328 research outputs found

    Results towards a Scalable Multiphase Navier-Stokes Solver for High Reynolds Number Flows

    Get PDF
    The incompressible Navier-Stokes equations have proven formidable for nearly a century. The present difficulties are mathematical and computational in nature; the computational requirements, in particular, are exponentially exacerbated in the presence of high Reynolds number. The issues are further compounded with the introduction of markers or an immiscible fluid intended to be tracked in an ambient high Reynolds number flow; despite the overwhelming pragmatism of problems in this regime, and increasing computational efficacy, even modest problems remain outside the realm of direct approaches. Herein three approaches are presented which embody direct application to problems of this nature. An LES model based on an entropy-viscosity serves to abet the computational resolution requirements imposed by high Reynolds numbers and a one-stage compressive flux, also utilizing an entropy-viscosity, aids in accurate, efficient, conservative transport, free of low order dispersive error, of an immiscible fluid or tracer. Finally, an integral commutator and the theory of anti-dispersive spaces is introduced as a novel theoretical tool for consistency error analysis; in addition the material engenders the construction of error-correction techniques for mass lumping schemes

    A convergent evolving finite element algorithm for Willmore flow of closed surfaces

    Full text link
    A proof of convergence is given for a novel evolving surface finite element semi-discretization of Willmore flow of closed two-dimensional surfaces, and also of surface diffusion flow. The numerical method proposed and studied here discretizes fourth-order evolution equations for the normal vector and mean curvature, reformulated as a system of second-order equations, and uses these evolving geometric quantities in the velocity law interpolated to the finite element space. This numerical method admits a convergence analysis in the case of continuous finite elements of polynomial degree at least two. The error analysis combines stability estimates and consistency estimates to yield optimal-order H1H^1-norm error bounds for the computed surface position, velocity, normal vector and mean curvature. The stability analysis is based on the matrix--vector formulation of the finite element method and does not use geometric arguments. The geometry enters only into the consistency estimates. Numerical experiments illustrate and complement the theoretical results

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008
    corecore