normalization for different instances of an anatomical

structure prior to comparison, providing meaningful shapefeatures for disease character-

ization, and providing model-based segmentation. The constructed medial model, which

describes intuitive shape features, can effectively represent shapes of biological objects

and help to answer critical questions in morphology, physiology, and pathology studies.
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1.3 Chapter Overview

The thesis is organized into six chapters:

Chapter 2 presents the background information on the related methodology. It reviews

the statistical shape models and their applications to image segmentation. Medial geome-

try and the existing medial model approaches are also introduced in detail.

Chapter 3 analyzes the unique properties of the 2D equivalent of the PDE-based cm-

rep method (Yushkevich et al., 2006b) and derives the solution to the ODE as a closed-

form expression. This enables efficient generation of the cm-rep for 2D objects. The

model is applied to the corpus callosum to examine the ability of the medial model to

provide shape-based correspondence that matches different instances of anatomical struc-

tures. Such shape-based correspondence is evaluated and compared with a correspondence

based on a volumetric registration in a DTI connectivity study for chromosome 22q11.2

deletion syndrome.

Chapter 4 presents a novel branching medial model for 3D objects. The model is

generated and evaluated in a large cardiac MRI dataset, which demonstrates the robustness

of the method. The ability of the medial model to provide descriptive shape features,

particularly thethickness measure, is also demonstrated in the chapter. The thickness

and thickening of different clinical groups are compared with those of the healthy group

through statistical analysis.

Chapter 5 proposes a heart segmentation scheme that uses thestatistical medial model.

The segmentation scheme uses prior knowledge which is learned based on medial shape

features. Learning-based classifiers for boundary detection are trained on appearance fea-

tures which are sampled according to the medial model. The proposed scheme is evalu-

ated on two clinical datasets, and the results demonstrate the accuracy and robustness of

the method.

Chapter 6 concludes the thesis by summarizing the work in thethesis and discussing

future work.
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Chapter 2

Background

In this chapter, I first review general shape representationmethods and their usage in

model-based segmentation. Then I focus on the continuous medial representation (cm-

rep), a particular type of shape representation method, andintroduce its geometric back-

ground and the current approaches to constructing it.

2.1 Statistical Shape Models and Image Segmentation

This section begins with a brief summary of various shape representation methods. Then

I review one of the most important applications of shape models: model-based image seg-

mentation. Specifically, I focus on the cardiac image segmentation that is closely related

to the thesis work in Chapter 5.

2.1.1 Shape Representation Methods

In order to study shapes using statistical methods, one mustrepresent each shape with a

fixed number of homologous measurements. A variety of shape representations have been

described in the literature. This section briefly describessome approaches besides medial

modeling.
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Representing a shape using a set of points sampled from the boundary surface, as em-

ployed by (Cootes et al., 1995; Dryden and Mardia, 1998; Bookstein, 1989), has been

extensively used in computer vision and medical image analysis. These points are com-

monly referred aslandmarks. (Dryden and Mardia, 1998) define three types of landmaks:

anatomical landmarksthat are points of special biological or structural significance,math-

ematical landmarksthat are points with unique geometric properties (such as singularity or

critical points), andpseudo-landmarksthat are points whose positions are derived from the

positions of other landmarks. There are representations using a sparse set of landmarks,

such as (Bookstein, 1989) which uses interpolation to reconstruct the geometrical form of

objects between the landmarks. The point distribution model (PDM) is constructed using

the coordinates of a dense set of boundary landmarks. In the popular active shape model

(ASM) (Cootes et al., 1995) and active appearance model (AAM) (Cootes et al., 2001),

the PDM is used as a part of a combined model that describes both shape and appearance

features. These types of combined shape and appearance models can serve as the prior

knowledge of anatomical structures and are widely used for automatic cardiac segmenta-

tion (Lotjonen et al., 2004; Assen et al., 2006; Lorenz and von Berg, 2006; Zheng et al.,

2008; Wierzbicki et al., 2008; Peters et al., 2009).

Instead of using discrete points to represent boundaries ofobjects, another class of

geometric models uses continuous functions to approximatethe boundaries. For example,

the boundary can be decomposed into a set of Fourier (Staib and Duncan, 1992) or spher-

ical harmonic (Brechbühler et al., 1995) basis functions,and the coefficients can be used

as shape features. These kinds of basis decomposition representations are well adapted

to a coarse-to-fine shape representation framework (Staib and Duncan, 1992). They have

also been employed in deformable models for image segmentation (Kelemen et al., 1999;

Szkely et al., 1996), among which there is cardiac image segmentation (Staib and Duncan,

1996).

The above methods represent a shape by explicitly describing the boundary. An alter-

native approach is to represent the boundary implicitly, such as with the level set approach,
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which embeds the boundary of the object as the zero level set of a high-dimensional func-

tion (Sethian, 1996). The level set representation has the ability to handle changes in

topology. As a numerical technique that can follow the evolution of interfaces, it is widely

used to achieve image segmentation (Caselles et al., 1995; Malladi and Sethian, 1995; Li

et al., 2007). The level-set representation has also been used in statistical shape modeling

for prior-based heart segmentation (Tsai et al., 2003).

In shape characterization based on volumetric registrations (Davatzikos et al., 1995;

Christensen et al., 1997; Joshi, 1997; Csernansky et al., 1998; Zhuang et al., 2008), the

shape difference between two objects is measured by the magnitude of deformation needed

to optimally warp one object to the other based on maximizingthe image similarity. To

regularize the deformation, the deformation field needs to adhere to certain constraints,

such as rules of elastic deformations or diffeomorphic mapping. When combined with

a labeled atlas, volumetric registration can also be used toachieve heart segmentation

(Zhuang et al., 2008).

2.1.2 Model-Based Image Segmentation using the PDM

Model-based image segmentation is usually much more robustthan low-level algorithms

since the model contains expected shape and appearance information. Among all shape

representation methods used to construct statistical shape models to achieve image seg-

mentation, the PDM is frequently used, especially given thepopularity gained by the

ASM and AAM. Additionally, our statistical medial modelingapproach in Chapter 5 is

more analogous to the ASM. Therefore, in this subsection, I focus on the model-based

image segmentation using the PDM. Below, I review the key components for these ap-

proaches.
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Statistical Shape Model Construction

Before constructing the statistical model, correspondingboundary landmarks need to be

aligned to remove the similarity transformations between different shape instances. Gen-

eralized Procrustes analysis (Gower, 1975) and tangent space scaling (Dryden and Mardia,

1998) are frequently used for this purpose.

We assume each shape in the training sample is now represented by an aligned fixed-

length shape featurexi (for the boundary landmark system,xi would consist of all the

coordinates of landmarks). Constructing a statistical shape model basically consists of

extracting the mean shape and modes of variation. Until now,the most often used ap-

proach in statistical shape model is principal component analysis (PCA), although many

techniques (Hyvärinen and Oja, 2000; Twining and Taylor, 2001; De La Torre and Black,

2003; Fletcher and Joshi, 2004; Stegmann et al., 2006; Sjöstrand et al., 2007) have been

proposed either to improve or to replace it.

In the PCA approach, givens shape samples, the mean shape is just a direct average

x̄ =
1

s

s
∑

i=1

xi (2.1)

The corresponding covariance matrix is

S =
1

s − 1

s
∑

i=1

(xi − x̄)(xi − x̄)T (2.2)

Then, using eigendecomposition or singular value decomposition (SVD) methods, the

eigenvectorsvj and eigenvaluesλj can be calculated.vj are the modes of shape variations,

andλj measures the respective variances. Now, we can approximatea valid shape that has

the same shape variation with the training data by a linear combination of the modes:

x = x̄ +
c

∑

j=1

bjvj , (2.3)

wherebj are the shape parameters that quantify the variation. Therefore, they need to

be limited to a certain interval. A common approach is to constrain eachbj to lie in-

side[−3λj , 3λj]. Alternativelybj can be constrained by(
∑c

j=1

b2j
λj

) < M , whereM is a

12



threshold chosen from theχ2 distribution. Other methods to constrainbj include utilizing

Gaussian mixture models (Cootes and Taylor, 1997) or multi-dimensional tables that are

constructed from the training data (Li and Ito, 2005).

c, which is the number of modes used in the statistical shape model, can be chosen ac-

cording to the specific application. One popular way is to choose it so that the accumulated

variance
∑c

j=1 λj reaches a certain ratio (most often0.9 − 0.99) of the total variance.

Various techniques have been proposed to improve or replacePCA. Robust PCA is

proposed in (De La Torre and Black, 2003) to ensure that the computation of PCA modes

is less susceptive to outliers. The PCA modes generally do not have sparse structure,

meaning the modes would influence all shape features simultaneously. Since sparsity is

usually desired, a number of techniques have been proposed to introduce sparse modes,

such as the Orthomax rotation (Stegmann et al., 2006) and sparse PCA (Sjöstrand et al.,

2007). Independent component analysis (ICA) (Hyvärinen and Oja, 2000) is proposed

to separate independent components linearly mixed in the data without assuming the or-

thogonality of the components. (Fletcher and Joshi, 2004) introduced principal geodesic

analysis (PGA) for models where the features are parameterized on a curved Riemannian

manifold rather than in an Euclidean space. Kernel PCA (Twining and Taylor, 2001) has

been proposed to perform a nonlinear form of PCA efficiently using techniques of ker-

nel methods, in which data points are implicitly mapped to a high-dimensional Euclidean

feature space.

Establishment and Evaluation of Model Correspondence

The construction of the statistical shape model for a population requires the extraction

of corresponding measurements from objects. The method fordefining correspondence

can vary according to the shape representation method. In the context of landmark de-

scriptions, the problem would be finding a set of landmark points, sometimes also called

“pseudo-landmarks”, that are consistent across a population of objects. In early research,

those points were obtained by first manually identifying theanatomical landmarks and
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then constructing new points via interpolation. However, this is not only labor-intensive

but also limited by the inherent sparsity of available anatomical landmarks, especially

for 3D shape characterization. Therefore, fully automaticpseudo-landmark selection,

which involves identifying corresponding locations across a population of objects, has

been widely explored.

Establishing landmark correspondence can be viewed as a shape registration prob-

lem that can be categorized by the type of data representation. First, correspondence can

be computed throughmesh-to-mesh registration. Well-established algorithms, such as

the iterative closest point (ICP) algorithm by (Besl and Mckay, 1992) and the softassign

procrustes by (Rangarajan et al., 1997), can match two meshes with potentially different

numbers of vertices using a similarity transform. Non-rigid registration of meshes has

also been used (Subsol et al., 1998). Yet another approach has been proposed to iden-

tify corresponding parts/points on meshes using classifiers (Pitiot et al., 2007). Second,

correspondence can be computed throughmesh-to-volume registration, that is, adapting a

deformable surface model to the segmented binary volumes and defining the correspon-

dences by the vertex locations of the deformable template after the surface evolution has

converged. This is the approach adopted in (Kaus et al., 2003; Zhao and Teoh, 2008;

Lorenz and von Berg, 2006). A third way to compute correspondence is to register a vol-

umetric atlas and using the resulting deformation field to propagate the landmarks placed

on the atlas to the training data (Frangi et al., 2001b), which can be categorized as estab-

lishing correspondence throughvolume-to-volume registration. Finally, it is possible to

establish correspondence throughparameterization-to-parameterization registration. For

2D curves, this is often equivalent to uniform arc-length correspondence (Brechbühler

et al., 1995). In 3D, it would be much more complex, and different approaches have been

proposed, such as using spherical harmonics (SPHARM) (Kelemen et al., 1999) or other

methods to parameterize or to re-parameterize the objects possibly regularized by a limited

set of known/assumed correspondences (Thompson et al., 1996).

The approaches described above register a pair of shapes at atime. However, it is hard
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to define a general rule of “good correspondence” that can be effectively applied to pair-

wise registration. (Kotcheff and Taylor, 1998) proposed todetermine the correspondence

through the population-wise optimization which minimizesthe determinant of the covari-

ance matrix (DetCov) to favor a compact statistical model. Based on the DetCov approach,

(Davies et al., 2002) proposed the minimum description length (MDL) method. It searches

for the correspondence that allows the PDM to be expressed using the shortest possible

message. The objective function directly relates to havingas much variability as possible

occur in the first few principal components while keeping thevariability in the remaining

components on the order of imaging noise. Following the MDL method, approaches have

been proposed to simplify the computation of the objective function (Thodberg, 2003) and

its gradient (Ericsson and Astrom, 2003) for the MDL method which helps to speed up

the computation.

The evaluation of the correspondence is not easy since the true correspondences of

biological shapes are generally not known. (Davies, 2002; Styner et al., 2003c) proposed

a method to measure the goodness of a correspondence using three qualities of the PCA

model built based on it: generalization ability, specificity, and compactness. The general-

ization ability is the capability to describe shape outsideof the training set, which can be

quantified by the approximation error when the PCA model is used to fit an unseen shape

example in leave-one-out experiments. Compactness is the ability to use a minimal set

of parameters to capture the shape variation within a population, which can be quantified

by the cumulative variance in the PCA model. Specificity is the ability to represent only

valid shapes, which can be quantified by the similarity between examples generated by the

PCA model and their nearest neighborhood in the training set. (Styner et al., 2003c) em-

ployed these three measures to compare models built by manually initialized subdivision

surfaces, SPHARM parameterization, DetCov, and MDL using lateral brain ventricle and

femoral head data and reported that DetCov and MDL give the best results.
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Appearance Model

In order to automatically fit the statistical shape model to unseen image data to achieve

segmentation, an appearance model is needed. Depending on the way that the appearance

features are sampled in the model, appearance models can be divided into two categories:

boundary-based sampling and region-based sampling.

A representative of boundary-based sampling methods is theASM (Cootes et al.,

1995), where appearance features are sampled along the direction perpendicular to the

model boundary. In the original version of the ASM (Cootes etal., 1995), appearance

features are modeled using PCA, extracting a mean feature vector and principal modes of

variations for each landmark. Later, the ASM was adapted to various segmentation tasks

in the biomedical image field, during which different appearance features have been ex-

plored, and different ways for constructing the appearancemodel out of the features have

been proposed. Commonly used appearance features include image intensity values, their

derivatives, Haar wavelets, Gabor wavelets (Daugman, 1988; McKenna et al., 1997), and

steerable features (Freeman and Adelson, 1991). During themodel-based segmentation,

ASM searches along the directions perpendicular to the boundary to locate new bound-

ary landmarks. This is usually achieved by evaluating a designed match function that is

supposed to achieve maximum at the boundary. The match function can be Mahalanobis

distance, a gradient-based edge detector, a k-nearest-neighbor (kNN) classifier (de Bruijne

et al., 2003), or other discriminative training-based classifiers (Zheng et al., 2008). De-

pending on the application, appearance features may or may not vary significantly over

the model boundary. Therefore, some choose to train a different appearance model at

each landmark point (Zheng et al., 2008; Peters et al., 2009), while others may cluster the

landmarks into regions of similar appearance according to the feature vectors (Brejl and

Sonka, 2000) to obtain more training data.

A popular method using region-based sampling is the AAM (Cootes et al., 2001),

which samples the entire interior region of the model to build a feature vector. To obtain

the feature vectors for different shapes, the regions need to be normalized first, which is
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usually achieved by transforming each shape into the mean shape. Then, PCA is applied

to build a combined shape and appearance model. Examples of using AAM in cardiac

image segmentation are (Mitchell et al., 2002; Lapp et al., 2004).

Search Algorithms to Achieve Segmentation

The segmentation is achieved by matching the statistical shape model to new image data.

This is naturally formulated as a Bayesian posterior probability estimation problem. The

Bayesian probability states that, given some data and some hypothesis, the posterior prob-

ability that the hypothesis is true is proportional to the product of the likelihood multiplied

by the prior probability. LetH be a model (hypothesis) andD be the image data, we have

P (H|D) =
P (D|H)P (H)

P (D)
. (2.4)

HereP (H) is theprior probability of H: the probability thatH is correct before the data

D was seen.P (H) is derived from the statistical model constructed from training data.

P (D|H) is theconditional probabilityof seeing the dataD given that the hypothesisH is

true, which can be measured by the match betweenD andH. P (D) is the marginal prob-

ability of D, which is a constant during the model fitting since the data isfixed. P (H|D)

is theposterior probability: the probability that the model is true, given the data and the

prior knowledge about the model. Locating the model in new image data thus can be for-

mulated as maximizing the posterior probability defined in (2.4) by altering the parameters

that define the model. However, it is usually inefficient to solve this optimization directly,

given the large size of the search space. Instead, various search algorithms are formulated

to match an initial estimate of the model to image data. BelowI summarize the classical

ASM and AAM approach.

In the ASM, an instance of the shape modelx in an image is defined by a similarity

transformT and the shape parametersb according to

x = T (x̄ + Φb). (2.5)
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Starting from an initial model state, the ASM searches new position for each landmark by

evaluating the fit of the appearance model at different positions along the normal vector

to the boundary surface. This gives a vector of new landmark candidates̃x. Now the pose

difference between the current state of the modelx and the new candidatẽx is eliminated

by a similarity alignment, leading to a new similarity transform T̃ . Assume that the current

modelx is brought toy by the new similarity transform, the new shape parameters can be

computed by

b̃ = b + ΦT T̃−1(x̃ − y).

After constraining̃b to lie within appropriate parameter limits as described in Section 2.1.2,

we have an updated valid instance of the model. The above steps are conducted iteratively,

until a specified convergence criterion is hit, e.g. the maximum or average landmark move-

ment is below a given threshold.

The AAM by (Cootes et al., 2001) features an unique search algorithm during the

model-based segmentation. Since AAM stores the complete appearance of the object,

it can synthesize realistic appearance of the modeled data.AAM assumes a constant

linear relationship between appearance residuals and parameter updates. This relationship

is learned using the training images. Then, during the segmentation, AAM updates the

parameters in each step by computing a synthesized appearance, comparing with the real

appearance features to calculate the appearance residual,and obtaining the updates using

the learned linear relationship.

2.2 Medial Geometry and Medial Models

This section provides the reader with necessary backgrounds on the Blum medial axis and

introduces medial modeling techniques.
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Figure 2.1: Examples of the medial axes for 2D and 3D objects.

2.2.1 Basics of Medial Geometry

I first briefly introduce the terminology and concepts of medial geometry. There is more

than one way to define the Blum medial axis of an object: as the shock set of the Eikonal

PDE, or, as I do below, as the locus formed by maximal inscribed balls. Given a geometric

objectO in R
3, I define amaximal inscribed ball (MIB)in O as any ballB satisfying

B ⊆ O and for which there exists no ballB′ 6= B such thatB ⊂ B′ ⊆ O. The locus of

the centers and radii of all MIBs is called themedial axisof the object. The medial axis

is thus composed of two components: the locus of the centers of all MIBs in R
3 denoted

by m, and the locus of radii inR+ denoted byR. In the literature,m is also sometimes

calledmedial surfaces, medial scaffold, centersurface, skeleton, or evenmedial axiswith

the (m, R) being calledaugmented Blum medial axis. Examples of the medial surfaces

are illustrated in Fig 2.1.

The medial scaffold is aWhitney stratifiedset (Damon, 2005), that is, a collection

of manifolds with boundaries that are connected along edges. These manifolds will be

referred to asmedial manifolds. The parts of their boundaries that are shared by multiple

medial manifoldswill be calledmedial seamsor branch curves, while the parts of the

boundaries that only belong to one medial manifold will be called medial edges.

Here I adopt the notation of (Giblin and Kimia, 2000) to classify the type of points that

form the medial scaffold according to the order and multiplicity of tangency between their

MIBs and the boundary of the object. Each point is assigned a label of the formAm
k , where
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m indicates the number of unique points at which the maximal inscribed ball is tangent to

the boundary, andk indicates the order of tangency between the maximal inscribed ball

and the boundary. There are only two possible orders of tangency contact of a maximal

inscribed ballB at a point P on the boundary surface S:

• A1 contact:B is tangent to S at P;

• A3 contact:B is tangent to S at P. The radius ofB is one of the principal radii of

curvature of S at P, and the corresponding principal curvature is a local extremum (

P is also called a ridge point of S).

For other orders of contact of a ball at a boundary point, the boundary must penetrate the

surface of the ball. Therefore the ball can never be maximally inscribed.

(Giblin and Kimia, 2000) proved that for 3D objects, there are five types of generic

points that form the medial scaffold. They are the following:

1. A2
1 points on the interior of medial manifolds, where the MIB is tangent to the

object’s boundary at two points; these points form two-dimensional manifolds;

2. A3 points on medial edges, where the MIB is tangent to the boundary at one point;

these points form one-dimensional manifolds;

3. A3
1 points on medial seams, where the MIB is tangent to the boundary at three points

with first-order contact with the boundary; these points form one-dimensional man-

ifolds;

4. A1A3 points at medial seam-edge intersections; these points form zero-dimensional

manifolds;

5. A4
1 points at medial seam-seam intersections; these points form zero-dimensional

manifolds.

For 2D objects, there are three types of generic points that form medial curves, which are:
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1. A2
1 interior points of the medial curves, where the MIB is tangent to the object’s

boundary at two points; these points form one-dimensional manifolds;

2. A3 edge points, where the MIB is tangent to the boundary at one point; these points

form zero-dimensional manifolds;

3. A3
1 branching points, where the MIB is tangent to the boundary atthree points with

first-order contact with the boundary; these points form zero-dimensional manifolds.

The composition of the medial scaffold into interconnectedmedial manifoldsmakes it

possible to decompose geometrically complex objects into simple components calledfig-

ures, which are the union of closed balls whose centers and radii form a singlemedial

manifoldin the medial axis of an object.

Given a parameterized medial axis(m(u, v), R(u, v)), spheres (or disks) of radius

R(u, v) are placed at each locationm(u, v) on the medial manifold, and the generated

boundary is the envelope of such a family of spheres or disks.In 3D, the pointsx that

belong to this two-parameter family of spheres are defined bythe implicit equation:

f(x, u, v) = |x − m(u, v)|2 − R(u, v)2 = 0. (2.6)

Thus, any pointx on the boundary of an object must satisfy the following envelope equa-

tions:

f = 0,
∂f

∂u
= 0,

∂f

∂v
= 0. (2.7)

By solving these equations, we can derive two boundary points b+ andb− for each point

m on a medial manifold, where the MIB is tangent to the object boundary for thisfigure.

b± = m + R ~U
±

(2.8)

~U
±

= −∇mR ±
√

1 − ‖∇mR‖2 ~Nm, (2.9)

where~Nm is the unit normal vector of the medial manifold at pointm, ~U
±

are unit length

vectors orthogonal to∂O at b±, and∇m is the Riemannian gradient ofR on the medial

manifold. The vectorsR · ~U
±

, that is, the vectors pointing from the center of an MIB
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Figure 2.2: (a) Example ofmaximal inscribed balls (MIBs)for a 2D object. The color of
the MIBs identified the type of points on the medial axis associated with those MIBs: pink
MIBs (A2

1 points) are tangent to the boundary at two points, green MIBs(A3 points) are
tangent to the boundary at one point; and yellow MIBs (A3

1 points) are tangent to boundary
at three points. (b) Illustration of medial geometry in 2D.m is defined as the center of the
MIB. b± are the corresponding boundary points.~Nm is the unit normal vector of the

medial curve at pointm. ~U
±

are unit length vectors called “spokes”, which are orthogonal
to the object boundary atb±.

to the corresponding boundary tangency points, are calledspokes. The local geometry is

illustrated in 2D by Fig 2.2.

2.2.2 Inverse-Skeletonization and Medial Constraints

The cm-rep approach leverages the idea ofinverse skeletonization(Yushkevich et al.,

2006b), where the skeleton (medial axis) of the model is defined first, and the model’s

boundary is derived analytically from the skeleton by Eq (2.8). Because the topology

and configuration of the skeleton (commonly referred to asbranching topology) are pre-

defined, this approach guarantees the consistency of the skeleton within a cohort, which

makes population studies possible. The key difficulty lies in the well-posedness of the

inverse skeletonization problem. That is, given arbitraryconnected surface patchesm and

arbitrary positive fieldR, the{m, R} pair may not form the skeleton of any object. Rather,
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inverse skeletonization is only possible for the{m, R} pairs that satisfy a set of constraints

enforced by the medial geometry. The medial constraints fall into two classes. The first

class ensures that the boundary generated by the medial axisis closed and connected. The

second class ensures that the boundary is nonsingular.

According to Eq. 2.8, one medial surface will generate two boundary surface patches.

Therefore if all the boundary patches are to meet seamlesslyto form the boundary of

an object, different constraints are needed for points on different positions of the medial

manifolds.

Near a medial edge, the two spokes will get closer and closer to each other, collapsing

to a single vector once the medial edge is reached, so the two boundary patches generated

by the medial surface close. The corresponding equality constraint is:

‖∇mR‖ = 1. (2.10)

Points on the medial seam belong to three medial manifoldsmi {i = 1, 2, 3}. For

these points, the six spokes belonging to three medial manifolds pair up in such a way

that ~U
+

mi
and ~U

−

mi⊕1
(⊕ denotes additional modulo 3) get closer, and eventually pairs of

spokes collapse to three vectors. This ensures that different boundary patches generated

from the three medial manifolds come together to form the boundary of an object. These

constraints can be written as follows:

∇mi⊕2
R −∇mi⊕1

R =
√

1 − ‖∇mi
R‖2~Nmi

. (2.11)

At the seam-edge intersection,‖∇mi
R‖ = 1 for the medial manifold whose edge is

crossing the intersection, and the other two manifolds willhave angleπ (actually, they

merge into one manifold at the intersection point).

For the interior points of the medial manifolds, the two boundary patches should stay

disjointed, and the inequality constraint‖∇mR‖ < 1 should hold.

The above constraints ensure that the boundary is closed andconnected. However, it

is still possible for the boundary to form singularities. First,R needs to be constrained to
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be always positive:

R > 0 (2.12)

The Jacobian constraint

J± = ±(
∂b±

∂u
×

∂b±

∂v
· ~U

±
)/(

∂m
∂u

×
∂m
∂v

· ~N) > 0 (2.13)

prevents the swallowtail singularity on the boundary patch.

The Jacobian constraint can prevent local crosses of the boundaries. However, it is still

possible for a global intersection to occur. For example, a global intersection can occur

when one end of an object wraps around and enters another end.These are difficult to

describe mathematically. Fortunately, for most objects, they are relatively easy to avoid

during modeling, especially when geometric priors exist.

As can be seen from Equations (2.10) and (2.11), the equalityconstraints need to be

satisfied along curves (medial seams and medial edges), which have an infinite number of

points, while a cm-rep model can only have a finite number of coefficients, making the

model severely over constrained. This is the most challenging problem for constructing

a cm-rep model, and various solutions have been proposed, which are described in the

following subsections.

2.2.3 M-REP Approach

(Pizer et al., 1999) introduced the m-rep approach which waslater extended to 3D (Pizer

et al., 2001; Joshi et al., 2002). The m-rep uses sparsely sampled primitives calledme-

dial atomsas the building blocks of the model. A basic medial atom is a tuple m =

{x, r, U1, U2}, wherex is a point on the medial scaffold;r is the radius of the MIB at

x; andU1, U2 are the unit spoke vectors pointing towards the boundary points (Fletcher

et al., 2004). Another way to define a medial atom is to use a tuple m = {x, r, R, θ},

wherex andr are still the center and radius of the MIB;R is the orientation which can be

expressed as an orthogonal frame{b, n, t} placed atx to define the bisectorb = U1+U2

||U1+U2||
,

the unit normal vectorn of the medial manifold, andt = b×n; andθ is the angle between
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the spoke vector and the bisectorb. Both tuples contain sufficient information to recon-

struct two points on the boundary per medial atom. And one caneasily convert between

the two representations of the medial atom.

A special class of medial atoms is used to model the locally cylindrical geometry of

nearly-tubular 3D objects such as blood vessels. These atoms can be imagined as a regular

medial atom that is spinning around the bisectorb. In (Aylward and Bullitt, 2002), such

medial atoms are used to model vessel trees.

Another special class of medial atoms is used around medial edge curves. Theend

atomcontains one extra parameter, an elongation factorη, which is used to add a third

boundary pointx + rηb. Therefore an end atom does not try to represent a preciseA3 me-

dial point on a medial edge curve, but rather describes a whole section of the object in the

neighborhood of theA3 point. In such representation, the end of a figure is approximated

by an oval arc (2D) or a locus of such arcs (3D).

(Han et al., 2004, 2005) proposed a multi-figure m-rep that represents each part of a

complex object using single-figure m-rep, and then uses surface blending to attach a child

single-figure m-rep to its parent. Each figure is an array of medial atoms. This type of

model is very useful when complex objects have a parent-child organization of parts (like

the hand, with a palm and five fingers). It uses a membrane-likeconnection between parts

instead of following the Blum’s medial geometry.

The medial atoms are typically sampled on a coarse mesh. Therefore the constructed

boundary nodes need to be interpolated to produce a finer sampling or a continuous de-

scription of the boundary, which can be achieved using subdivision surfaces (Thall, 2002).

2.2.4 Implicit Domain Approach for CM-REP

The first cm-rep approach is proposed in (Yushkevich et al., 2003), which deals with sim-

ple shapes whose medial axes consist of a single medial manifold. In this approach, the

boundary of the domainΩ of the medial manifold is defined implicitly. Specifically, the

parametric manifoldm and the scalar fieldR are first defined in a large regionQ, which has
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the properties that‖∇mR‖ > 1 on the boundary ofQ while at the same time,‖∇mR‖ < 1

somewhere insideQ. Then, the domain of the medial manifold is defined as the set

Ω = {u ∈ Q : ‖∇mR(u)‖ ≤ 1}.

By construction, the equality constraint (2.10) holds on∂Ω. Although this approach

makes it possible to represent medial manifolds and deform them by adjusting the values

of basis function coefficients, it has shortcomings in the context of deformable modeling

and statistical analysis. It is difficult to preventΩ from changing topology during defor-

mation, and, sinceΩ changes as the model deforms, models of different instancesof the

same anatomical structure are defined on different domains,making it difficult to establish

correspondences.

2.2.5 PDE-Based Approach for CM-REP

To overcome the above mentioned shortcomings in (Yushkevich et al., 2003), Yushkevich

et al. later proposed a PDE-based approach (Yushkevich et al., 2006b; Yushkevich, 2008).

The method in (Yushkevich et al., 2006b) only deals with simple shapes, but the improved

version (Yushkevich, 2008) can deal with complex shapes whose medial axis consist of

more than one medial manifold.

In (Yushkevich et al., 2006b), the equality constraint (2.10) can be satisfied if the

radial fieldR is defined as a solution of a Poisson PDE with the boundary condition that

incorporates (2.10). This PDE is expressed in terms ofφ = R2 and has the following

form:

△mφ = ρ, subject to:‖∇mφ‖2 = 4φ on∂Ω , (2.14)

whereΩ ∈ R
2 is the domain on which the medial manifoldm is defined,△m denotes

the Laplace-Beltrami operator onm, andρ is some smooth function defined onΩ. A 3D

cm-rep model is formed by specifying the manifold,m, and the field,ρ, and then solving

the PDE to obtain the radial fieldR.
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(Yushkevich, 2008) generalized the PDE approach to complexshapes by using a fourth-

order biharmonic PDE. Letγ be the boundary ofm, γedge be the medial edge curve, and

γseambe the medial seam curve. Let~Tγ(s) be the unit tangent vector alongγ and~νi(s)

be the outward unit normal vector alongγ(s) for medial manifoldmi (i = 1, 2, 3), i.e.,

~νi ⊥ ~Nmi
and~νi ⊥ ~Tγ . Let τ be a one-dimensional scalar field onγ such thatτ > 0 and

dτ/ds < 1 everywhere onγ. Thenφ = R2 satisfies

△2
mφ = ρ, (2.15)

φ|γ = τ 2, (2.16)

φ,~νi
|γseam = 2τ

√

1 − (dτ/ds)2~νi
⊕

1 · ~νi
⊕

2, (2.17)

φ,~νi
|γedge = −2τ

√

1 − (dτ/ds)2. (2.18)

The PDE-based approach requires solving a PDE each time the model coefficients

are adjusted, which can be cumbersome for deformable modeling. It has been success-

fully applied to model 3D hippocampus (Yushkevich et al., 2006b; Yushkevich, 2008) and

white matter tracts (Yushkevich et al., 2008) which have simple shapes. No application on

complex shapes has been published.

In Chapter 3, I solve the corresponding ODE for 2D shapes, which allows for the

efficient generation of cm-rep for 2D applications.

2.2.6 Control Curve Approach for CM-REP

Before (Yushkevich, 2008) was published, (Terriberry and Gerig, 2006; Terriberry, 2006)

proposed the first solution to construct a 3D branching cm-rep using Catmull-Clark sub-

division surfaces and “control curves”. Catmull-Clark subdivision surfaces are a general-

ization of B-spline knot insertion to meshes of arbitrary topology. To enforce the medial

constraint (2.10), the medial surfacem is still normally interpolated using control points

along the medial edges, but the radial scalar fieldR is interpolated using a control curve

instead of a few isolated control points. Givenm and the derivative ofR along the medial

curve, the derivative ofR along the normal direction to the medial curve can be solved to
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satisfy the constraint (2.10), from which the control curvecan be computed. This method

also works for medial seams, along which the medial constraints (2.11) can be enforced

by adjusting the radial scalar fieldR using control curves away from the seam-edge inter-

sections. At seam-edge intersections, the adjustment involves both the control points and

control curves.

This is the first published branching cm-rep approach. However, no application has yet

been published for this method. One limitation of this approach is that it requires skele-

tons to be defined using Catmull-Clark subdivision surfaceswith quadrilateral elements,

which cannot handle corners on the edge due to the asymmetry of the interpolation, while

the biharmonic PDE-based approach (Yushkevich, 2008) and the approach proposed in

Chapter 4 are independent of the type of representation usedto model the medial axis.
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Chapter 3

An Efficient CM-REP for 2D Geometric

Objects

In this chapter, the unique properties of the 2D equivalent of the PDE-based cm-rep

method is examined and the solution to the ODE is formulated as a closed form expres-

sion by utilizing Pythagorean hodograph splines (Farouki and Sakkalis, 1990; Farouki and

Neff, 1995). Then the ability of the medial model to match different instances of anatomi-

cal structures is explored. The medial model can extend boundary-based correspondences

to the interiors of structures, providing a shape-based normalization to the texture informa-

tion before further comparison can be conducted. This medial shape-based normalization

is compared with the normalization provided by diffeomorphic registration algorithm and

the experimental results are reported.

This chapter is based on a paper (Sun et al., 2007b) that was written together with Dr.

Paul A. Yushkevich, Dr. Hui Zhang, Dr. Philip A. Cook, Jeffrey T. Duda and Dr. James

C. Gee at University of Pennsylvania and Dr. Tony J. Simon at University of California-

Davis. The coauthors’ contributions were invaluable for the conception, implementation,

and publication of the research described below. The comparison experiments were make

possible thanks to Dr. Brian B. Avants, who generously provided the diffeomorphic reg-

istration algorithm.
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3.1 Introduction

Geometric models are emerging as a powerful tool for analyzing multi-modality and mul-

tivariate imaging data. In today’s imaging studies, it is not uncommon to collect T1- or T2-

weighted, diffusion-weighted and functional MRI data in a single session. Group analysis

of such rich datasets requires anatomical differences between individuals to be normal-

ized. This is usually achieved by registration of structureweighted images to a common

template (Friston et al., 1994; Miller et al., 2005). However, registration may not be the

ideal normalization tool in cases where one is interested inanalyzing data associated with

a specific structure, especially in presence of irreconcilable anatomical differences in other

structures present in the images. In these cases, geometricmodels can provide a basis for

normalization, especially given the large body of researchon correspondence methods for

these models (Davies et al., 2002; Kotcheff and Taylor, 1997; Tagare et al., 1995). And

the medial model is especially suitable for normalization of anatomical structures in mul-

tivariate datasets because of its ability to extend boundary-based correspondences to the

interiors of structures.

Yushkevich et al. (Yushkevich et al., 2006b) have previously presented the PDE-

based cm-rep approach for modeling 3D structures. However,some structures, such as

the corpus callosum, lend themselves well to two-dimensional modeling. This chapter

examines the unique properties of the 2D equivalent of the PDE-based cm-rep method.

One contribution is to formulate the solution to the equivalent ordinary differential equa-

tion as a closed form expression by utilizing Pythagorean hodograph splines (Farouki and

Sakkalis, 1990; Farouki and Neff, 1995). Another contribution is the study of the medial

shape-based normalization of the corpus callosum, which isused to analyze patterns of

commissural connectivity in the human brain as derived fromdiffusion tensor imaging.

Shape-based normalization of the corpus callosum is compared to registration paradigms,

with results favoring the shape-based approach.
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3.1.1 Diffusion tensor imaging

Diffusion tensor imaging (DTI) (Basser et al., 1994) has a number of potential applications

for the study of brain white matter. The anisotropy of water diffusion is sensitive to the

tissue composition and organization: when the fibers are organized into bundles with sim-

ilar orientation, the diffusion of water is hindered more across the fibers than along them.

This anisotropy can be quantified in various ways within the diffusion tensor framework,

the most widely used index is the fractional anisotropy (FA)(Basser and Pierpaoli, 1996),

which we use in this work.

Tractography makes use of the directional information in the diffusion tensor to trace

the path of white matter tracts. The tractography algorithms used in this paper belong

to the family of streamline-based methods. In these methods, streamlines are derived by

following the local fiber orientation, which is assumed to bethe direction with the max-

imum apparent diffusion coefficient (the principal eigenvector of the diffusion tensor).

Anatomical connectivity between voxels can then be inferred from the resulting stream-

lines. Several methods have been proposed for tracking the streamline paths, Mori and

van Zijl (Mori and van Zijl, 2002) give a review.

3.1.2 Significance of Corpus Callosum in Neuroscience

The corpus callosum is the largest white matter structure inthe brain, and it is of great

interest in studies of brain connectivity. The shape and area of the midsagittal section

of the corpus callosum (MSCC) have been analyzed in studies of sexual dimorphism

(DeLacoste-Utamsing and Holloway, 1982; Witelson, 1989; Allen et al., 1991), schizophre-

nia (Foong et al., 2000; Woodruff et al., 1997; Jacobsen et al., 1997), autism (Just et al.,

2006; Vidal et al., 2006; Piven et al., 1997) and many other studies. Differences in the size

and area of the MSCC are hypothesized to relate to differences in interhemispheric con-

nectivity. The advent of DTI has allowed a new way of analyzing connectivity differences

in the brain, i.e., by estimating the location of major fiber tracts and examining anisotropy
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in diffusion. However, since DTI does not provide a completedescription of connectivity,

it is natural to combine morphometric measurements of the MSCC with measurements

derived from DTI in white matter studies. The cm-rep approach that we advocate in this

paper allows precisely that: the analysis of features derived from DTI in the corpus callo-

sum coordinate frame.

Medial modeling has been applied to the corpus callosum in earlier morphometric

studies. Golland et al. (Golland et al., 1999) fitted a piecewise linear deformable model to

a distance map to compare the medial axes of the MSCC between patients and controls.

Yushkevich et al. (Yushkevich et al., 2001) used discrete m-reps to derive a set of morpho-

metric features that are invariant under similarity transformations. However, there is no

prior work on using continuous medial modeling in the MSCC oron using medial models

to normalize the MSCC between subjects.

3.1.3 Alternatives to Whole-Brain Normalization in Neuroimaging

In multi-subject studies of functional MRI, DTI and other multivariate imaging data, nor-

malization is typically achieved by registering subjects’anatomical images to a common

template, and warping the multivariate data into the template’s space. Such is the ap-

proach taken in SPM (Friston et al., 1994). In neuroimaging,whole-brain registration can

lead to poor alignment of smaller structures, such as the hippocampus (Carmichael et al.,

2005). This is especially true in the presence of large-scale anatomical differences, which

are common in certain neurological conditions: Fig. 3.1 shows an example from a study

of DS22q11.2 deletion syndrome (Emanuel et al., 2001), where the topology of the cor-

pus callosum and fornix is different between two subjects. In studies interested in specific

structures, some alternatives to whole-brain registration have been proposed. The ROI-AL

method (Stark and Okado; Miller et al., 2005) applies registration to regions of interest,

rather than whole brains, resulting in higher sensitivity of fMRI group analysis. However,

concerns have been raised in the community that the correspondences computed by the

registration within homogeneous structures are primarilydriven by regularization priors
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Figure 3.1: Example of two T1-weighted images with large anatomical differences. There
is a topological difference, both in 3D and in the midsagittal section, in the connectivity
between the fornix and the corpus callosum. Such differences pose a challenge to whole-
brain registration methods.

that differ among algorithms (Rohlfing, 2006). From this perspective, normalization based

on explicit geometric correspondences may be advantageous. As this paper shows, in the

corpus callosum, shape-based normalization appears to align anatomically-defined corpus

callosum sub-regions better than whole-brain and region-of-interest registration.

3.2 Methods

3.2.1 2D Inverse-Skeletonization Problem and ODE-Based Approach

In 2D, the boundary of a medial model can still be derived as

b±(t) = m(t) + R(t) ~U
±
(t) (3.1)

where

~U
±

= −
dR

ds
~τ ±

√

1 −

∣

∣

∣

∣

dR

ds

∣

∣

∣

∣

2

~N . (3.2)

According to (Yushkevich et al., 2006b) which deals with 3D models, in order to ensure

the validity of the Inverse-Skeletonization, the medial model should satisfy‖∇mR‖ = 1,

where∇m is the Riemannian gradient on manifoldm, and in 2D it has the form
∣

∣

∣

∣

dR

ds

∣

∣

∣

∣

= 1 for t = 0, 1 . (3.3)
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In 3D, this constraint can be satisfied if the radial fieldR is defined as a solution of a Pois-

son PDE with the boundary condition that incorporates the non-linear equality constraint.

This PDE is expressed in terms ofφ = R2 and has the following form:

△mφ = ρ, subject to:‖∇mφ‖2 = 4φ on∂Ω , (3.4)

whereΩ ∈ R
2 is the domain on which the medial manifoldm is defined,△m denotes the

Laplace-Beltrami operator onm, andρ is some smooth function defined onΩ. A 3D cm-

rep model is formed by specifying the manifold,m, and the field,ρ, and then solving the

PDE to get the radial fieldR. Sincem andR satisfy the sufficient conditions of inverse

skeletonization, the boundary of a cm-rep model can then be derived analytically.

An equivalent construction is possible in 2D. For a medial curvem(t) = {x(t), y(t)}

with arc lengths(t) andt ∈ [0, 1], the Poisson PDE simplifies to the following ODE:

d2φ

ds2
= ρ(t); (3.5)

subject to:(
dφ

ds
)2 = 4φ at t = 0, 1 .

As described in (Yushkevich et al., 2006b), cm-rep models can be fitted to anatomical

structures in a Bayesian framework by iteratively applyingdeformations tom andρ, deriv-

ing the radial field and the boundary, and comparing the cm-rep boundary to the boundary

of the target object. However, this requires the PDE/ODE to be solved at every iteration

of this optimization. In 3D, the PDE is solved numerically, which is costly and, due to the

non-linear nature of the PDE, sensitive to initialization.However, in 2D, a closed-form

expression for the solution of the ODE (3.5) can be derived, which will improve both the

efficiency and accuracy. This derivation is described in thefollowing two sections.

3.2.2 Solution for ODE in 2D Via Green’s Function

First note that the ODE (3.5) has a non-linear boundary condition. That is, ifφ1 andφ2

are the solutions of (3.5) for right hand sidesρ1 andρ2 respectively, thenφ1 + φ2 is not a
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solution for the right hand sideρ1 + ρ2:

d2(φ1 + φ2)

ds2
= ρ1(t) + ρ2(t); (3.6)

but: (
d(φ1 + φ2)

ds
)2 6= 4(φ1 + φ2) at t = 0, 1 .

Denotingσ(t) ≡ ds
dt

, the ODE (3.5) can be expanded using the chain rule

(
φ′(t)

σ(t)
)′ = ρ(t) σ(t); (3.7)

subject to:(φ′(t))2 = 4 σ2(t) φ(t) at t = 0, 1 ,

which is a Sturm-Liouville equation with nonlinear boundary conditions. Its Green’s func-

tion G(t, u) satisfies the equation

(
G′(t, u)

σ(t)
)′ = δ(t − u), (3.8)

and the solution can be expressed as

φ(t) =

∫ 1

0

G(t, u)ρ(u)σ(u) du + h(t), (3.9)

whereh(t) is the harmonic function satisfyingd
2h

ds2 = 0, i.e.,

h(t) = C1s(t) + C2. (3.10)

HereC1 andC2 are just constants.

Solving equation (3.8) by integration leads to the following solution

G(t, u) = H(t − u)[s(t) − s(u)], (3.11)

whereH denotes the Heaviside step function, i.e.,∂H/∂t = δ(t).

Now, substitute (3.11) and (3.10) into solution (3.9) and use the boundary conditions

of (3.7), and that determinesC1 andC2:

C1 =
4LP − 4Q − P 2

2(P − 2L)
(3.12)

C2 =
(4LP − 4Q − P 2)2

16(P − 2L)2
. (3.13)
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HereL = s(1) is the length of the medial curve,P =
∫ 1

0
ρ(u)σ(u) du, andQ =

∫ 1

0
s(u)ρ(u)σ(u) du.

Now the solution of ODE (3.9) can be written as

φ(t) = s(t)

∫ t

0

ρ(u)σ(u) du−

∫ t

0

s(u)ρ(u)σ(u) du + C1s(t) + C2 (3.14)

Sinces(t) is itself an integral ofσ(t), this solution forφ(t) involves a double integral:

φ(t) =

∫ t

0

σ(u) du

∫ t

0

ρ(u)σ(u) du−

∫ t

0

∫ u

0

σ(w)ρ(u)σ(u) dw du + (3.15)

C1

∫ t

0

σ(u) du + C2 (3.16)

thus this solution does not have a closed form for arbitrary regular curvesx(t), y(t) and

ρ(t). In order to further simplify cm-rep modeling, we take advantage of Pythagorean

hodograph (PH) curves (Farouki and Sakkalis, 1990; Faroukiand Neff, 1995; Choi et al.,

1999).

3.2.3 Closed Form Solution via Pythagorean Hodograph Curves

PH curves are polynomial parametric curvesα̂(t) = {x̂(t), ŷ(t)} for which there exists a

polynomialσ̂(t) such that

x̂′2(t) + ŷ′2(t) ≡ σ̂2(t) . (3.17)

For PH curves,{x̂′, ŷ′, σ̂} form a Pythagorean triple, so that not onlyx̂(t) and ŷ(t), but

also the arc lengtĥs(t) along the curve, can be expressed as a polynomial function.

In (Kubota, 1972), it is proved that PH curves must have the form

x̂′(t) = w(t)[p2(t) − q2(t)],

ŷ′(t) = 2w(t)p(t)q(t),

σ̂(t) = w(t)[p2(t) + q2(t)],

(3.18)

wherew(t), p(t) andq(t) are polynomial functions.
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If we use a piecewise PH curve to define the medial curvem(t), and also defineρ(t) as

a piecewise polynomial function, then all functions in the ODE solution (3.16) are piece-

wise polynomial functions or integrals of piecewise polynomial functions, and a closed

form of φ can be obtained with ease. We can also obtainx(t) andy(t) immediately if we

are given the boundary condition(x(0), y(0)). In practice, we only need to manipulate

the coefficients of those polynomial functions, which is extremely fast. However, ifw(t)

crosses zero, the given{x(t), y(t)} pair would fail to generate a regular curve becauseds
dt

vanishes there. To avoid that, we can simply setw(t) = 1. At the same time, since we use

piecewise curves, we can subdivide the whole curve into enough pieces to ensure that we

have enough freedom to deform the curve for fitting the anatomical structure.

Examining (3.18) reveals that whenw(t) = 1, the sign of the polynomial functionsp(t)

andq(t) can be simultaneously changed to get the same pair of{x(t), y(t)}. Confining

the sign ofp(t) or q(t) would guarantee the uniqueness of the solution. This could either

be done as a constrained optimization, or, by simply checking and flipping the signs after

the optimization.

A cm-rep in 2D can be completely defined by the coefficients ofp(t),q(t),ρ(t) and a

translation term(x0, y0) as the following:

{cp
0, · · · , cp

N , cq
0, · · · , cq

N , cρ
0, · · · , cρ

N , x0, y0} (3.19)

so that

p(t) =
∑N

i=0 cp
i Bi,2(t),

q(t) =
∑N

i=0 cq
i Bi,2(t),

ρ(t) =
∑N

i=0 cρ
i Bi,2(t),

(3.20)

whereBi,2(t) is the uniform quadratic B-spline basis function.

In our current implementation,p(t), q(t) andρ(t) are approximated by uniform quadratic

B-spline functions. The generated medial curves are piecewise 5th-order polynomial

curves, whileφ(t) are piecewise 12th-order polynomial functions, and overall both medial

curves andφ(t) areC2.
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3.2.4 Model Fitting and Smoothed Local Symmetries

The cm-rep model for a MSCC is constructed by fitting a deformable cm-rep template

to a binary segmentation of the structure. The fitting approach is described in detail in

(Yushkevich et al., 2006b) for 3D applications, and most of the aspects are identical in

2D.

A 2D cm-rep model is defined by a set of parameters listed in (3.19). By changing the

values of these parameters, we can generate cm-rep models that have the same branching

topology (i.e., single-curve medial axis) as the original model. To fit a cm-rep model to

a binary segmentation of a structure, we minimize the overlap error between the model

and the structure while also minimizing a set of prior terms,which incorporate inequal-

ity constraints required for inverse skeletonization. These constraints are described in

(Yushkevich et al., 2006b). In this application the Conjugate Gradient Descent algorithm

provided by GNU Scientific Library(GSL) (Galassi et al.) is used to solve the optimization

problem. The objective function can be computed very efficiently because the computa-

tion of the cm-rep boundary is analytic, and the derivative of the overlap between a model

and an image can be approximated by a boundary integral.

The initial template for the MSCC was constructed from cm-rep fitting results for a

large MSCC dataset in a previous morphometry study (Sun et al., 2007a). This template is

first aligned to the target structure by optimizing in the space of similarity transformations,

and then the parameters defining the cm-rep model are optimized in a multi-resolution

scheme. During the fitting, the number of coefficients for thecm-rep template is gradually

increased, and at the same time, the standard deviation of the Gaussian kernel, which is

used to smooth the binary image segmentation, is gradually decreased. For the uniform

quadratic B-spline basis we use, there exists an efficient refinement scheme to increase the

number of control points while holding the spline curves unchanged.

Closely related to the Blum skeleton is theSmoothed Local Symmetries(SLS) (Brady

and Asada, 1984). While the Blum skeleton is formed by the centers of MIDs, SLS is

formed by the midpoints of the chords connecting the points(b+, b−), where the MID is
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Figure 3.2: Illustration of medial geometry in 2D. (a) Blum skeletonm is defined as the
center of the maximal inscribed disk (MID), with “spokes” goes from them to b± (b) SLS
m̂ is defined as the center of the “chord” which connects the two MID tangency pointsb±

on the boundary.

tangent to the object’s boundary. An attractive property ofthe SLS axis is that its endpoints

lie on the boundary of the object, as opposed to the Blum skeleton, whose endpoints of

the axis lie some distance away from the boundary (the distance equals to the radius of the

MIB at that endpoint).

The SLS axis, denoted̂m is derived as:

m̂(t) = m(t) − R(t)
dR

ds
~τ . (3.21)

Like thespokesin Blum skeleton, thechordsin SLS also span the whole object interior,

connecting the SLS skeleton with the object boundary. We useh(t) = 1
2
‖b+ − b−‖ to

denote the half length of the chord, and let~c± = 1
h
(b± − m̂) denote the unit length vector

pointing fromm̂ to b±, as illustrated in Fig. 3.2.

After the cm-rep model is fitted, the SLS skeleton is derived and re-parameterized to

establish correspondences between subjects. Here the equal arc length parameterization is

used, i.e., we find a diffeomorphismu : [0, 1] → [0, 1] such thats(u(t)) is a linear function

of t.

39



3.2.5 Shape-Based Normalization

In biomedical imaging applications, the need to factor out anatomical differences between

individuals often arises in the context of multi-modal or multi-variate analysis. The prob-

lem of normalization can be stated in terms of parameterization: each point in each in-

dividual must be assigned a set of parameter values such thatpoints that have the same

parameter values across individuals are anatomically homologous. Normalization is often

resolved by means of volumetric registration. However, most registration methods do not

explicitly incorporate shape information. On the other hand, there are many techniques in

the shape analysis field that establish shape-based correspondences between boundaries

of structures. The cm-rep method has a unique property that allows boundary-based or

skeleton-based correspondences to be propagated to the interiors of objects, thus enabling

shape-based normalization.

Given a cm-rep model with a parametric expression of the Blumskeleton, the interior

of the model can be parameterized by a shape-based coordinate system where one of the

axes is the skeleton and the other goes along the spokes, i.e., is orthogonal to the model’s

boundary. This parameterization associates each pointX on the interior of the objectO

with a pair of coordinatest ∈ [0, 1] andξ ∈ [−1, 1] according to the mapping

X(t, ξ) = m(t) + |ξ|R(t)~U
sign(ξ)

. (3.22)

Following the proof in (Yushkevich et al., 2006b), the mappingX : [0, 1]×[−1, 1] → O

is onto and “almost” one-to-one, with the exception occurring att = 0 andt = 1, where

X(t, ξ) = X(t,−ξ). This coordinate system associates each pointX(t, ξ) inside the object

with the nearest boundary pointX(t, sign(ξ)) through the coordinatet, and indicates the

point’s relative position between the skeleton and the boundary through the coordinateξ.

The SLS axis presents another way to parameterize the interiors of cm-rep models.

Similarly to (3.22), we can define the map:

X̂(t, ξ) = m̂(t) + |ξ|h(t)~csign(ξ) , (3.23)
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(a) Blum Skeleton Based parametrization (b) SLS Based parametrization

Figure 3.3: The grid lines of the two different parametrizations are shown, the zoomed
sections show the details near the right endpoints. Note that the grid lines for Blum-
skeleton-based parametrization are getting more and more sparse when approaching the
endpoint, while the grid lines for SLS-based parametrization remain dense.

which associates each pointX̂(t, ξ) inside of the object with its corresponding boundary

point X̂(t, sign(ξ)) and SLS skeleton point̂X(t, 0) through coordinatet, and indicates the

point’s relative position between the SLS skeleton and boundary through the coordinateξ.

Besides the parametrization defined by the map (3.22) or (3.23), which is onto and

almost one-to-one (except the points witht = ±1 ), there also exists a homeomorphism

from the cm-rep interior to the interior of an ellipse (Yushkevich et al., 2006b). As a

consequence, one can construct a homeomorphism between anytwo objects with a single-

curve medial axis.

The parametrization based on the Blum skeleton can propagate the correspondence

along the directions orthogonal to the boundary but it is somewhat ill-behaved near the

endpoints of the medial curve, because the Jacobian of the mapping b±(m) goes to in-

finity there. This causes increasingly sparse sampling along the cm-rep boundary when

approaching the endpoints, if we sample the medial curve uniformly. In contrast, the SLS

skeleton, whose endpoints lie on the boundary, allows more uniform sampling of the points

on the boundary near the endpoints. Fig. 3.3 shows the two different parametrizations and

the details near endpoints. In this application the SLS-based normalization is adopted.

3.2.6 Application and Validation of the Normalization

Diffusion MRI studies provide an attractive framework within which to evaluate the per-

formance of corpus callosum normalization via cm-reps and other techniques. In this
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chapter, we compare cm-rep normalization to diffeomorphicregistration. With the help of

diffusion tensor tractography, every location in the corpus callosum can be associated with

a set of features derived from fiber tracts passing through that location. In a multi-subject

experiment, these features can be used to detect structuraldifferences between control and

DS22q11.2 cohorts. The effect of different normalization methods on the statistical signif-

icance of detected differences can then be analyzed. Furthermore, normalization methods

can be evaluated by examining how well they align anatomically labeled fiber tracts within

cohorts. The following sections describe the approaches used to evaluate normalization

from these different standpoints.

Features Derived from Diffusion Tensor Tractography

Diffusion tensor tractography is a tool for studying the white-matter connectivity in the

brain. We combine tractography and the cm-rep method to makea quantitative comparison

of the white-matter microstructure along the fiber pathwayspassing through the MSCC.

First, the midsagittal plane is identified automatically according to the symmetry of the

left and right hemisphere and the MSCC is manually segmentedin the midsagittal plane.

In our study two streamline tracking methods implemented inthe open source Camino

toolkit(Cook et al., 2006) are used. The FACT method proposed by Mori et al (Mori

et al., 1999), follows the local fiber orientation in each voxel, changing direction at voxel

boundaries. We also track using a fixed, sub-voxel step size,following interpolated ori-

entations taken from the vector field at each step using a simple eight-neighbor trilinear

interpolation. This is referred to as the VINT (vector interpolation) method.

Both of the tracking algorithms use an anisotropy thresholdto terminate the track-

ing: when the streamline approaches a voxel where the FA falls below the threshold, the

streamline is judged to have left white matter and tracking is terminated. A curvature

threshold is also imposed: if the streamline path curves by too much over the length of a

voxel, the tracking is stopped. Most white matter pathways have low curvature and thus

high curvature is interpreted as a sign that the streamline is following an erroneous path.
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The fiber pathways of the corpus callosum in each subject are segmented by seeding

streamline tractography in every voxel in the diffusion-tensor image and retaining only

streamlines that intersect the MSCC. Following a similar method to Corouge et al. (Cor-

ouge et al., 2006), we examine the fractional anisotropy (FA) of diffusion along the length

of each streamline. Thetract FA for a streamline is the mean FA along the whole stream-

line. The tract FA is plotted on the MSCC. The value of each voxel is the mean tract FA

of all streamlines that pass through that voxel.

The shape-based normalization is applied to make an inter-subject comparison of the

tract FA in MSCC. Permutation based cluster size inference (Hayasaka and Nichols, 2003)

is performed with the null hypotheses of the zero differenceon the tract FA between

control group and DS22q11.2 group.

In addition, I show another advantage of the shape-based parametrization, which is

to further reduce the dimensionality of the data by collapsing the tract FA value to the

SLS skeleton. More specifically, at each point along the SLS skeleton, a medial tract FA

is obtained as the average of all values along the “chord” centered at this point and con-

necting two corresponding boundary points. Multiple hypothesis testing is also performed

with the null hypotheses of zero difference on the medial tract FA values between control

group and DS22q11.2 group.

The fiber trajectories recovered by streamline tractography are dependent on the track-

ing algorithm and the thresholds used to terminate the tracking. In order to examine the

stability of our comparisons with respect to the choice and the parameters of the diffusion

tensor tractography algorithm, the tract FA comparisons are repeated using eight different

sets of streamlines. The FA threshold is either0.15 or 0.25, the curvature threshold allows

a maximum curvature of either 45 or 60 degrees, and the local fiber direction is determined

by either the FACT or VINT algorithm. With the interpolated algorithm, the step size is

0.4mm.
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Corpus Callosum Connectivity Labeling

A qualitative examination of the cortical connectivity is complimentary to the quantitative

tract-based measures. Following (Mori et al., 1999; Gee et al., 2005; Cook et al., 2005;

Styner et al., 2005), the MSCCs are subdivided according to the cortical connectivity. To

label the fiber trajectories, an anatomical atlas is used. Itwas constructed using a combi-

nation of manual, semiautomatic and automatic techniques (Yushkevich et al., 2005), and

divides each hemisphere of the cerebral cortex into four regions: frontal, parietal, tem-

poral and occipital. The atlas is aligned to the T1-weightedimage of each subject using

a diffeomorphic image registration algorithm (Avants and Gee, 2004). Examples of the

warped atlas in space of the T1-weighted image are shown in Fig. 3.4. Then the warped

atlas in the space of the T1-weighted image is further aligned to the space of the diffu-

sion tensor image using the transformation that coregisters the T1-weighted image to the

diffusion tensor image.

Now each fiber derived from tractography in the diffusion image space can be assigned

a label according to the cortical region of its endpoints. However, given that the principal

diffusion direction can not be reliably estimated using theprincipal eigenvector when FA

is low, the derived tracts almost never reach the gray matterarea. In practice, some tracts

are much shorter and far away from any of the cortical regions. these fibers were filtered

out in our algorithm by requiring that the end of the fibers should be at least within 15mm

of one of the cortical regions. In addition, when a fiber was determined to be closest to

two different cortical regions (from the two hemispheres),it was removed as well to ensure

that only homologous connections are considered. Examplesof labeled fibers as shown in

Fig. 3.4.

Finally, each voxel in the MSCC can be labeled according to the connectivity of fibers

crossing it. If streamlines passing through the voxel connect to multiple cortical zones,

the voxel is labeled according to the cortical zone that has the most fibers passing through

the voxel. If no streamlines pass through a voxel, it has a clear label.
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Figure 3.4: Examples of warped labeled atlas in the space of T1-weighted image (top row)
and labeled fibers (bottom row). The left ones are axial view,and the right ones are sagittal
view. The colors are: red for frontal lobe, blue for parietallobe, yellow for temporal lobe
and purple for occipital lobe.)

Registration Based Normalization

Deformable registration is used to normalize the same dataset, and the results are com-

pared with shape-based normalization. The Symmetric diffeomorphic registration algo-

rithm developed by Avants et al. (Avants and Gee, 2004), one of the state-of-the-art high-

dimensional large deformation registration algorithms, is used.

Experiments are carried out for both whole-brain and structure-specific registration.

The template used in the registration is iteratively generated from the dataset itself as

described in (Avants et al., 2006).

In the whole-brain normalization experiments, the FA images of each subject is regis-

tered to the template. Then he labeled fibers are warped into the template space according

to the registration result. The MSCC segmentation and the connectivity labeling are there-

fore performed in the template space. However, in our evaluation dataset, due to the low

signal-to-noise ratio in the FA images, the normalization quality is quite poor. And thus

the results are not used in the comparison.

In the structure-specific registration, considering the homogeneity on the interior of
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Figure 3.5: An illustration of 2D diffeomorphic registration, (a) is a single subject, (c) is
the template constructed from the population of 30 corpora callosa, and (b) and (d) are the
results after registering (a) and (c) diffeomorphicly and symmetrically.

corpus callosum, the segmented 2D binary mask image of MSCC is directly used for reg-

istration. For each subject, the MSCC mask image is registered to the template, and the

DTI-based measurements are then warped to the template space according to the registra-

tion results.

Fig. 3.5 shows the constructed template for 30 instances of corpus callosum and the

registration result for one subject.

3.3 Results

3.3.1 Subjects and Data Acquisition

The evaluation experiments use a dataset from a chromosome 22q11.2 deletion syndrome

(DS22q11.2) study at the Department of Psychiatry and Behavioral Science, M.I.N.D.

Institute of University of California, Davis and Children’s Hospital of Philadelphia. It

includes 3 Tesla high-resolution structural MRI and diffusion tensor MRI scans for 11

typically developing children and 19 children with the DS22q11.2 syndrome. Scans were

performed on 3 Tesla Siemens Trio scanners at the Hospital ofthe University of Penn-

sylvania (13 children with DS22q11.2 and 7 controls) and at the University of California,

Davis Imaging Research Center (6 children with DS22q11.2 and 4 controls). The analysis

below does not consider the confounding effects of location; however, similar results of
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lower significance are observed when analyzing the data fromeach location separately.

The structural MRI was acquired using a T1-weighted magnetization-prepared rapid gra-

dient echo (MP-RAGE) sequence with the following scanning parameters: repetition time

(TR) 1620 ms, echo time (TE) 3.87 ms, 15◦ flip angle, number of averages = 1, matrix

size = 256× 192, slice thickness of 1.0 mm, spacing between slices of 1.0mm, yielding

160 axial slices with in-plane resolution of 0.98× 0.98 mm. A single-shot, spin-echo,

diffusion-weighted echo-planar imaging (EPI) sequence was used for the diffusion tensor

MRI. The diffusion scheme was as follows: one image without diffusion gradients (b = 0

s/mm2), hereafter referred to as the [b = 0] image, followed by twelve images measured

with twelve non-collinear and non-coplanar diffusion encoding directions isotropically

distributed in space (b = 1000 s/mm2). Additional imaging parameters for the diffusion-

weighted sequence were: TR = 6500 ms, TE = 99 ms, 90◦ flip angle, number of averages

= 6, matrix size = 128× 128, slice thickness = 3.0 mm, spacing between slices = 3.0 mm,

40 axial slices with in-plane resolution of 1.72× 1.72 mm.

3.3.2 Cm-Rep Fitting Accuracy Analysis

The MSCC was manually segmented from the FA images using ITK-SNAP (Yushkevich

et al., 2006a) (www.itksnap.org). Then, following the procedure described in the methods

section, cm-rep models were fitted to the MSCC mask images. Inour current imple-

mentation, a multi-resolution cm-rep template is used, in which the number of cm-rep

coefficients goes from16 × 3 + 2 to 30 × 3 + 2. It usually takes 3-4 mins to fit a cm-rep

to one MSCC on a single CPU. Without the closed-form solutiondescribed in Sec. 3.2.2,

the same process takes 20-30 mins.

Fig. 3.6 shows some fitting examples, in which the fitted cm-rep is overlaid on the

mask images of the MSCC. The grid lines of PISA reference frame are also illustrated.

The overlap between a fitted cm-rep modelC and the target MSCC instanceH is
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96.2%

(a)

93.7%

(b)

Figure 3.6: Illustration of fitted cm-reps overlaied on the binary images of corpora callosa,
with Dice coefficients given on the top. The boundary of the fitted cm-reps are outlined in
dark blue. The red lines are PISA medial curves. The thin, light blue curves indicate the
grid lines of PISA reference frame. Example (a) Dice coefficient is the highest among all
30 subjects,and example (b) Dice coefficient is the lowest.

measured using theDice Similarity Coefficient(Dice, 1945)

2Vol(C
⋂

H)

Vol(C) + Vol(H)
.

The mean Dice coefficient for 11 controls is 95.26± 1.00%, and the 19 DS22q11.2 sub-

jects is 95.31± 0.76%, statistics on the Dice coefficients shows that here isno significant

difference in fitting accuracy for the groups (p-value: 0.4460). The mean Dice coefficient

for all 30 subjects is 95.29± 0.84 %.

3.3.3 Validation of the Closed Form Solution

The analytical solution given in previous section guarantees that as long as the cm-rep

coefficients generated from the solution satisfy certain inequality conditions defined in

(Yushkevich et al., 2006b), the locus{m(t), R(t)} is precisely the medial axis of the ob-

ject b generated by inverse skeletonization. This assertion is validated empirically by ex-

amining the displacement between the medial axis encoded inthe cm-rep model and the

medial axis computed using Voronoi skeletonization of the model’s boundary. The model

boundary is sampled into discrete points and their internalVoronoi Diagram is computed.

Then the distance from each vertex of the internal Voronoi Diagram to the continuous me-

dial curve is computed. The maximum and mean values of this distance, averaged over all

30 MSCC cm-rep models, are plotted in Fig. 3.7. With an increasing number of sampling
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Figure 3.7: The convergence of the Voronoi skeleton of thecm-repboundary to thecm-rep
medial curve, over increasing sample density. The number ofsample points on thecm-
rep boundary is plotted on the horizontal axis, and the distancefrom the discrete Voronoi
skeleton to the continuouscm-repmedial curve is plotted on the vertical axis. Both the
mean distance and the maximum distance are plotted. The values are averages over 30
cm-repmodels.

points, the medial axis computed with Voronoi skeletonization approaches the medial axis

encoded in the model.

3.3.4 Matching of the Connectivity Labels

Given the connectivity-based labeling of the MSCC described in Sec. 3.2.6 and shown in

Fig. 3.8, it is possible to evaluate normalization algorithms based on how well they align

connectivity labels across subjects. Although there is no “ground truth” against which

different normalization methods can be evaluated, the degree to which connectivity labels

are aligned can be construed to reflect the ability to recoverthe underlying anatomical

correspondences.

In our evaluation experiment, each normalization method was applied to the DS22q11.2

cohort, the control cohort, and the two cohorts combined. Ineach case, the subjects’ con-

nectivity maps were warped into the normalized space. Connectivity maps vary slightly

depending on the variation of the fiber tracking method used to obtain them. Fig. 3.9 and

Fig. 3.10 compare the mean connectivity maps of all 30 subjects for two of the 8 tracking
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Figure 3.8: Example of connectivity labeling on MSCC. The left and right figures are
for FACT and VINT tracking method respectively, with FA threshold 0.25 and curvature
threshold 60 degrees. A number of voxels have a clear label, which means that the tractog-
raphy could not trace a streamline passing through that voxel with both ends close enough
to the same cortical regions in the left and right hemispheres.

methods described in Sec. 3.2.6. The boundaries between different labels vary slightly,

but the segmentations are broadly similar.

To measure how well each normalization method aligns the connectivity maps, we

measure the Dice overlap coefficient between normalized maps. Overlap is computed

separately for each of the four labels in the connectivity map and is averaged among

all pairs of subjects within each cohort. Table 3.1 lists theaverage overlaps for one of

the tracking settings, showing significantly higher overlap for the cm-rep method. The

comparison was repeated for the 8 variations of the trackingsetting, and in all 8 cases,

the overlaps with the cm-rep method were higher than for region-based registration for

all four lobes and for both DS22q11.2 children and controls.The difference in overlaps

was statistically significant in almost all cases, with the exception of the temporal lobe,

where the p-value exceeded 0.05 (the temporal lobe occupiesa very small portion of the

connectivity map and is matched poorly by all normalizationmethods). The maximum

p-values among all 8 tracking methods are also included in Table 3.1.

We also attempted to use whole-brain registration directlyon FA images to normalize

the MSCC. However, the images in the DS22q11.2 dataset have low signal-to-noise ratio,

which results in poor normalization quality and low overlapfor connectivity maps. There-

fore we did not include these results in the comparison, as they may not reflect fairly on

the method’s performance in a different dataset.

To help explain the differences between the two normalization methods, we examine
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Table 3.1: Comparison of deformable registration based normalization andcm-repbased
normalization for matching the connectivity label of each lobe in 30 subjects from a
DS22q11.2 study. The quality of label matching is quantifiedusing Dice similarity co-
efficients between pairs of subjects. Statistics are carried out to measure the significance
of the differences between normalization methods. Resultsare listed for tracking setting
1 (FACT, FA threshold 0.25 and curvature threshold 60 degrees). The max p-values over
all 8 tracking settings are also listed.

FRONT PAR TEMP OCC

CTRL registration (set-
ting 1)

0.735 0.481 0.124 0.514

(11 cm-rep (setting 1) 0.811 0.553 0.134 0.633
sub- p-value (setting

1)
< 0.001 0.006 0.387 <0.001

jects) p-value (max
over 8 settings)

< 0.001 0.030 0.478 0.007

DS22q-
11.2

registration (set-
ting 1)

0.768 0.481 0.264 0.495

(19 cm-rep (setting 1) 0.835 0.546 0.272 0.608
sub- p-value (setting

1)
<0.001 <0.001 0.362 < 0.001

jects) p-value (max
over 8 settings)

<0.001 <0.001 0.408 < 0.001

All registration (set-
ting 1)

0.761 0.483 0.209 0.503

(30 cm-rep (setting 1) 0.824 0.543 0.215 0.614
sub- p-value (setting

1)
<0.001 <0.001 0.334 <0.001

jects) p-value (max
over 8 settings)

<0.001 <0.001 0.420 <0.001

(a) FACT (b) VINT

Figure 3.9: The mean connectivity map rendered on the cm-repcoordinate system. The
left and right figures are for FACT and VINT tracking method respectively, with FA thresh-
old 0.25 and curvature threshold 60 degrees.
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(a) FACT (b) VINT

Figure 3.10: The mean connectivity map obtained by the cm-rep approach rendered on
mean MSCC shape. The left and right figures are for FACT and VINT tracking method
respectively, with FA threshold 0.25 and the curvature threshold 60 degrees.
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Figure 3.11: Illustration of the Jacobian determinant mapsinside the MSCC for one sub-
ject. On the left is the result for cm-rep mapping, on the right is the result for deformable
registration. The color coded Jacobian determinant maps are plotted on the top. The
histograms of the Jacobian determinant maps are plotted on the bottom.

the Jacobian determinant maps associated with warping eachsubject into the normalized

space. The average (over all 30 subjects in the study) variance of the Jacobian determinant

map inside MSCC is0.22 for registration based normalization, and0.06 for cm-rep based

normalization. We plotted the Jacobian determinant maps and their histograms for one

of the subjects in Fig. 3.11. The Jacobian map for cm-rep normalization is much more

uniform over the extent of the MSCC than the Jacobian map for registration. This is to be

expected, since cm-rep correspondences are more global in nature than correspondences

based on local regularization priors, which are employed inregistration. This difference in

deformation fields can help explain better alignment of connectivity maps by the cm-rep

method.
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Figure 3.12: An example of the tract-wise mean FA map for one subject.

3.3.5 Statistics on Tract FA Maps

Finally, we compare the effect of normalization on the powerof statistical analysis in-

volving mean FA features derived from diffusion tensor tractography. As described in

Sec. 3.2.6, a tract-wise mean FA value is associated with each point in the corpus callo-

sum in each subject. An example mean FA map is shown in Fig. 3.12. Using each normal-

ization method, these mean FA maps are warped to a common template space, in which

point-wise statistical analysis (a two-sample unpaired t-test comparing DS22q11.2 chil-

dren and controls; 28 degrees of freedom) is performed. Regions of statistical significance

in the template space are found using cluster analysis with permutation testing(Hayasaka

and Nichols, 2003), which is a well-established strategy toimprove sensitivity by analyz-

ing co-activation at contiguous pixels. The threshold of t=3.13 is used to select clusters,

and permutation testing is used to build an empirical distribution of cluster size under the

null hypothesis.

For normalization based on region-of-interest registration, no clusters withp-value

below 0.05 are detected, regardless of the tracking method used. In contrast, cm-rep nor-

malization finds a significant cluster in the mid-section of the MSCC. This cluster is found

consistently for different tracking methods, as illustrated in Fig. 3.13.

By collapsing the tract FA data on the PISA skeleton, the different pattern of the two

groups becomes more clear. We summarize the value of all points with the samet PISA

coordinate, and plot the averaged value along PISA skeleton, as shown in Fig. 3.14. The

averaged tract FA values for control group appear to have three peaks along the PISA

skeleton, while for DS22q11.2 group there is no obvious middle peak. The statistical
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Figure 3.13: Areas showing significant differences for tract FA maps between the control
and DS22q11.2 groups, shown as colored overlays on the mean MSCC shape. The left
and right images are results for FACT and VINT fiber tracking method respectively, with
FA threshold 0.25 and curvature threshold 60 degrees. Results obtained by cm-rep based
normalization and permutation based clustered pixel analysis. The adjusted p-values for
colored regions are below the0.05 threshold.

analysis confirms the significance of this difference. This experiment demonstrates an

extra utility of the shape-based reference frame. In addition to shape normalization, the

shape-based reference frame also offers a way to group voxels meaningfully, which may

improve the statistical power in group analysis.

3.4 Discussion

This chapter presents a new efficient algorithm for modeling, measuring and normalizing

2D anatomical structures on the basis of medial geometry. Inaddition it undertakes a

comparison of shape-based normalization of the corpus callosum between the proposed

method and the technique most commonly used to normalize imaging data: registration.

The purpose of this comparison is to demonstrate the relevance of the proposed method

by showing that it can have a positive impact on the outcome ofmedical imaging studies.

The results using DTI data from a chromosome DS22q11.2 deletion study demonstrate

that shape-based normalization of the corpus callosum using cm-reps makes it possible to

detect statistical differences between populations that were not detected when registration

was used to normalize the structures. A direct comparison ofthe alignment of connectiv-

ity maps between cm-reps and registration give further justification to the use of cm-reps,
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Figure 3.14: This figure illustrates the differences of summarized tract FA on PISA skele-
ton between the control group and DS22q11.2 group. Different tracking methods are used
for producing figures on left and right, both with FA threshold 0.25 and curvature thresh-
old 60 degrees. FACT is used for the images on the left, and VINT is used for the images
on the right. Figures on the top shows the mean tract FA map of each groups after collaps-
ing onto the PISA skeleton. The blue curves are for control group and red curves are for
DS22q11.2 group. Figures on the bottom are the plot of -Log(adjusted p-values) for mul-
tiple statistical tests on the difference between the two groups. The p-values are corrected
for multiple comparison using step down permutation. The blue line is the significant
threshold corresponding to adjusted-p=0.05.
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suggesting that shape-based correspondences in the corpuscallosum more accurately re-

flect the underlying anatomical correspondences. The fact that both types of results are

stable with respect to the choice and the parameters of the diffusion tensor tractography

algorithm adds further weight to our findings. Together, these findings give compelling

support to the use of cm-reps in DTI morphometry studies.

While registration is a general technique, the 2D cm-rep approach is limited in its

applicability in the human body. However, given the interest in DTI-based white matter

analysis, and given the number of studies that examine corpus callosum morphometry,

the method’s ability to improve inferences about this structure’s properties justifies, in our

view, the additional efforts associated with using it in a study.

Further improvements to the shape based correspondence arepossible under the cm-

rep framework. In this study, the correspondence is established by equal arc length sub-

division of the PISA skeleton. An alternative would be to usean MDL-style approach

to compute optimal boundary or skeleton correspondences, and propagate them to object

interiors. The thickness and curvature information, whichis attached to each points on the

boundary or skeleton curve, can be readily used for such correspondence optimization.

Knowing that the corpus callosum has a homogenous interior in structural MRI, the

correspondences computed in the current method are entirely shape-based. If there was

intensity or other appearance information inside the structure, the correspondence prob-

lem could be formulated as a registration inside of the cm-rep coordinate space. The

deformation field by this registration is then just a local refinement of the correspondence

established by the global shape, with several available options: (1) deformation restricted

to t, which stretches the medial curve and preserves the “depth”coordinateξ; (2) defor-

mation that allows us to stretchξ, but preserves the boundary and medial curve; or (3)

fully free deformation int, ξ.
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Chapter 4

A New Branching Medial Model for 3D

Geometric Objects

After examining a 2D medial model and its application in Chapter 3, this chapter deals

with 3D cases. I propose a new way to construct the branching medial model which can

be efficiently applied to 3D complex shapes. The new branching medial model is tested

on a large segmented cardiac dataset. I also explored how themedial features of the heart

vary among different disease groups.

This chapter is based on papers (Sun et al., 2008a,b, 2009). The coauthors of the three

papers include Dr. Paul A. Yushkevich, Dr. Sandhitsu R. Das and Dr. James C. Gee at

University of Pennsylvania and Dr. Alejandro F. Frangi, Dr.Federico Sukno, Dr. Sebas-

tian Ordas, Catalina Tobon-Gomez at University of Pompeu Fabra and Dr. Marina Huguet

at CETIR Sant Jordi in Barcelona. Their contribution is invaluable for the conduction of

the research.

4.1 Introduction

Most 3D applications of the medial models in the literature are for anatomical structures

with simple shape(also calledsingle-figureshape) whose medial axis can be described by
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a single curve or surface sheet (Pizer et al., 2003; Gerig et al., 2003; Styner et al., 2003a,b).

There have been efforts to model complex shapes (whose medial axes have branches)

using m-reps. Han et al. (Han et al., 2005) proposed a “multi-figure” m-rep that represents

each part of a complex object using single-figure m-rep, and then uses surface blending to

attach a “child” single-figure m-rep to its “parent”. This type of model is very useful when

complex objects have a “parent-child” organization of parts (like the hand, with a palm and

five fingers). But it uses a membrane-like connection betweenparts instead of following

the Blum’s medial geometry. For cm-rep, as I have introducedin Chapter 2, two different

types of approaches have been proposed to construct branching medial model. Terriberry

et al. proposed the first solution which is tightly coupled tothe underlying Catmull-Clark

surface representation. And Yushkevich et al. (Yushkevich, 2008) extended the PDE-

based cm-rep approach to branching medial model by using biharmonic PDE instead of

the Poisson PDE. However, to the best of my knowledge, both approaches have not yet

been applied to large-scale anatomical modeling.

An important message conveyed by Terriberry’s method is that the equality constraints

required by the medial geometry along edge and branching curves can be enforced by local

corrections, without affecting the medial model globally.Inspired by this idea, I propose

a new way to resolve the problem and construct branching medial models. I first use soft

penalties to admit solutions that only slightly violate theequality constraints, and then

use brute-force local adjustment to correct the remaining violations. This approach does

not couple the modeling approach to a particular representation of the medial surface and

leaves the freedom to choose the suitable representation according to the application.

In this chapter, I demonstrate the proposed branching medial model by applying it

to 3D cardiac shapes. Analysis of cardiac images is an activearea of research (Frangi

et al., 2001a). One important feature of medial axis is that it can be used to compute wall

thickness. The 2D “centerline method” (Sheehan et al., 1986) and its 3D extension 3D

“centersurface method” (Bolson and Sheehan, 1993) are bothbased on medial axis. How-

ever, the 3D “centersurface method” only deals with a singleheart chamber. In addition,
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the detailed thickness maps generated from different objects are not aligned, posing prob-

lems for further population comparison. Although it is possible to divide the thickness

maps into big segments using the standard 17-segments of theleft ventricle in polar plot

(Cerqueira et al., 2002), the spatial variation within eachsegment will be lost. As opposed

to skeletonization, the medial model describes the skeleton of a structure of interest using

parametric surfaces, which allows us to directly perform surface-based statistical analysis.

In this chapter, I applied the branching medial model to generate detailed thickness and

thickening maps based on the segmented MR images. The mean thickness and thickening

maps for healthy population are computed and visualized. I also use the statistics derived

from the healthy group to identify regions with abnormal thickness or thickening for a

new patient as an example of the usage. The thickness and thickening maps of acute my-

ocardial infarction (AMI) patients and hypertrophic cardiomyopathy (HCM) patients are

compared with those of normal subjects using cluster-basedanalysis.

The rest of this chapter is organized as follows: Sec 4.2 presents the proposed method

in detail. Sec 4.3 shows the results of fitting a bi-ventricular medial template to a large

set of cardiac segmentations and the comparison between . Finally, Sec 4.4 discusses the

paper’s contributions, limitations and future research plans.

4.2 Methods

This section presents the detail of the branching medial model and how the model is con-

structed for bi-ventricular shapes. As illustrated in Terriberry’s demonstration (Terriberry,

2006), if the medial axis is modeled by Catmull-Clark subdivision surfaces, the equality

medial constraints along medial edge and branching curves can be enforced by locally

modifying the medial axis at edge and branching curves to useinterpolating splines. In

fact, examination of equations reveals that the equality medial constraints only involve the

first order derivatives of variables along the edge and branching curves, and thus can be
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satisfied by localized adjustment. In this chapter, insteadof explicitly working out the lo-

cal adjustment for a special type of surface representation, as done by Terriberry et al., we

would like to propose a new method to first obtain solutions that only slightly violate the

medial constraints via soft-penalty optimization, and then enforce the constraints implic-

itly by a local adjustment. Unlike Terriberry’s approach which is specific to Catmull-Clark

subdivions surface, the new proposed approach can be easilyimplemented for a large class

of function representations for skeleton in the medial model. In Subsec 4.2.1, we derive

the soft penalties corresponding to the equality constraints. The soft penalties will be

equal to zero when the equality constraints are satisfied, and have positive values when

the equality constraints are violated. In Subsec 4.2.2, we explain how those soft penal-

ties, along with other terms, are incorporated in the deformable model fitting framework

to derive medial models for real-world objects. The solution obtained by model fitting is

still not perfect, and in Subsec 4.2.3, we describe how to further locally correct the medial

model. Subsec 4.2.4 describes the process to construct bi-ventricular medial template for

the heart and implementation details are given in Subsec 4.2.5.

4.2.1 Soft Penalty Terms

Along the medial edge curve, the soft penalty for violating the medial constraint can be

simply written as:

(‖∇mR‖ − 1)2. (4.1)

Now let us focus on the equality constraints along medial seam curves. Letγ(s) : [0, L) →

R
3 denote the parametric form of the medial seam curve, parameterized by the arclength

s, whereL is the length of the seam curve. Let~Tγ(s) be the unit tangent vector alongγ

and let~νi(s) be the outward unit normal vector alongγ(s), i.e.,~νi ⊥ ~Nmi
and~νi ⊥ ~Tγ .

Note that

∇mi
R = R,s

~Tγ + R,~νi
~νi ,
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whereR,s andR,~νi
denote the partial derivative ofR with respect tos and~νi respectively.

This expression allows us to rewrite the equality constraint along the medial seam curves

as:

R,~νi
|
γ
−

√

1 − (R,s)2 cos αi = 0 , (4.2)

whereαi is the angle between the tangent planes of the medial manifoldsmi⊕1 andmi⊕2,

i.e.,

cos αi = ~νi⊕1 · ~νi⊕2 ,

with ⊕ denoting addition modulo 3. Accordingly, the soft penalty for violating this con-

straint can be put as:

(R,~νi
|
γ
−

√

1 − (R,s)2 cos αi)
2. (4.3)

4.2.2 Deformable Model Fitting

This section addresses the problem of how to derive the medial model to describe a real-

world objectH. Similar to other continuous medial models (Yushkevich et al., 2006b;

Terriberry, 2006), a medial templateC is deformed by modifying the control coefficients

of C, so as to maximize the match between theC andH, while ensuring thatC satisfies

certain regularity and validity constraints.

Formulated in the Bayesian framework, the branching medialtemplateC is fitted to a

real-world objectH by maximizing the posterior probabilityp(C|H) ∼ p(H|C)p(C). The

optimization problem is solved by the Conjugate Gradient Decent method.

The first likelihood termp(H|C) is measured by the volumetric overlap between the

real-world object and the medial model interior. In this chapter, we assume the object is

represented by a mask imageM : R
3 → R such thatM is positive onH and negative

on R
3\H. In practice, masks are generated by the interpolation of binary characteristic

images, possibly after smoothing. Thus the first term can be computed by:

p(H|C) =
1

VH

∫

C

M(x)dx, whereVH =

∫

H

M(x)dx. (4.4)
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The spoke vectors in the medial model allow us to sample the whole medial model

interior, so that the overlap term in (4.4) can be computed efficiently.

The second term is the prior term which ensures thevalidity and regularity of the

solution. Thevalidity terms enforce the medial constraints. The equality constraints along

medial seam and edge curves are enforced using soft penalty terms as given in Eqs (4.1)

and (4.3). There are also several more inequality constraints that have been described in

detail in literatures (Yushkevich et al., 2006b), like‖∇mR‖ < 1 for all type 1 points and

the Jacobian constraint to prevent local self-intersection of the boundary. Theregularity

terms further regularize the solution by enforcing desiredproperties, such as the quality

of the control mesh or the preservation of area elements. Theregularity terms in our

implementation are described in Subsec 4.2.5.

4.2.3 Local Correction

A small violation of the medial constraints still remains after the soft-penalty optimization.

The following local adjustments are applied to ensure that the boundary generated from

the medial axis is closed. Along the medial edge, each pair ofspokes is given the mean

value of this pair:

Û
±

=
U+ + U−

2
, (4.5)

and the corresponding boundary points are updated. Similarly, along the medial seam, we

assign spokes to be:

Û
+

mi
=

U+
mi

+ U−
mi⊕1

2
(4.6)

Û
−

mi⊕1
=

U+
mi

+ U−
mi⊕1

2
, (4.7)

and the corresponding boundary points are subsequently updated.

These small local corrections ensure all parts of the boundary to connect seamlessly,

resulting in a similar effect as explicitly adjusting the derivatives of medial axis to enforce

the medial constraints in Terriberry’s Catmull-Clark subdivision surface medial model
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Figure 4.1: This figure illustrates the result of the deformable model with soft penalties
and the effect of local correction. The left column shows theresults after deformable
fitting with soft penalties. The right column shows the results after local correction. The
top row is part of the model boundary, note that before the correction, there are very tiny
seams on the boundary, indicated by the arrows, which disappears after the correction.
The bottom row shows part of the spoke vector field. Note that before the correction, the
6 spokes for the point on medial seam do not match perfectly into 3, but have very small
discrepancy within each pair (one red and one blue as a pair),while after the correction
only 3 spokes can be observed.

(Terriberry, 2006). As long as the soft penalties are enforced on the geometry at medial

edges and seams, the needed correction should be tiny in practice. Fig 4.1 shows the

medial geometry before and after the local correction around the medial seam.

4.2.4 Bi-Ventricular Medial Template

The deformable medial model fits an initial cardiac medial template to the cardiac shapes;

thus, prior to the fitting, a cardiac medial template needs tobe generated. In theory the

template can be any simple hand-created model as long as the branching topology is cor-

rect. However, a data-driven model which is closer to the true solution obviously would

help the deformable model avoid local minima in the optimization process.

In our work, the myocardium of the left and right ventricles are explicitly modeled
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using medial surfaces. The template of the heart wall is derived through several steps.

We start from the manual segmentations. First, a volumetrictemplate is iteratively gen-

erated from the segmentations using a scheme in (Joshi et al., 2004) and the symmetric

diffeomorphic registration algorithm developed by Avantset al. (Avants and Gee, 2004).

Then, the volumetric template is binarized and the Voronoi Skeleton of the binary image is

computed using qhull (Barber et al., 1996). We then intersect the dense Voronoi Skeleton

mesh with a set of cutting planes that are orthogonal to the LVlong axis and obtain the

2D intersection curves. The curves are uniformly sampled togenerate the mesh points.

The final medial template for the LV and RV contains 195 pointsand 381 triangles at the

basic control mesh. We note this is sparser than the boundarymeshes of some published

papers. For example, in (Zheng et al., 2008), 545 points and 1056 triangles are used for

the left ventricle while 761 points and 1476 triangles are used for the right ventricle. And

in (Peters et al., 2009) 7286 vertices and 14771 triangles are used for all four chambers of

the heart. We have experimented to use a denser mesh by subdividing the template control

mesh, however, the performance gain is trivial. Thus it seems that a light weighted tem-

plate is good enough for our application on short-axis MR images. Figure 4.2 illustrated

the medial template. To initialize the deformable model fora particular cardiac shape, we

warp the medial template according to the deformation field we saved in the volumetric

template construction step, and we use the deformed medial template as the initialization.

The pipeline is illustrated in Fig 4.2.

4.2.5 Implementation Details For The Medial Model

In our implementation, Loop subdivision surfaces (Loop andDeRose, 1990) are used to

represent skeletons. Loop subdivision surfaces are especially well suited for describing the

skeleton with complicated topology, because of their triangular elements and simplicity.

The triangular control meshes for Loop subdivision surfaces can be recursively refined

by inserting a vertex into each edge in the parent-level according to a set of subdivision

rules, allowing multi-resolution model fitting. Boundary reconstruction from the skeleton
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Figure 4.2: Medial template building and deformable model initialization pipeline. First:
the boundary of the binrized volumetric template constructed by iterative unbiased aver-
aging algorithm. Second: the pruned Voronoi Skeleton; notethat it still has some small
branches and the mesh is dense. Third: the medial template constructed under manual
control. Fourth: example of a deformed medial template as the initialization for one car-
diac shape.

requires only up to first order derivative information. We calculate them according to the

equations given by Xu (Xu, 2004), which involves one ring of neighbors for each vertex.

The soft penalties are computed on all vertices along medialseams and medial edges

and their average values are used in the objective function of the deformable model. In

practice, we find that the vertices on the medial seam need to have at least a valence of 3

to get enough freedom to satisfy the branching constraints.

In our implementation, tworegularity terms are used in the deformable model fitting.

Since we use a Loop subdivision surface to represent the skeleton, one regularity term is

used to control the quality of the subdivision mesh by penalizing large and small angles in

the mesh triangles. It can be put as:

pregularity−mesh ∼

T
∑

i=1

3
∑

k=1

cos(θi
k), (4.8)

whereT is the total number of triangles on the subdivision medial surface andθ are the

internal angles of these triangles. The second regularity term we use enforces area-based

correspondence of the skeleton by penalizing the distortion of area elements with respect

to the template. In our Loop subdivision surface representation, this term is implemented

as:

pregulatity−correspondence ∼
V

∑

i=1

‖∇m(
Ai

Ai
template

)‖2, (4.9)
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whereV is the total number of vertices on the subdivision medial surface,Ai is the effec-

tive area element of theith vertex which can be computed as one third of the total area of

all triangles belonging to this vertex, and similarlyAi
template is the effective area element

of theith vertex on the template.

The multi-resolution deformable model fitting has two stages. The initial template

mesh is subdivided once in the first stage and twice in the second stage to represent the

medial axis, and the target bi-ventricular binary mask is smoothed by Gaussian kernel with

variance 2 in the first stage and variance 0.6 in the second stage.

4.2.6 Cluster-Based Comparison Between Subject Groups

After the medial model is fitted for each subject, the radial scalar field is used as a local

thickness measurements. And the systolic thickeningM is defined as the changing ratio

in thickness from ED to ES relative to the ED thickness,

M =
SES − SED

SED

(4.10)

whereSES andSED are the ES and ED thicknesses, respectively.

Groupwise comparison can be a useful tool to study various pathology processes. For

example, it might be interesting to investigate whether there is a difference in the thick-

ness and thickening pattern of ventricular hypertrophy caused by different stimuli (eg,

high blood pressure and exercise). Also, although the AMI occurs locally for each patient,

still some areas might be affected more often than others in certain population. This infor-

mation can potentially be revealed by groupwise comparisonof thickness and thickening

maps.

The medial model provides a detailed thickness and thickening map on the skele-

ton mesh where a direct pointwise comparison can be easily performed. To account for

multiple hypothesis testing, the widely used non-parametric cluster-based analysis with

family-wise error rate (FWER) correction (Hayasaka and Nichols, 2003) is applied to the
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groupwise comparison of thickness and thickening. Cluster-based analysis prefers to se-

lect larger connected regions with group difference ratherthan isolated points based on

the assumption that the change of myocardium should have certain extent of continuity.

To compare the thickness/thickening between two groups, wefirst compute a point-

wise t-value using two sample Student’s t test at every pointon the skeleton. Note that

the t-value can be either positive or negative depending on which group has a larger mean

value. Then, given a thresholdt0, corresponding to a p-valuep0, if t0 is positive, the

clusters(connected regions on the skeleton mesh) witht > t0 (or p < p0) are extracted;

similarly, if t0 is negative, theclusterswith t < t0 (or p < p0) are extracted. The cluster

mass is defined as the integral of|t| over a cluster. Permutation testing is used to build an

empirical distribution of cluster mass which yields thepermutation correctedp-value for

each cluster (Hayasaka and Nichols, 2003).

4.3 Results

4.3.1 Materials

The data set we used contains 428 heart shapes from 90 subjects consisting of both healthy

subjects and patients suffering from common cardiovascular pathologies, including my-

ocardium infarction, hypertrophy, LV dilation, LV aneurysm, RV dilation, LA dilation,

RA dilation, and pericarditis. The MR images were generously provided to us by CETIR

Sant Jordi Centre (Barcelona, Spain). The MR acquisition parameters are: TR: 3.75 4ms,

TE: 1.5-1.58ms, FA: 45, slice thickness: 8-10mm, slice size: 256× 256 pixels, res-

olution: 1.56× 1.56mm and FOV: 400× 300mm2, on a General Electric CVI 1.5 T

MR facility. Expert segmentations were manually drawn on the endocardial left ventricle

and right ventricle borders, and on the epicardial border ofthe whole heart to construct a

2-chamber heart model usually including 8-12 slices from the base to the apex. Five dif-

ferent phases of the cardiac cycle were segmented: End Diastole (ED), Mid Systole (MS),

End Systole (ES), Diastole 1 (D1) and Diastole 2 (D2).
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Figure 4.3: Illustration of the medial template. The top rowand bottom row are shown
from different viewpoints. The medial surfaces are shown ascolored meshes with the color
indicating different branches of the medial model. There are three different branches: the
bluesurface models the left ventricular posterior wall; thegreensurface models the inter-
ventricular septal wall; and thered surface models the right ventricular wall. The curve
where these three different colored surfaces join togetheris the branching curve, which
is marked usingyellowcolor on the left figure where the medial surfaces are rendered as
transparent meshes. The boundary surfaces are shown aswhite transparentmeshes on the
right figure.

4.3.2 Branching Topology

The branching topology of the bi-ventricular medial model is illustrated in Fig 4.3. The

medial scaffold is composed of three medial manifolds: one for the septal wall that sep-

arates LV and RV, one for the heart wall that only belongs to LV, and one for the heart

wall that only belongs to RV. The three medial manifolds jointogether along a U-shaped

branching curve. Because there is a manual cutoff of the leftand right ventricles on the

base in the segmentation, the model is left open there instead of enforcing a virtual cap.

Therefore the medial model does not have medial edge curves.There are two type of

points on the medial scaffold for this model: type (3) pointson the branching curves and

type (1) points on everywhere else.
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Table 4.1: The results of fitting branching medial model to 428 cardiac segmentations.
Mean Std

Dice Overlap 0.92 0.017
Avg. Dist. Model to Target (mm) 0.67 0.179
Avg. Dist. Target to Model (mm) 0.85 0.220

4.3.3 Fitting Accuracy

The proposed branching medial model is fitted to the 428 manual segmentation of 2-

chamber heart model on a 8-CPU Linux cluster over approximately 48 hours. Examples

of fitting results are illustrated in Fig 4.4. Given that the fitted cardiac shapes are from both

healthy subjects and patients suffering common cardiovascular pathologies, this fitting

experiment demonstrates the robustness of the method.

The quality of the fit between a target cardiac shapeH and a fitted medial model

C is evaluated using the following criteria: the Dice similarity coefficient (Dice, 1945)
2Vol(C ⋂

H)

Vol(C)+Vol(H)
; average and maximum distance from boundary ofC to boundary ofH; and

average and maximum distance from boundary ofH to boundary ofC. The results are

summarized in Tab 4.1. The cardiac shapes are fitted with meanDice overlap coefficient

of 0.92(±0.017) considering the 8-10mm distance between slices. Theaverage distances

between the medial model and the target boundaries are 0.67mm and 0.85mm respectively,

both at sub-voxel level. Fig 4.6 shows a color map of the average pointwise distance from

the model boundary to the target. Most mismatch occurs at boundary points associated

with vertices on the branching curve with a small valence. Itmight be due to the lack of

freedom for these vertices to deform while trying to satisfythe branching constraints.

4.3.4 Groupwise Comparison of the Thickness and ThickeningMaps

This study uses the branching medial models of 73 subjects belonging to three groups:

HCM group (7 subjects with average age 61.5± 17.7), AMI group (38 subjects with

average age 63.5± 11.6), and healthy heart group (28 subjects with average age50 ±

14.7) where no pathology in the heart has been found.
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Figure 4.4: Examples of medial models fitted to binary segmentations of 2-chamber heart
shapes. For each heart shape, shown are the medial manifold colored by the radius func-
tion R, the model boundary generated by inverse skeletonization, and the boundary of the
segmentation to which the medial model was fitted.
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Figure 4.5: Illustration of distance (mm) between the boundary of the target shape and the
fitted medial model. The left figure overlays the model boundary, which is shown as white
wireframe, on the binary segmentation boundary, which is shown as green surfaces. The
middle figure is the distance map from the target to the model.And the right figure is the
distance map from the model to the target.

Figure 4.6: Average pointwise distance (mm) from the model boundary to the target for
all 428 cardiac shapes.
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Figure 4.7: The mean thickness (left) and thickening (right) map for 28 healthy hearts in
our data set.

The mean thickness and thickening map for the healthy heart group are illustrated

on Figure 4.7. As an example, the statistics derived from healthy heart group is used to

identify regions with abnormal thickness or thickening fora new patient. The result is

illustrated in Figure 4.8. This patient has a region with thicker wall and a region with

decreased thickening, suggesting a coexisting condition of hypertrophy and myocardial

infarction. Results are consistent with the visual inspection by an expert clinician.

We performed cluster-based groupwise analysis on our dataset, comparing the AMI

group and HCM group with the healthy heart group. Significantclusters of each patient

subgroup are shown in Table 4.2 and illustrated in Fig. 4.9, Fig. 4.10 and Fig. 4.11. Only

clusters withpermutation correctedp-value less than 0.01 are listed. The pairs of com-

pared groups are detailed on the furthest left column (see legend for details). Note that the

interpretation of results might be limited to the dataset.

Group difference and t-value maps are visualized in Fig. 4.10 for HCM patients and

in Fig. 4.9 for AMI patients. As can be observed in Fig. 4.9, most patients did not display

myocardial loss due to AMI. Myocardial loss (wall thinning)may present itself after the

AMI event as a chronic consequence of the lesion (Dymarkowski et al., 2005). Instead,

a high percentage of the patients in this database developeda localized mild hypertrophy
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Figure 4.8: The abnormal thickness (left) and thickening (right) regions for a patient are
depicted with contours on the difference maps of the normal group mean and this patient
(patient minus the average of normal group).

along the septum and the anterolateral wall (cluster S1 and S2). Manual examination pro-

vided by an expert clinician supports these findings. Indeedmost of the patients found in

clinical practice are affected by several conditions. The localization of these two clusters

suggest an overload condition of the LV (i.e. high blood pressure or aortic stenosis) (Bo-

gaert and Taylor, 2005) is common for the patients in the dataset. For the group of HCM

patients, meaning patients whose main pathological condition is hypertrophy, we observed

an increased wall thickness over all the LV walls. This uniformly distributed (concentric)

pattern of hypertrophy is one of the most commonly found (Bogaert and Taylor, 2005).

The group difference and t-value maps of the wall thickeningare displayed in Fig. 4.11

for AMI group. The M1 cluster is related to the prevalent infarcted areas of this population

since an infarcted area will display reduced contractility. Most infarctions appear to be

located at the anterolateral wall at basal and mid-ventricular level. The inferior wall is

affected more on the apical segments. No significant thickening cluster is found for HCM

group.
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Figure 4.9: Thickness differences between the healthy heart group (28 subjects) and the
acute myocardial infarction group (38 subjects). The left column shows the average group
difference (healthy group minus AMI group) whereas the right column shows the corre-
sponding t-statistic map. Significant clusters of group difference are depicted with con-
tours on the t-maps, and are also listed in Table 4.2. Different rows are shown from
different viewpoints.
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Figure 4.10: Thickness differences between the healthy heart group (28 subjects) and
the hypertrophic cardiomyopathy group (7 subjects). The left column shows the average
group difference (healthy group minus HCM group) whereas the right column shows the
corresponding t-statistic map. Significant clusters of group difference are depicted with
contours on the t-maps, and are also listed in Table 4.2. Different rows are shown from
different viewpoints.
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Figure 4.11: Systolic thickening differences between the healthy heart group (28 subjects)
and the acute myocardial infarction group (38 subjects). The left column shows the aver-
age group difference (healthy group minus AMI group) whereas the right column shows
the corresponding t-statistic map. Significant clusters ofgroup difference are depicted
with contours on the t-maps, and are also listed in Table 4.2.Different rows are shown
from different viewpoints.
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Table 4.2: Table enumerating clusters of significant differences in thickness and thickening
between different pairs of subject groups, as defined in column 1. Column 1 also gives
information of which group has a greater thickness/thickening for the particular cluster.
Cluster mass is the integral of|t| over the cluster. Every cluster is defined as a connected
region with ap < p0. pcorr is the FWER-corrected p-value of the cluster.

Thickness clusters
Group contrast cluster cluster mass p0 pcorr

Normal< AMI S1 3942.6 0.01 0.005
Normal< AMI S2 4600.7 0.01 0.002
Normal< HCM S3 38120.4 0.05 0.001

Thickening clusters
Normal> AMI M1 10608.8 0.05 0.001

4.4 Discussion and Conclusion

In this chapter a new branching medial model has been presented to extend the continuous

medial model to complex shapes with multi-figures. This approach allows us to model

a much larger class of shapes using continuous medial representation, which not only

provides rich descriptive shape features, but also parameterizes the entire model interior,

setting up a framework to perform a combined statistical analysis of shape and appearance.

Regarding the ways to define thickness, there are several other possibilities which are

all based on the medial axis. One way is to define thickness based on the SLS. For sheet-

like structures, the SLS thickness is about (but less than) twice of the Blum thickness.

SLS thickness might be more analogous to the clinical practice which identifies pairs of

boundary points and measures the point distance. However, asubset of points on the

boundary - the points belonging to multiplefigures, or in another words, the boundary

points generated by points on medial seam curves - will have more than one SLS thickness

measure, one for eachfigure. There’s yet another way to define thickness in literature.

In the “centersurface method” (Bolson and Sheehan, 1993), the thickness is defined as

the length of the line segment that is orthogonal to the skeleton and lies between the

boundary surfaces. This defines the thickness as the distance from the boundary to the

skeleton, as opposed to skeleton to the boundary in the Blum thickness. However, there is
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neither guarantee that each orthogonal line only cuts into the boundary exactly twice nor

proof of how many times each point on the boundary can be hit bysuch orthogonal lines.

Shape features other than wall thickness, like the Mean and Gaussian Curvatures of the

endocardium/epicardium/medial surfaces, are not explored in this study. But they might

also be useful in characterizing certain pathologies.

The medial modeling is particularly useful for population-wise comparison and anal-

ysis. Comparing with deterministic skeletonization, which yields discrete surfaces with

uncertain number of vertices and uncertain number of branches that are sensitive to noise

on the boundary, the medial model produces a robust approximation to the medial axis

with consistent branching configuration and consistent surface representation. This sim-

ple and robust representation of the medial manifolds allows population-wise study and is

also useful for visualization of statistical results.

We also demonstrate a statistical scheme to analyze the ventricular thickness and thick-

ening maps. Derived from the medial model, the ventricular thickness and thickening

maps were used for statistical studies on a data set consisting of HCM patients, AMI pa-

tients and subjects with no pathology in the heart. The statistics of the healthy heart group

is used to identify regions with abnormal thickness or thickening in a patient. Cluster-

based analysis reveals the prevalent patterns of thicknessand thickening change for AMI

and HCM patients in this dataset. The statistical studies yield information that can poten-

tially be helpful for diagnosis and treatment.
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Chapter 5

Model-Based Segmentation using

Statistical Medial Model

This chapter presents a novel approach for the automatic segmentation of the myocardium

in short-axis MRI. The method uses the branching medial model proposed in Chapter

4, whose ability to explicitly represent the thickness of objects is leveraged to construct

a Markovian prior on myocardial thickness. This thickness prior is combined with the

best practices from the ASM literature, such as a global shape prior, statistical modeling

of appearance, and the use of local search to guide model deformation, all of which are

adapted to the medial model. The performance of the segmentation method is evaluated

by comparing to manual segmentation in a heterogeneous adult MRI dataset. The results

show that the proposed method can provide a robust and accurate segmentation with over-

all mean point-to-surface error 1.0 (± 0.21) mm for the endo- and epicardial surfaces of

the left and right ventricles. The left ventricle volume differences between the manual

measurement and model-based estimation (manual-model) isin the range of−6.2 ∼ 13.8

ml. The model also automatically provides a thickness estimation for the myocardium

being segmented. The mean absolute estimation error of the mean thickness for the left

ventricular wall, the interventricular septal wall and theright ventricular wall is 0.47 (±

0.36) mm, 0.53 (± 0.38) mm and 0.66 (± 0.31) mm respectively.
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The research described in this chapter was done in collaboration with Dr. Hongzhi

Wang and Dr. Paul A. Yushkevich at University of Pennsylvania and with Dr. Alejandro

F. Frangi, Dr. Federico Sukno and Catalina Tobon Gomez at University of Pompeu Fabra,

who together contributed to every facet of the work.

5.1 Introduction

Automatic segmentation of the human heart inin vivo imaging data is one of the persistent

challenges in biomedical imaging analysis. Segmentation is a necessary step for virtu-

ally any subsequent analysis of heart structure and function. Statistical shape models are

widely used to segment cardiac images, since the model-based segmentation approaches

are usually more robust than low-level algorithms given they contain information about

the expected shape and appearance of the structure of interest. Probably the most generic

and, at the same time, the most popular way for a model to represent a shape is by rep-

resenting its boundaries. A large number of studies on cardiac segmentation have been

conducted using boundary models (Lotjonen et al., 2004; Assen et al., 2006; Lorenz and

von Berg, 2006; Zheng et al., 2008; Wierzbicki et al., 2008; Peters et al., 2009). In this

chapter, however, I would like to investigate the feasibility of using thestatistical medial

modelin cardiac segmentation.

The medial models, have been used successfully for several biomedical image segmen-

tation tasks, such as hippocampus and kidney segmentation (Pizer et al., 2001; Joshi et al.,

2002). However, to the best of my knowledge, this is the first approach to use deformable

medial models for myocardium segmentation. An important property of the medial model

is that it can represent and control thickness explicitly. This can be particularly helpful

during the segmentation of thin, sheet-like structures, such as the myocardium. The ben-

efits of regulating the thickness during the myocardium segmentation have been explored

in (Zeng et al., 1998; Paragios, 2002; Jolly et al., 2009). Inthis chapter, I segment the my-

ocardium of both left and right ventricles with a Markovian prior on myocardial thickness.
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Most existing cardiac segmentation approaches, even thosedealing with 4-chambers

such as (Zheng et al., 2008; Wierzbicki et al., 2008; Peters et al., 2009; Zhuang et al.,

2008), conventionally only segment the myocardium of the left ventricle, which is rela-

tively thick. For the right ventricle, most authors (Zheng et al., 2008; Peters et al., 2009;

Zhuang et al., 2008) only model the endocardial surface. Wierzbicki et al. (Wierzbicki

et al., 2008), whose application is towards image-guided cardiac surgery, model the epi-

cardium of the right ventricle but leave the endocardium unattended. As we know, the

myocardium of the right ventricle is also an important part of the heart and can be useful

for characterizing a variety of pathologies, such as right ventricle hypertrophy, right ven-

tricular infarction, and ventricular arrhythmias (Sheehan and Redington, 2008; Haddad

et al., 2008). One reason that the right ventricular myocardium segmentation has been

largely ignored might be due to the doubt about how reliable and useful the segmentation

can be given the thinness of the structure and the limited resolution of the image. With

the improvement of cardiac imaging, the interest on right ventricular myocardium seg-

mentation is increasing. Another reason might lie in the limitation of the boundary model

itself. In order to use a boundary model to segment the thin layer of right ventricular

myocardium, particular care needs to be taken to prevent theepicardial and endocardial

surfaces from intersecting or folding into each other. Withthe medial model, the folding

would not be a problem since the thickness should be always positive. And even better,

the segmentation might further benefit from an explicit thickness prior. In this chapter, I

conduct the model-based biventricular myocardium segmentation, compare its agreement

with manual segmentation, and assess its ability to estimate myocardium thickness.

In this work, a single medial model is used to represent the shape of both left and right

ventricles. The model is first adapted to segmented binary volumes in the training data and

the shape priors are constructed based on the medial shape features. The local appearance

model is also constructed for each boundary position by utilizing the Adaptive Boosting

(AdaBoost) algorithm (Freund and Schapire, 1997) to pick and combine weak classifiers

to build a strong one. Then the medial model is adapted to unseen cardiac images under
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the guidance of the boundary detection results and under theregularization of the shape

priors to achieve model-based segmentation.

The rest of the chapter is organized as follows. The medial model and shape pri-

ors are introduced in Section 5.2 and the appearance model isintroduced in Section 5.3.

Section 5.4 reviews the overall segmentation algorithm. InSection 5.5 the experimental

results are reported. The comparison with literature, the correspondence problem, the lim-

itations and plans for future research are discussed in Section 5.6. Section 5.7 concludes

the chapter.

5.2 Shape Priors

To fit the model to unseen image data, I still use the same Bayesian framework as I used

in the binary image adaptation, but change the definition of the likelihood term and add

additional shape priors terms. I will discuss the new likelihood term in Section 5.4. In this

section I deal with the shape prior terms.

The medial model has two types of parameters: the parametersm to describe the

medial surfaces, which in my implementation are the x, y, andz coordinates of the medial

control points, and the parametersR to describe the associated radial thickness. Variability

in medial surface shape is modeled using a multivariate Gaussian distribution: PCA is

applied tom. Before PCA, Generalized Procrustes Analysis (Gower, 1975) is applied to

m to factor out the differences in scaling, rotation, and rigid motion. The number of PCA

modesc is chosen to capture 95% of total variability. During the segmentation algorithm,

to calculate the probability ofm given the PCA model, I first apply Generalized Procrustes

Analysis to align it with the PCA mean̄m. Then the alignedm′ is projected onto the PCA

space to obtain the coefficientsbi. Since there are always variation that cannot be fully

captured by PCA, I allow a residual but regularize it to be within a reasonable range:

−log(p(m; m̄, λ1, ..., λc, v1, ..., vc)) ∼
c

∑

i=1

b2
i

λi

+ α‖m′ − m′
PCA‖

2, (5.1)
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wherevi, λi are the eigenvector and eigenvalue of the PCA covariance matrix, m′
PCA is

the reconstructed model parameter using the projected the PCA coefficientsbi. Thickness

variability is modeled by a more localized Gibbs distribution (i.e., thickness is treated as

a Markov random Field):

−log(p(R1, ..., RN ; µ•, σ•)) ∼
N

∑

i=1

(Ri − µi)
2

σ2
i

+ β
∑

(j,k)∈E

(|Rj − Rk| − µjk)
2

σ2
jk

, (5.2)

wherei = 1, ...N indexes vertices in the medial surface,E is the set of all edges of the

triangle mesh, and{µi, σi, µjk, σjk} are parameters estimated from the training data.

The reason I use different priors form andR stems from the fact that thickness varies

much more smoothly than the x, y, and z coordinates of the medial surface. Thus, the

MRF is an appropriate model for thickness, but it is too restrictive for shape. I performed

experiments that show that using PCA for bothm andR leads to worse segmentation

performance than using PCA form and MRF forR.

5.3 Appearance Model and Boundary Detection

In the popular ASM approach, texture features are sampled around the boundary land-

marks along the direction perpendicular to the model boundary. In the original version

of the ASM (Cootes et al., 1995), appearance features are modeled using PCA, extracting

a mean feature vector and principal modes of variations for each landmark. Later, ASM

was adapted to various segmentation tasks in the biomedicalimage field, during which

different appearance features have been explored, and different ways for constructing the

appearance model out of the features have been proposed. Commonly used appearance

features include image intensity values, their derivatives, Haar wavelets, Gabor wavelets

(Daugman, 1988; McKenna et al., 1997), and steerable features (Freeman and Adelson,

1991). During the model-based segmentation, ASM searches along the directions perpen-

dicular to the boundary to locate new boundary landmarks. This is usually achieved by
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evaluating a designed match function that is supposed to achieve maximum at the bound-

ary. The match function can be Mahalanobis distance, a gradient-based edge detector,

a k-nearest-neighbor (kNN) classifier (de Bruijne et al., 2003), or other discriminative

training-based classifiers (Zheng et al., 2008).

The AdaBoost algorithm (Freund and Schapire, 1997), which provides a way to se-

lect and combine different features from a potentially large feature pool to build a strong

classifier, is used in this work. AdaBoost has been used in several image segmentation

applications. For example, Morra et al. (Morra et al., 2010)show that AdaBoost can

automatically select good features for hippocampus segmentation. In this application,

AdaBoost algorithm is used to help construct local appearance models which are used to

drive image segmentation, as illustrated by Figure 5.1. Below I describe the appearance

model in detail.

5.3.1 AdaBoost Training and Classification

At each vertex in the medial model, I build a model of local appearance, which is subse-

quently used to drive image segmentation. Recall that for most medial pseudo-landmarks

there are two corresponding boundary nodes, one on each side. At these two nodes,

the maximal inscribed ball which centers at the medial pseudo-landmark is tangent to

the model boundary. The exceptions are the medial pseudo-landmarks on the branching

curves at the two ends of the interventricular septum, whichhave three corresponding

boundary nodes. Thetriple tangencybranching points are treated as the limit case, where

threebitangencypoints meet together. Each one of these three bitangency points belongs

to one branch of the medial axis and is treated normally during the training and boundary

detection. After boundary detection, the triple tangency medial pseudo-landmark and the

radius will be updated as the average of the three independent bitangency detection results.

Below I only deal with bitangency cases.

At each boundary node, I train an AdaBoost classifier to discriminate between a “well-

placed” boundary node and a “misplaced” boundary node, as illustrated in Figure 5.3. A
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(a) Training boundary classifiers

(b) Detecting a pair of boundary points

Figure 5.1: Illustration of appearance matching using the AdaBoost classifier. (a). The
classifier is trained to differentiate between boundary nodes located at the correct anatom-
ical boundary and displaced boundary nodes. In the figure, the yellow bars show samples
drawn from correct anatomical boundary, while the red bars are samples that are displaced.
During training, each boundary node is displaced along thechord direction(illustrated in
Figure 5.2), and samples from the image neighborhood are used to generate appearance
features. Combining features from different subjects, at each boundary node, I train an Ad-
aBoost classifier with two classes (displaced node vs. not displaced). (b). The deformable
model is shown in red color while the underlying object is shown in green color. During
segmentation, the classifier is used to position boundary nodes close to anatomical bound-
aries. Pairs of boundary nodes that share a medial pseudo-landmark are displaced along
the chord direction, governed by the AdaBoost classifiers corresponding to the nodes. Fol-
lowing these displacements, the deformable model is updated so as to satisfy the necessary
geometric constraints and to abide by the shape priors.
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Figure 5.2: Illustration of chord direction. For boundary nodesb± which correspond to
the medial pseudo-landmarkm, the chord direction which crossesb+ andb− shown as
purple line in the figure.

well-placed boundary node lies within a certain distance tothe corresponding anatomi-

cal boundary in the training image, and a misplaced boundarynode lies some distance

away from the anatomical boundary, as illustrated in Figure5.3. Well-placed boundary

nodes are obtained by fitting models to manual segmentationsof the myocardium in the

training data. Misplaced boundary nodes are obtained by applying displacements to the

well-placed boundary nodes along the direction between thetwo corresponding boundary

nodes. This displacement direction, calledchord directionsince it is a chord of the MIB,

is illustrated in Figure 5.2. Therefore training exemplarsfor each classifier include well-

placed and misplaced versions of a given boundary node across all subjects included in the

training subset. To further increase the number of trainingexemplars and make classifiers

less sensitive to location, I include, as training exemplars for each classifier, misplaced and

well-placed versions of the boundary nodes in the two-ring neighborhood of the boundary

node associated with the classifier.

During local boundary detection, each sample corresponding to a pseudo-landmark go

through two classifiers, one for each of the two corresponding boundary nodes. According

to the classification scores, a pair of points satisfying thefollowing conditions is selected

to be the new candidates of boundary nodes: (1) they are classified as correct boundary

nodes according to the two classifiers respectively; (2) their order is consistent with the

right order of the boundary nodes (otherwise the boundarieswould intersect); and (3) the
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Figure 5.3: Illustration of training exemplars of a “well-placed” boundary node (class 0)
and a “misplaced” boundary node (class 1) in AdaBoost training. The manual segmenta-
tion of the anatomical structure is shown in gray. The medialmodel is fitted to the man-
ual segmentation to obtain medial pseudo-landmarks and corresponding boundary points.
The left figure shows a “well-placed” boundary node centeredat the exact boundary of
the manual segmentation. Note that since the manual segmentation can not be perfect, I
actually place three “well-placed” boundary nodes for eachboundary location: one is on
the exact boundary of the manual segmentation as illustrated in the left figure, the other
two are on two sides of the first one and are obtained by applying a small displacement
to it along the chord direction. The right figure shows a “misplaced” boundary nodes,
which is obtained by applying displacements to the well-placed boundary nodes along
chord direction.
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overall classification score is the highest for all pairs satisfying condition (1) and (2). If

no such pair can be located for a particular medial pseudo-landmark, the local boundary

detection algorithm will return a void result for this medial pseudo-landmark.

5.3.2 Features of AdaBoost

A rich set of features is used to build these AdaBoost classifiers.

First, for each MRI slice, I compute a set of texture descriptors at different scales,

which are calledirreducible Cartesian differential invariants(Schmid and Mohr, 1997;

Walker et al., 1997; Sukno et al., 2007). Using Einstein notation, with L denoting image

derivative in directioni ∈ {x, y}, these descriptors are given byL, LiLi, Lii, LiLijLj ,

andLijLji. The Cartesian differential invariants are invariant to rigid transformations.

The termirreduciblemeans that any other algebraic invariant can be reduced to a linear

combination of elements of this minimal set.

These texture descriptors are sampled around each boundarynode using a cylindrical

sampling grid oriented along the chord direction. A 2D illustration is in Figure 5.3. The

axis of the cylinder lies along thechord direction. On the cross-section of the cylinder, grid

points are put both at the center of the circle and on the boundary of the circle. Assume

that there areXc points on the boundary of the circle on each cross-section, and along

the axis of the cylinder there areYc cross-sections being sampled. Each sample will have

(Xc + 1) × Yc points.

Linear interpolation is used to sample texture descriptorsbetween slices. Thousands of

features are obtained for each boundary node. For each feature, a simple threshold-based

weak classifier is constructed. AdaBoost is used to combine these weak classifiers into a

single strong classifier.
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5.4 Segmentation Algorithm

The current model uses landmark-based initialization. Theuser manually selects six land-

marks, including the LV apex point and five points at the most basal slice. Based on these

landmarks, a similarity transformation is determined, which places the model in the image

and serves as the initialization. Subsequently, the model is deformed by iteratively apply-

ing two steps:local searchandBayesian deformation. Both of these steps are adaptations

of the segmentation algorithm used in active shape models (Cootes et al., 1995), and I only

summarize them here.

In the local search step, AdaBoost classifiers are used to findnew candidate posi-

tions for boundary nodes, as described above in Section 5.3.If a pair of new boundary

candidates can be located for a medial pseudo-landmark, I can compute a new medial

pseudo-landmark and radius by assuming that the angles between thechord directionand

the radial directions(the vectors starting from the medial pseudo-landmark and pointing

to the corresponding boundary points) stay the same. Let’s assume that in a previous state

the medial pseudo-landmark and radius are(m, R) and that the corresponding boundary

points are(b+, b−), while in candidate model state after local boundary detection we have

new boundary candidates(b̂
+
, b̂

−
). Then the new medial pseudo-landmark and radius

(m̂, R̂) are

m̂ = b̂
+

+ (m − b+) ·
|b̂

+
− b̂

−
|

|b+ − b−|
, (5.3)

R̂ = R ·
|b̂

+
− b̂

−
|

|b+ − b−|
(5.4)

Following local boundary detection, the medial model will no longer be in a valid

state, as the equality medial constraints will surely be violated. Likewise, the model is

likely to adhere poorly to the shape prior defined in Section 5.2. To address this, I fit the

deformable medial model to the new candidate medial pseudo-landmarks(m̂, R̂) using

Bayesian maximum a posteriori estimation, with likelihoodgiven by the distance from the

deformable model nodes to the candidate medial pseudo-landmarks, and the prior terms
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Figure 5.4: Example of automatic segmentation in a single subject. The top row shows the
manual segmentation in green and the model initialized by landmarks in blue. The bottom
row shows the segmentation result in red, with manual segmentation in green. From left
to right, slices progress from most basal slice to the apex.

to ensure the validity and regularity of the medial model. Tocompute this likelihood term,

I calculate the values of medial pseudo-landmarks and the radii from the model, denoting

them as(mm, Rm), and define the distance to the candidates(m̂, R̂) as

d =

N
∑

i=1

[||m̂ − mm|
2 + (R̂ − Rm)2].

This likelihood treatsm andR as having the same units, which has not been a problem

in practice. A likelihood term based on Mahalanobis distance could also be used as an

alternative. The prior term of the Bayesian model contains the terms used in the binary

segmentation adaptation and the shape prior terms as definedin Equation (5.1) and (5.2).

This procedure of local boundary detection followed by global model adaptation is

repeated iteratively. Experiments show that the deformable model converges within a few

iterations. I adjust the relative weights of the priors to enforce a strong shape constraints at

the beginning, when the model is likely to be far from the truesegmentation, and relax the

shape constraints towards the end to allow the model more freedom to follow the boundary

detection results.

90



Figure 5.5: Illustrate the mean segmentation error. The meshes are colored by the mean
point-to-surface distance from the model boundary mesh to the manual segmentation
boundary mesh. The left figures show the endocardial boundary of the left and right
ventricles. The right figures show the epicardial boundary of the left and right ventricles.
The top row and bottom row are figures from different view point.

5.5 Experiments

5.5.1 Data Set

Two data sets are used in the experiments. The first data set (DB1) contains 81 manually

segmented short-axis cardiac MRI volumes in the end diastole phase from both healthy

subjects and patients suffering from common cardiovascular pathologies, including my-

ocardial infarction (25), hypertrophy (21), LV dilation (6), LV aneurysm (2), RV dilation

(2), LA dilation (5), RA dilation (2), and pericarditis (4).The MR images were generously

provided to us by CETIR Sant Jordi Centre (Barcelona, Spain). The expert segmentations

were manually drawn on the endocardial left ventricle and right ventricle borders, and on

the epicardial border of the left and right ventricles to construct a 2-chamber heart model

that typically spans 8-12 slices from the base to the apex.
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The second data set (DB2) contains 40 short-axis cardiac MR studies from 4 differ-

ent groups: healthy (10), myocardial infarction (MI) (10),hypertrophy (10) and dilated

cardiomyopathy (DCM) (10). Hui Sun, an author, manually segmented the endocar-

dial and epicardial surfaces of the ventricles using ITK-SNAP (Yushkevich et al., 2006a)

(www.itksnap.org). The segmentation is reviewed by Catalina Tobon-Gomez, another au-

thor and also a trained expert, to ensure the quality.

The acquisition parameters of both datasets are: TR/TE=2.9/1.2 ms, flip angle=45o,

in-slice resolution = 1.5625 mm× 1.5625 mm, slice thickness= 8 mm, slice separation=

0 mm, field of view= 400 mm× 340 mm, on a General Electric Signa CVi-HDx 1.5T

scanner (GE Healthcare, Milwaukee, USA).

5.5.2 Experimental Design

The DB1, which consists of 81 manual segmentations, is only used for medial template

building and shape prior training. The DB2, which consists of 40 images and their manual

segmentations, is used for training appearance models and evaluating the segmentation

performance through cross-validation experiments. In each round of cross-validation, the

appearance model is built on a subset of 24 images (6 images from each subgroup) and

the segmentation results are evaluated on the remaining 16 images. Cross-validation is

repeated 10 times (the AdaBoost training is time-consumingand precludes us from doing

a much larger number of cross-validation experiments) and the average results on the 160

segmentations are reported. The results for each group are also reported separately to

study the influence of different heart conditions on automatic segmentation.

5.5.3 Initialization Error Tests

To evaluate the influence of initialization on this segmentation approach, the cross-validation

experiment is performed four times. In these experiments, Gaussian noises are added to

the x, y, and z coordinates of the true landmark positions to enlarge the initialization error.
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Table 5.1: Initialization error tests. The errors (± standard deviation) are point-to-mesh
distances with the manual segmentation meshes. Here LV/RV indicate the endocardial
surface of the left/right ventricle, while EPI means the epicardial surface of both left and
right ventricles.

Noise LV(mm) RV(mm) EPI(mm)
N(0,0) Initialization Error 4.51± 1.19 4.44± 1.35 3.95± 0.84

Final Error 0.87± 0.23 1.19± 0.28 0.98± 0.23
N(0,1) Initialization Error 4.58± 1.22 4.43± 1.38 4.00± 0.85

Final Error 0.87± 0.22 1.19± 0.28 0.98± 0.24
N(0,5) Initialization Error 5.22± 1.64 4.99± 1.95 4.85± 1.54

Final Error 0.92± 0.28 1.25± 0.32 1.02± 0.27
N(0,10) Initialization Error 6.66± 2.73 6.13± 2.91 6.48± 2.80

Final Error 1.26± 1.32 1.71± 1.50 1.54± 1.77

The Gaussian noises added in the four experiments have zero means and their standard

deviations are 0mm, 1mm, 5mm, and 10mm. The initialization error and the final error

are summarized in Table 5.1. The boundary delineation errors are measured by the widely

used point-to-mesh distance (Assen et al., 2006; Zheng et al., 2008). For each point on

the mesh, the closest point (not necessarily mesh triangle vertices) on the other mesh is

located and the Euclidean distance between these two pointsis calculated. This distance

is computed for each point on the mesh and the weighted average (according to the area)

defines the point-to-mesh distance to the other mesh. The distance is calculated from

model-based segmentation mesh to the ground-truth and viceversa to make the measure-

ment symmetric.

Table 5.1 lists the results separately for: the endocardialsurface of the left ventricle

(LV), the endocardial surface of the right ventricle (RV), the epicardial surface for both

left and right ventricles (EPI). The initialization error and the final error increases with

the added inaccuracy. When the noise goes upN(0, 10), the result becomes less stable

although the average final error is still reasonable.
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Table 5.2: The mean point to mesh errors (± standard deviation) between the manual
segmentation meshes and model-based segmentation meshes based on cross-validation.
Here LV/RV indicate the endocardial surface of the left/right ventricle, while EPI means
the epicardial surface of both left and right ventricles.

LV(mm) RV(mm) EPI(mm) Whole mesh(mm)
healthy 0.78± 0.13 1.07± 0.20 0.96± 0.20 0.94± 0.14
MI 0.94± 0.37 1.16± 0.34 1.06± 0.38 1.05± 0.36
DCM 0.88± 0.19 1.33± 0.29 0.97± 0.13 1.03± 0.12
hypertrophy 0.87± 0.15 1.19± 0.22 0.92± 0.12 0.97± 0.10
all 0.87± 0.23 1.19± 0.28 0.98± 0.23 1.00± 0.21

5.5.4 Boundary Delineation

Figure 5.4 shows an example of model-based segmentation. Figure 5.5 shows the distri-

bution of the mean segmentation error on the boundary mesh. The boundary delineation

errors based on the cross-validation described in Section 5.5.2 are summarized in Ta-

ble 5.5.4. All the segmentation cases in the cross-validation experiments are included in

the calculation. The table lists the results separately for: the endocardial surface of the left

ventricle (LV), the endocardial surface of the right ventricle (RV), the epicardial surface

for both left and right ventricles (EPI), and whole heart mesh (WM). The mean error for

the whole mesh is 1.0 (± 0.21) mm. According to the results, the disease state, especially

the MI, does slightly affect the performance of the model-based segmentation. However,

results for all different groups are quite encouraging.

The Markovian prior on myocardial thickness helps to improve the result. Instead of

using PCA form and MRF forR, if I use PCA for bothm andR, the mean point-to-

mesh errors for the endocardial surface of the left ventricle, endocardial surface of the

right ventricle, and epicardial surface for both left and right ventricles would go up to

0.95(±0.28) mm, 1.24(±0.51) mm and 1.07(±0.32) mm.
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Table 5.3: Error of the heart wall thickness estimation in medial models fitted directly to
MRI images comparing with medial models fitted to manual segmentations.

SEP Wall LV Wall RV Wall
Mean Absolute Error (mm) 0.53± 0.38 0.47± 0.36 0.66± 0.31

Bias (mm) -0.35± 0.55 -0.41± 0.42 -0.65± 0.34
Error Range(mm) -1.74∼ 1.37 -1.8∼ 0.47 -1.60∼ 0.31

5.5.5 Thickness Measurements

The heart wall thickness is an important parameter to assessmyocardial function. The

medial model associates each point on the medial surface with the diameter of the maximal

inscribed ball, which can serve as a thickness measure. Table 5.3 summaries the error of

the mean thickness estimation. Note that although the mean point-to-surface distances

for the endocardial and epicardial surface are around 1 mm, the mean absolute thickness

errors are only within 0.47∼0.66 mm. This might be a bonus of using statistical medial

model which regularizes the thickness explicitly. However, there is a systematic bias in the

thickness measure within -0.65∼-0.35 mm. This could be due to the fact that the training

data and testing data are segmented by different individuals that may have systematic

different preferences.

5.5.6 Left Ventricular Volume

In this section I analyze the estimation of the left ventricular volume (LVV) based on the

model segmentation. Table 5.4 summarizes the mean results.The accuracy of the LVV

estimation was calculated as the percentage of absolute volume difference relative to true

volume, or1 − abs(LV Vmodel−LV Vmanual

LV Vmanual
). The accuracy is quite similar across different

disease groups and the overall mean accuracy is 96.6 (± 2.4)%.

Agreement of LVV model-based measurements with manual measurements is further

assessed by means of Bland-Altman plot (Bland and Altman, 1986) in Figure 5.6. The plot

shows a slight underestimation of the LVV for model-based measurement with a mean bias
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Table 5.4: The mean left ventricular volume (± standard deviation) through manual mea-
surement and model-based estimation, as well as the mean accuracy of model-based esti-
mation (± standard deviation)

manual (ml) model (ml) accuracy(%)
healthy 83.1± 22.5 81.9± 22.2 96.4± 2.2
MI 104.4± 27.2 103.2± 27.6 96.9± 1.8
DCM 145.0± 33.4 140.2± 33.5 96.6± 3.3
hypertrophy 91.7± 22.0 88.7± 20.6 96.4± 2.1
all 106.0± 35.6 103.5± 34.6 0.966± 0.024

Figure 5.6: Bland-Altman plot for LVV comparing the manual measurement and model-
based measurement.

of 2.6 ml. This might be caused by the overestimation of the heart wall. The volume dif-

ferences between the manual measurement and model-based estimation (manual-model)

is in the range of−6.2 ∼ 13.8 ml. These values are very much within intraobserver

variability (Bailly et al., 2008). The mean absolute error for LVV estimation is 3.5 ml.

5.5.7 Right Ventricular Volume

This section briefly analyze the estimation of the right ventricular volume (RVV) based

on the model segmentation. Agreement of RVV model-based measurements with manual

measurements is assessed by Bland-Altman plot in Figure 5.7. The plot shows a slight

underestimation of the RVV for model-based measurement with a mean bias of 7.5 ml.

96



Figure 5.7: Bland-Altman plot for RVV comparing the manual measurement and model-
based measurement.

The volume differences between the manual measurement and model-based estimation

(manual-model) is in the range of: −1.8 ∼ 19.8 ml. The mean absolute error for RVV

estimation is 7.6 ml.

5.6 Discussion

5.6.1 Compare with Literatures

It is not easy to compare the heart segmentation errors from different papers since they

use different model, different data sets and different error measures. Nevertheless, I sum-

marizes them as much as I can in Table 5.5 for the segmentationof cardiac MR images

reported in the literature. The error in this approach is thesecond smallest according to a

direct comparison of boundary displacement error. Overallthe paper by Peter et al. (Peters

et al., 2009) gives the smallest error, but their image resolution is much better than images

used in other papers, and only the endocardial surface is segmented for the right ventricle

in their method.
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Table 5.5: Errors (± standard deviation if applicable) reported in the literature for MR
image segmentation.

resolution (mm3) LV (mm) RV (mm) EPI (mm)
mitchell 02 (*) 1.56×1.56×9 2.75±0.86 - 2.63±0.76 (LV)
Lotjonen 04 1.0×1.0 (+) 2.01±0.31 2.37±0.50 2.77±0.49 (LV+RV)
van Assen 08 1.5×1.5×10 1.72 - 1.55 (LV)
Zhuang 08 2×2×2 2.4±1.1 2.6±1.5 1.3±0.21 (LV)
Jolly 09 1.25×1.25×8 2.26 - 1.97 (LV)
Peters 09(**) 0.6×0.6×0.8 0.69 0.74 0.83 (LV)
This approach 1.56×1.56×9 0.87±0.23 1.19±0.28 0.98±0.23 (LV+RV)
(*) distances are measured on 2D slices.
(**) surface to surface distance is used as the error measure
(+) both short-axis and long-axis images are used.

5.6.2 On the Establishment of Model Correspondence

As discussed in Section 2.1.2, there are many different methods to enforce the corre-

spondence for landmark-based boundary models. One of them is via mesh-to-volume

registration, i.e., adapting a deformable surface model tothe segmented binary volumes

and defining the correspondences by the vertex locations of the deformable template af-

ter the surface evolution has converged. This is the approach adopted in (Kaus et al.,

2003; Zhao and Teoh, 2008). The approach in this chapter is similar to this type of corre-

spondence, with the difference that the deformable model I used is medial model, which

defines the correspondence on the medial surface and propagates it to the boundary sur-

face, rather than the boundary model, which defines the correspondence directly on the

boundary surface. There are several commonly raised concerns for using mesh-to-volume

registration to establish the correspondence. The first is the bias introduced by a randomly

chosen template. In my approach, the medial template is derived from an iteratively built

volumetric template using the the symmetric diffeomorphicregistration (Avants and Gee,

2004), which minimized the possible bias. The second concern is how well the deformable

model can approximate the shape. The medial model’s abilityto approximate the left and

right ventricles accurately was demonstrated in Chapter 4 where the deformable medial

model is fitted to 428 three-dimensional heart shapes with a mean Dice overlap of 0.92.
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Zhao and Teoh (Zhao and Teoh, 2008) proposed to improve the approximating accuracy

of the deformable model by introducing “bridging” shapes for those shapes that are not

well approximated in the first round of model fitting. This approach can also be adapted in

this medial model in the future to further improve the approximation accuracy. The third

concern is whether the deformable model is properly constrained, which in this approach

the deformable model is regularized by an internal energy tominimize the area-element

distortion of the medial surface. This regularization favors a correspondence that is similar

to 2D arc-length-based correspondence, which, although can not guarantee to be anatom-

ically meaningful, is a correspondence with explicit geometric interpolation.

5.6.3 Limitations and Future Work

As the first attempt to use statistical medial model to segment the cardiac shapes, this

method bears several limitations that can potentially be improved in future research.

First, the landmark-based initialization still requires manual operation, which can be

replaced by an automatic heart localization procedure. In the literature, several methods

have been proposed to achieve heart localization, such as optimizing a match function

between the model and the image using gradient minimization(Lotjonen et al., 2004),

using global or local affine registration to propagate a labeled atlas (Zhuang et al., 2008),

using machine learning based 3-D object detection method (Zheng et al., 2008). Similar

techniques can be tested for the medial model in the future.

Second, the two datasets used are only manually segmented once. Therefore the in-

traobserver and interobserver variabilities are not performed. This is a limitation of the

dataset.

Third, I have only experimented on one type of local texture descriptor in the pa-

per, which is the irreducible Cartesian differential invariants. There are several other

compelling texture descriptors, such as Haar wavelets, Gabor wavelets (Daugman, 1988;

McKenna et al., 1997), steerable features (Freeman and Adelson, 1991) among others,

which might work equally well or even better. An comparativeanalysis between a number
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of image features could be of interest to optimize the segmentation results.

5.7 Conclusion

In this chapter, I present a segmentation method, which, according to my knowledge, is the

first reported method using the statistical medial model to segment the left and right ven-

tricular myocardium. The medial model provides a set of unique shape features, including

the thickness, which are learned and incorporated as the shape priors in the model-based

segmentation. The boundary detection is performed using AdaBoost learning-based clas-

sifiers.

The segmentation algorithm is tested on short-axis cardiacMR images and proved to

be accurate and robust. The segmentation of the right ventricular myocardium is rarely

conducted in the literature due to its thinness nature. I proved that in a typical short-

axis cardiac data set, it is possible to segment the right ventricular myocardium pretty

accurately. An extra advantage using medial model to segment the myocardium is that it

instantly provides the thickness measure which is an important parameter to characterize

the myocardium function.

The accuracy of the segmentation is evaluated separately for four different groups:

the healthy group, the acute myocardial infarction group, the hypertrophy group and the

dilation group. This can be important if the segmentation results are intended to be used in

clinical studies so that the segmentation performance can be considered when interpreting

the final results.
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Chapter 6

Conclusions

6.1 Summary of Contributions

At the end of this work, this chapter revisits the contribution claims laid out in Chapter 1

and discuss limitations and future research. These claims were:

1. New method: Constructing a 2D cm-rep by obtaining the explicit closed-form

solution of the ODE, which is a 2D equivalent of the PDE used in(Yushkevich et al.,

2006b).

This work is built upon the PDE-based cm-rep approach in (Yushkevich et al., 2006b),

which enforces the medial equality constraints as the boundary condition of the Poisson

PDE. In Chapter 3, the closed-form solution of the corresponding ODE for 2D objects is

derived by utilizing Pythagorean hodograph splines(Farouki and Sakkalis, 1990; Farouki

and Neff, 1995), so that the PDE-based approach can be efficiently applied to generate

cm-rep for 2D objects without the need to numerically solve the ODE in each iteration.

However, since the Possion PDE approach is only feasible forshapes whose medial axes

consist of a single medial manifold, the application of thismethod is limited to simple 2D

shapes.

2. Application: Being the first to use the medial model to perform shape-based

normalization of the corpus callosum and to demonstrate potential advantages over a
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registration-based approach.

This application demonstrates the ability of the medial model to provide a shape-based

correspondence and to extend the correspondence from the boundary or the medial axis to

the entire interior region of the model. The correspondenceemployed in this experiment

is the equal arc-length subdivision of the symmetry curves,which is entirely shape-based.

This demonstration of the correspondence based on the 2D medial model also serves as

a good justification for the correspondence adopted in the 3Dstatistical medial model in

Chapter 4 and 5, which is enforced by penalizing the area-element distortion of the medial

surface and thus achieves a similar effect as the equal arc-length subdivision in 2D.

This shape-based correspondence for corpora callosa is compared with the technique

most commonly used to normalize imaging data: volumetric registration. The results

using DTI data from a chromosome DS22q11.2 deletion study demonstrate that shape-

based normalization of the corpus callosum using cm-reps makes it possible to detect

statistical differences between populations that were notdetected when registration was

used to normalize the structure. A direct comparison of the alignment of connectivity

maps between cm-reps and registration gives further justification to the use of cm-reps,

suggesting that the shape-based correspondences in the corpus callosum more accurately

reflects the underlying anatomical correspondence. The fact that both types of results are

stable with respect to the choice and the parameters of the diffusion tensor tractography

algorithm adds further weight to our findings.

However, this evaluation is limited to one registration algorithm using one set of pa-

rameters. Therefore the conclusion should not be generalized to judge correspondences

that are based on other volumetric registration techniques.

3. New method: Constructing a 3D branching medial model by enforcing the equality

medial constraints using soft penalty terms and local corrections in the deformable model.

This new approach to construct 3D medial model for complex shapes is given in Chap-

ter 4. This approach allows us to model a large class of shapesusing the cm-rep, which

not only provides rich descriptive shape features, but alsoparameterizes the entire model
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interior, setting up a framework to perform a combined statistical analysis of shape and

appearance. The deformable branching medial model is constructed by first defining a

synthetic medial axis (connected manifolds with radial scalar fields) and then obtaining an

object whose true medial axis coincides with the synthetic medial axis viainverse skele-

tonization. The validity of such an object depends on a set of medial constraints, including

non-linear equality constraints that hold along the edge and branching curves of medial

manifolds and inequality constraints that hold everywhereon the medial manifolds. These

constraints ensure that the boundary of the object is closedand not self-intersecting. Our

method deals with the medial constraints using a simple but efficient approach: enforcing

them as soft penalty terms in the deformable model to minimize the violation, and then

applying small local corrections to ensure the smoothness of the model boundary. Com-

paring with existing branching medial models (Yushkevich,2008; Terriberry and Gerig,

2006), the proposed approach’s simplicity in implementation and low computation load

make it easily applicable to model 3D objects with complex shapes.

4. Application: Using the 3D branching medial model to represent the left and right

ventricular myocardium, which yields aligned thickness and thickening maps.

This experiment answers a critical question: is the medial representation flexible enough

to represent the full range of cardiac shape configurations one is likely to encounter in clin-

ical practice. It has long been pointed out in the literaturethat medial models and skeletons

have certain attractive features for shape analysis, including, in particular, the ability to

represent thickness explicitly and succinctly. However, there has always been skepticism

about the flexibility of medial models: the ability to cover the full range of shapes that one

would like to study in a given application. In Chapter 4, the flexibility of medial models is

demonstrated by an experiment on a large scale cardiac data set consisting of both healthy

subjects and patients.

Medial modeling not only provides descriptive shape features, but also is particularly

useful for population-wise comparison and analysis, as demonstrated by the experiment

to analyze ventricular thickness map and thickening map on adata set consisting of HCM
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patients, AMI patients and subjects with no pathology in theheart.

5. New method: Constructing a statistical medial model comprising a shape prior of

the medial manifolds using PCA, a shape prior of the radial thickness field using MRF, and

an appearance prior of the image features sampled around themodel boundaries using

the Adaboost algorithm.

In chapter 5 we present a scheme to construct the statisticalmedial model for segmen-

tation. Segmentation is an important application of statistical boundary models. The me-

dial model has advantages over the boundary model in terms ofproviding intuitive shape

features, which potentially make better shape priors for image segmentation. Just like

there are many different ways to construct a statistical boundary model, we have a large

number of choices on how to construct a statistical medial model. The way we choose is

similar to the state-of-art ASM, but with all the scheme redesigned to fit the medial model

framework.

Two different shape priors are constructed out of differentshape features. The PCA

approach is used to model the coordinates of the medial pesudo-landmarks, while MRF

is used to model the radial scalar field. Boundary detection is performed using Adaboost

classifiers built on boundary-based samples. The sampling direction is along the chord

direction of the MIB which connects two corresponding boundary nodes, rather than along

the perpendicular direction of the boundary surface in ASMs.

6. Application: Being the first to apply the statistical medialmodel to cardiac image

segmentation and show that it can segment the left and right ventricular myocardium

accurately.

This probably is the most important application in the thesis. The segmentation of car-

diac images is frequently needed for heart function studies. As the first statistical medial

model for cardiac segmentation, this experiment is an important demonstration of how

well the statistical medial model can perform in such tasks.The experiment reveals that

it does work extremely well, providing a robust and accurateresult. It successfully seg-

ments both the left and right ventricular myocardium, the latter being rarely segmented by
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boundary models. And not only can the statistical medial model segment the myocardium

accurately, but also it can provide a thickness measure for the myocardium, which is an

important function parameter.

6.2 Discussion and Future Work

Chapter 3, 4 and 5 are the three main chapters of this thesis. Each chapter focuses on

demonstrating a unique property of the medial model. Chapter 3 demonstrates the power

of the medial model to perform shape registration. Chapter 4demonstrates the ability of

the medial model to perform shape analysis. And Chapter 5 demonstrates the power of

the medial model in image segmentation.

Chapter 3 connects to the other two chapters rather loosely.Chapter 4 and 5, which

describe the methodology developments on 3D branching medial model and the applica-

tion to cardiac data, are the focus of this thesis. Chapter 3,which describes a 2D method

and its application to corpus callosum study, provides supporting evidence on advantages

of the correspondence provided by medial geometry. The 3D version of this correspon-

dence is adopted in Chapter 4 and 5. The limitation of Chapter3 is obvious. There are

only a limited number of anatomical structures that lend themselves well to 2D modeling.

And the conclusions drawn from 2D studies do not necessarilyextend to 3D cases. In that

sense, it would be better if a similar study on the correspondence can be conducted on 3D

structures to help estimating the correspondence used during the cardiac study in Chapter

4 and 5.

Chapter 4 and 5 are closely connected. They develop 3D branching medial model and

apply it to solve problems in cardiac studies. Chapter 4 is the basis and solves the problem

of how to stitch the medial manifolds together during the deformable modeling, which is a

fundamental problem that all branching cm-rep approaches need to address. It also solves

a series of application-specific problems, such as how to build the medial template for car-

diac data, how to maintain the mesh quality during model fitting. Chapter 5 is probably the
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most important chapter in the thesis. It combines the deformable medial model with the

best practices from the ASM literature, such as statisticalmodeling of appearance, and the

use of local search to guide model deformation, and developsan automatic segmentation

algorithm of the myocardium in short-axis MRI. To the best ofmy knowledge, this is the

first approach to use deformable medial models for myocardium segmentation. And the

performance of the segmentation compares favorably with published works. This good

performance is due to a number of reasons, including the Adaboost algorithm which se-

lects best image features in the local appearance modeling,the coupled searching scheme

of the endocardial and epicardial borders of the myocardium, and the Markovian prior

on myocardial thickness. However, comparing with ASM, thismedial-based segmenta-

tion algorithm is much slower. A worthwhile research direction in the future would be

improving the speed of the algorithm.

Among the techniques that have been proposed for cm-rep, thePDE-based approach

provides a solution that is mathematically rigorous and it has been tested by applications

on hippocampus (Yushkevich et al., 2006b; Yushkevich, 2008) and white matter tracts

(Yushkevich et al., 2008). The biharmonic PED approach is also able to handle branching

medial model. The drawback of this approach is that it requires solving a PDE each time

the model coefficients are adjusted, which can be cumbersomefor deformable modeling.

Our model can serve as a near perfect initialization for suchPDE-based models.
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